Abstract

Near-field transducer based on nanoscale optical antenna has been shown to generate high transmission and strongly localized optical spots well below the diffraction limit. In this paper, nanoscale ridge aperture antenna is considered as near-field transducer for heat-assisted magnetic recording. The spot size and transmission efficiency produced by ridge aperture are numerically studied. We show that the ridge apertures in a bowtie or half-bowtie shape are capable of generating small optical spots as well as elongated optical spots with desired aspect ratios for magnetic recording. The transmission efficiency can be improved by adding grooves around the apertures.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE 96, 1810–1835(2008).
    [CrossRef]
  2. W. A. Challener, C. Mihalcea, C. Peng, and K. Pelhos, “Miniature planar solid immersion mirror with focused spot less than a quarter wavelength,” Opt. Express 13, 7189–7197(2005).
    [CrossRef] [PubMed]
  3. C. Peng, C. Mihalcea, D. Buechel, W. A. Challener, and E. C. Gage, “Near field optical recording with a planar solid immersion mirror,” Appl. Phys. Lett. 87, 151105 (2005).
    [CrossRef]
  4. T. Rausch, C. Mihalcea, K. Pelhos, D. Karns, K. Mountfield, Y. A. Kubota, X. Wu, G. Ju, W. A. Challener, C. Peng, L. Li, Y.-T. Hsia, and E. C. Gage, “Near field heat assisted magnetic recording with a planar solid immersion lens,” Jpn. J. Appl. Phys., Part 1 45, 1314–1320 (2006).
    [CrossRef]
  5. R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42, 2417–2421 (2006).
    [CrossRef]
  6. W. A. Challener, T. W. McDaniel, C. D. Mihalcea, K. R. Mountfield, K. Pelhos, and I. K. Sendur, “Light delivery techniques for heat-assisted magnetic recordings,” Jpn. J. Appl. Phys. 42, 981–988 (2003).
    [CrossRef]
  7. W. A. Challener, E. Gage, A. Itagi, and C. Peng, “Optical transducers for near-field recording,” Jpn. J. Appl. Phys. 45, 6632–6642 (2006).
    [CrossRef]
  8. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photon. 3, 220–224 (2009).
    [CrossRef]
  9. W. A. Challener, “Transducer for heat assisted magnetic recording,” U.S. patent 7,272,079 (18 September, 2007).
  10. L. Pan and D. B. Bogy, “Heat Assisted Magnetic Recording,” Nat. Photon. 3, 189–190 (2009).
    [CrossRef]
  11. HFSS 12.1, Ansoft LLC (2009).
  12. E. D. Palik, Handbook of optical constants of solid (Academic, SanDiego, 1998).
  13. E. X. Jin and X. Xu, “Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43, 407–417 (2004).
    [CrossRef]
  14. E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88, 153110 (2006).
    [CrossRef]
  15. L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 261105 (2007).
    [CrossRef]
  16. L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361–364 (2006).
    [CrossRef] [PubMed]
  17. Y. Kim, S. Kim, H. Jung, E. Lee, and J. W. Hahn, “Plasmonic nano lithography with a high scan speed contact probe,” Opt. Express 17, 19476–19485 (2009).
    [CrossRef] [PubMed]
  18. S. M. V. Uppuluri, E. C. Kinzel, Y. Li, and X. Xu, “Parallel optical nanolithography using nanoscale bowtie aperture array,” Opt. Express 18, 7369–7375 (2010).
    [CrossRef] [PubMed]
  19. X. Shi, L. Hesselink, and R. L. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett. 28, 1320 (2003).
    [CrossRef] [PubMed]
  20. T. E. Schlesinger, T. Rausch, A. Itagi, J. Zhu, J. A. Bain, and D. D. Stancil, “An integrated read/write head for hybrid recording,” Jpn. J. Appl. Phys. 41, 1821–1824 (2002).
    [CrossRef]
  21. K. Sendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94, 043901 (2005).
    [CrossRef] [PubMed]
  22. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
    [CrossRef] [PubMed]
  23. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
    [CrossRef] [PubMed]
  24. E. C. Kinzel, P. Srisungsitthisunti, Y. Li, A. Raman, and X. Xu, “Extraordinary transmission from high-gain nanoaperture antennas,” Appl. Phys. Lett. 96, 211116 (2010).
    [CrossRef]
  25. D. Wang, T. Yang, and K. B. Crozier, “Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation,” Opt. Express 19, 2148–2157 (2011).
    [CrossRef] [PubMed]
  26. H. J. Lezec, and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651(2004).
    [CrossRef] [PubMed]

2011 (1)

2010 (2)

S. M. V. Uppuluri, E. C. Kinzel, Y. Li, and X. Xu, “Parallel optical nanolithography using nanoscale bowtie aperture array,” Opt. Express 18, 7369–7375 (2010).
[CrossRef] [PubMed]

E. C. Kinzel, P. Srisungsitthisunti, Y. Li, A. Raman, and X. Xu, “Extraordinary transmission from high-gain nanoaperture antennas,” Appl. Phys. Lett. 96, 211116 (2010).
[CrossRef]

2009 (3)

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photon. 3, 220–224 (2009).
[CrossRef]

L. Pan and D. B. Bogy, “Heat Assisted Magnetic Recording,” Nat. Photon. 3, 189–190 (2009).
[CrossRef]

Y. Kim, S. Kim, H. Jung, E. Lee, and J. W. Hahn, “Plasmonic nano lithography with a high scan speed contact probe,” Opt. Express 17, 19476–19485 (2009).
[CrossRef] [PubMed]

2008 (1)

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE 96, 1810–1835(2008).
[CrossRef]

2007 (1)

L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 261105 (2007).
[CrossRef]

2006 (5)

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361–364 (2006).
[CrossRef] [PubMed]

T. Rausch, C. Mihalcea, K. Pelhos, D. Karns, K. Mountfield, Y. A. Kubota, X. Wu, G. Ju, W. A. Challener, C. Peng, L. Li, Y.-T. Hsia, and E. C. Gage, “Near field heat assisted magnetic recording with a planar solid immersion lens,” Jpn. J. Appl. Phys., Part 1 45, 1314–1320 (2006).
[CrossRef]

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42, 2417–2421 (2006).
[CrossRef]

W. A. Challener, E. Gage, A. Itagi, and C. Peng, “Optical transducers for near-field recording,” Jpn. J. Appl. Phys. 45, 6632–6642 (2006).
[CrossRef]

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88, 153110 (2006).
[CrossRef]

2005 (3)

K. Sendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef] [PubMed]

W. A. Challener, C. Mihalcea, C. Peng, and K. Pelhos, “Miniature planar solid immersion mirror with focused spot less than a quarter wavelength,” Opt. Express 13, 7189–7197(2005).
[CrossRef] [PubMed]

C. Peng, C. Mihalcea, D. Buechel, W. A. Challener, and E. C. Gage, “Near field optical recording with a planar solid immersion mirror,” Appl. Phys. Lett. 87, 151105 (2005).
[CrossRef]

2004 (2)

E. X. Jin and X. Xu, “Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43, 407–417 (2004).
[CrossRef]

H. J. Lezec, and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651(2004).
[CrossRef] [PubMed]

2003 (3)

X. Shi, L. Hesselink, and R. L. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett. 28, 1320 (2003).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

W. A. Challener, T. W. McDaniel, C. D. Mihalcea, K. R. Mountfield, K. Pelhos, and I. K. Sendur, “Light delivery techniques for heat-assisted magnetic recordings,” Jpn. J. Appl. Phys. 42, 981–988 (2003).
[CrossRef]

2002 (2)

T. E. Schlesinger, T. Rausch, A. Itagi, J. Zhu, J. A. Bain, and D. D. Stancil, “An integrated read/write head for hybrid recording,” Jpn. J. Appl. Phys. 41, 1821–1824 (2002).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Bain, J. A.

T. E. Schlesinger, T. Rausch, A. Itagi, J. Zhu, J. A. Bain, and D. D. Stancil, “An integrated read/write head for hybrid recording,” Jpn. J. Appl. Phys. 41, 1821–1824 (2002).
[CrossRef]

Batra, S.

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42, 2417–2421 (2006).
[CrossRef]

Bogy, D. B.

L. Pan and D. B. Bogy, “Heat Assisted Magnetic Recording,” Nat. Photon. 3, 189–190 (2009).
[CrossRef]

Buechel, D.

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42, 2417–2421 (2006).
[CrossRef]

C. Peng, C. Mihalcea, D. Buechel, W. A. Challener, and E. C. Gage, “Near field optical recording with a planar solid immersion mirror,” Appl. Phys. Lett. 87, 151105 (2005).
[CrossRef]

Challener, W.

K. Sendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef] [PubMed]

Challener, W. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photon. 3, 220–224 (2009).
[CrossRef]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE 96, 1810–1835(2008).
[CrossRef]

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42, 2417–2421 (2006).
[CrossRef]

W. A. Challener, E. Gage, A. Itagi, and C. Peng, “Optical transducers for near-field recording,” Jpn. J. Appl. Phys. 45, 6632–6642 (2006).
[CrossRef]

T. Rausch, C. Mihalcea, K. Pelhos, D. Karns, K. Mountfield, Y. A. Kubota, X. Wu, G. Ju, W. A. Challener, C. Peng, L. Li, Y.-T. Hsia, and E. C. Gage, “Near field heat assisted magnetic recording with a planar solid immersion lens,” Jpn. J. Appl. Phys., Part 1 45, 1314–1320 (2006).
[CrossRef]

C. Peng, C. Mihalcea, D. Buechel, W. A. Challener, and E. C. Gage, “Near field optical recording with a planar solid immersion mirror,” Appl. Phys. Lett. 87, 151105 (2005).
[CrossRef]

W. A. Challener, C. Mihalcea, C. Peng, and K. Pelhos, “Miniature planar solid immersion mirror with focused spot less than a quarter wavelength,” Opt. Express 13, 7189–7197(2005).
[CrossRef] [PubMed]

W. A. Challener, T. W. McDaniel, C. D. Mihalcea, K. R. Mountfield, K. Pelhos, and I. K. Sendur, “Light delivery techniques for heat-assisted magnetic recordings,” Jpn. J. Appl. Phys. 42, 981–988 (2003).
[CrossRef]

W. A. Challener, “Transducer for heat assisted magnetic recording,” U.S. patent 7,272,079 (18 September, 2007).

Crozier, K. B.

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Ebbesen, T. W.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Erden, M. F.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE 96, 1810–1835(2008).
[CrossRef]

Gage, E.

W. A. Challener, E. Gage, A. Itagi, and C. Peng, “Optical transducers for near-field recording,” Jpn. J. Appl. Phys. 45, 6632–6642 (2006).
[CrossRef]

Gage, E. C.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photon. 3, 220–224 (2009).
[CrossRef]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE 96, 1810–1835(2008).
[CrossRef]

T. Rausch, C. Mihalcea, K. Pelhos, D. Karns, K. Mountfield, Y. A. Kubota, X. Wu, G. Ju, W. A. Challener, C. Peng, L. Li, Y.-T. Hsia, and E. C. Gage, “Near field heat assisted magnetic recording with a planar solid immersion lens,” Jpn. J. Appl. Phys., Part 1 45, 1314–1320 (2006).
[CrossRef]

C. Peng, C. Mihalcea, D. Buechel, W. A. Challener, and E. C. Gage, “Near field optical recording with a planar solid immersion mirror,” Appl. Phys. Lett. 87, 151105 (2005).
[CrossRef]

Garcia-Vidal, F. J.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Gokemeijer, N. J.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photon. 3, 220–224 (2009).
[CrossRef]

Hahn, J. W.

Hesselink, L.

Hohlfeld, J.

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42, 2417–2421 (2006).
[CrossRef]

Hsia, Y.-T.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photon. 3, 220–224 (2009).
[CrossRef]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE 96, 1810–1835(2008).
[CrossRef]

T. Rausch, C. Mihalcea, K. Pelhos, D. Karns, K. Mountfield, Y. A. Kubota, X. Wu, G. Ju, W. A. Challener, C. Peng, L. Li, Y.-T. Hsia, and E. C. Gage, “Near field heat assisted magnetic recording with a planar solid immersion lens,” Jpn. J. Appl. Phys., Part 1 45, 1314–1320 (2006).
[CrossRef]

Itagi, A.

W. A. Challener, E. Gage, A. Itagi, and C. Peng, “Optical transducers for near-field recording,” Jpn. J. Appl. Phys. 45, 6632–6642 (2006).
[CrossRef]

T. E. Schlesinger, T. Rausch, A. Itagi, J. Zhu, J. A. Bain, and D. D. Stancil, “An integrated read/write head for hybrid recording,” Jpn. J. Appl. Phys. 41, 1821–1824 (2002).
[CrossRef]

Itagi, A. V.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photon. 3, 220–224 (2009).
[CrossRef]

Jin, E. X.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361–364 (2006).
[CrossRef] [PubMed]

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88, 153110 (2006).
[CrossRef]

E. X. Jin and X. Xu, “Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43, 407–417 (2004).
[CrossRef]

Ju, G.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photon. 3, 220–224 (2009).
[CrossRef]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE 96, 1810–1835(2008).
[CrossRef]

T. Rausch, C. Mihalcea, K. Pelhos, D. Karns, K. Mountfield, Y. A. Kubota, X. Wu, G. Ju, W. A. Challener, C. Peng, L. Li, Y.-T. Hsia, and E. C. Gage, “Near field heat assisted magnetic recording with a planar solid immersion lens,” Jpn. J. Appl. Phys., Part 1 45, 1314–1320 (2006).
[CrossRef]

Jung, H.

Karns, D.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photon. 3, 220–224 (2009).
[CrossRef]

T. Rausch, C. Mihalcea, K. Pelhos, D. Karns, K. Mountfield, Y. A. Kubota, X. Wu, G. Ju, W. A. Challener, C. Peng, L. Li, Y.-T. Hsia, and E. C. Gage, “Near field heat assisted magnetic recording with a planar solid immersion lens,” Jpn. J. Appl. Phys., Part 1 45, 1314–1320 (2006).
[CrossRef]

Kim, S.

Kim, Y.

Kinzel, E. C.

E. C. Kinzel, P. Srisungsitthisunti, Y. Li, A. Raman, and X. Xu, “Extraordinary transmission from high-gain nanoaperture antennas,” Appl. Phys. Lett. 96, 211116 (2010).
[CrossRef]

S. M. V. Uppuluri, E. C. Kinzel, Y. Li, and X. Xu, “Parallel optical nanolithography using nanoscale bowtie aperture array,” Opt. Express 18, 7369–7375 (2010).
[CrossRef] [PubMed]

Kryder, M. H.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE 96, 1810–1835(2008).
[CrossRef]

Kubota, Y.

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42, 2417–2421 (2006).
[CrossRef]

Kubota, Y. A.

T. Rausch, C. Mihalcea, K. Pelhos, D. Karns, K. Mountfield, Y. A. Kubota, X. Wu, G. Ju, W. A. Challener, C. Peng, L. Li, Y.-T. Hsia, and E. C. Gage, “Near field heat assisted magnetic recording with a planar solid immersion lens,” Jpn. J. Appl. Phys., Part 1 45, 1314–1320 (2006).
[CrossRef]

Lee, E.

Lezec, H. J.

H. J. Lezec, and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651(2004).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Li, L.

T. Rausch, C. Mihalcea, K. Pelhos, D. Karns, K. Mountfield, Y. A. Kubota, X. Wu, G. Ju, W. A. Challener, C. Peng, L. Li, Y.-T. Hsia, and E. C. Gage, “Near field heat assisted magnetic recording with a planar solid immersion lens,” Jpn. J. Appl. Phys., Part 1 45, 1314–1320 (2006).
[CrossRef]

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42, 2417–2421 (2006).
[CrossRef]

Li, Y.

S. M. V. Uppuluri, E. C. Kinzel, Y. Li, and X. Xu, “Parallel optical nanolithography using nanoscale bowtie aperture array,” Opt. Express 18, 7369–7375 (2010).
[CrossRef] [PubMed]

E. C. Kinzel, P. Srisungsitthisunti, Y. Li, A. Raman, and X. Xu, “Extraordinary transmission from high-gain nanoaperture antennas,” Appl. Phys. Lett. 96, 211116 (2010).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Lu, B.

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42, 2417–2421 (2006).
[CrossRef]

Martin-Moreno, L.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

McDaniel, T. W.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE 96, 1810–1835(2008).
[CrossRef]

W. A. Challener, T. W. McDaniel, C. D. Mihalcea, K. R. Mountfield, K. Pelhos, and I. K. Sendur, “Light delivery techniques for heat-assisted magnetic recordings,” Jpn. J. Appl. Phys. 42, 981–988 (2003).
[CrossRef]

Mihalcea, C.

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42, 2417–2421 (2006).
[CrossRef]

T. Rausch, C. Mihalcea, K. Pelhos, D. Karns, K. Mountfield, Y. A. Kubota, X. Wu, G. Ju, W. A. Challener, C. Peng, L. Li, Y.-T. Hsia, and E. C. Gage, “Near field heat assisted magnetic recording with a planar solid immersion lens,” Jpn. J. Appl. Phys., Part 1 45, 1314–1320 (2006).
[CrossRef]

C. Peng, C. Mihalcea, D. Buechel, W. A. Challener, and E. C. Gage, “Near field optical recording with a planar solid immersion mirror,” Appl. Phys. Lett. 87, 151105 (2005).
[CrossRef]

W. A. Challener, C. Mihalcea, C. Peng, and K. Pelhos, “Miniature planar solid immersion mirror with focused spot less than a quarter wavelength,” Opt. Express 13, 7189–7197(2005).
[CrossRef] [PubMed]

Mihalcea, C. D.

W. A. Challener, T. W. McDaniel, C. D. Mihalcea, K. R. Mountfield, K. Pelhos, and I. K. Sendur, “Light delivery techniques for heat-assisted magnetic recordings,” Jpn. J. Appl. Phys. 42, 981–988 (2003).
[CrossRef]

Mountfield, K.

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42, 2417–2421 (2006).
[CrossRef]

T. Rausch, C. Mihalcea, K. Pelhos, D. Karns, K. Mountfield, Y. A. Kubota, X. Wu, G. Ju, W. A. Challener, C. Peng, L. Li, Y.-T. Hsia, and E. C. Gage, “Near field heat assisted magnetic recording with a planar solid immersion lens,” Jpn. J. Appl. Phys., Part 1 45, 1314–1320 (2006).
[CrossRef]

Mountfield, K. R.

W. A. Challener, T. W. McDaniel, C. D. Mihalcea, K. R. Mountfield, K. Pelhos, and I. K. Sendur, “Light delivery techniques for heat-assisted magnetic recordings,” Jpn. J. Appl. Phys. 42, 981–988 (2003).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of optical constants of solid (Academic, SanDiego, 1998).

Pan, L.

L. Pan and D. B. Bogy, “Heat Assisted Magnetic Recording,” Nat. Photon. 3, 189–190 (2009).
[CrossRef]

Pelhos, K.

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42, 2417–2421 (2006).
[CrossRef]

T. Rausch, C. Mihalcea, K. Pelhos, D. Karns, K. Mountfield, Y. A. Kubota, X. Wu, G. Ju, W. A. Challener, C. Peng, L. Li, Y.-T. Hsia, and E. C. Gage, “Near field heat assisted magnetic recording with a planar solid immersion lens,” Jpn. J. Appl. Phys., Part 1 45, 1314–1320 (2006).
[CrossRef]

W. A. Challener, C. Mihalcea, C. Peng, and K. Pelhos, “Miniature planar solid immersion mirror with focused spot less than a quarter wavelength,” Opt. Express 13, 7189–7197(2005).
[CrossRef] [PubMed]

W. A. Challener, T. W. McDaniel, C. D. Mihalcea, K. R. Mountfield, K. Pelhos, and I. K. Sendur, “Light delivery techniques for heat-assisted magnetic recordings,” Jpn. J. Appl. Phys. 42, 981–988 (2003).
[CrossRef]

Peng, C.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photon. 3, 220–224 (2009).
[CrossRef]

W. A. Challener, E. Gage, A. Itagi, and C. Peng, “Optical transducers for near-field recording,” Jpn. J. Appl. Phys. 45, 6632–6642 (2006).
[CrossRef]

T. Rausch, C. Mihalcea, K. Pelhos, D. Karns, K. Mountfield, Y. A. Kubota, X. Wu, G. Ju, W. A. Challener, C. Peng, L. Li, Y.-T. Hsia, and E. C. Gage, “Near field heat assisted magnetic recording with a planar solid immersion lens,” Jpn. J. Appl. Phys., Part 1 45, 1314–1320 (2006).
[CrossRef]

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42, 2417–2421 (2006).
[CrossRef]

C. Peng, C. Mihalcea, D. Buechel, W. A. Challener, and E. C. Gage, “Near field optical recording with a planar solid immersion mirror,” Appl. Phys. Lett. 87, 151105 (2005).
[CrossRef]

W. A. Challener, C. Mihalcea, C. Peng, and K. Pelhos, “Miniature planar solid immersion mirror with focused spot less than a quarter wavelength,” Opt. Express 13, 7189–7197(2005).
[CrossRef] [PubMed]

K. Sendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef] [PubMed]

Peng, W.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photon. 3, 220–224 (2009).
[CrossRef]

Peng, Y.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photon. 3, 220–224 (2009).
[CrossRef]

Raman, A.

E. C. Kinzel, P. Srisungsitthisunti, Y. Li, A. Raman, and X. Xu, “Extraordinary transmission from high-gain nanoaperture antennas,” Appl. Phys. Lett. 96, 211116 (2010).
[CrossRef]

Rausch, T.

T. Rausch, C. Mihalcea, K. Pelhos, D. Karns, K. Mountfield, Y. A. Kubota, X. Wu, G. Ju, W. A. Challener, C. Peng, L. Li, Y.-T. Hsia, and E. C. Gage, “Near field heat assisted magnetic recording with a planar solid immersion lens,” Jpn. J. Appl. Phys., Part 1 45, 1314–1320 (2006).
[CrossRef]

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42, 2417–2421 (2006).
[CrossRef]

T. E. Schlesinger, T. Rausch, A. Itagi, J. Zhu, J. A. Bain, and D. D. Stancil, “An integrated read/write head for hybrid recording,” Jpn. J. Appl. Phys. 41, 1821–1824 (2002).
[CrossRef]

Rottmayer, R. E.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photon. 3, 220–224 (2009).
[CrossRef]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE 96, 1810–1835(2008).
[CrossRef]

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42, 2417–2421 (2006).
[CrossRef]

Schlesinger, T. E.

T. E. Schlesinger, T. Rausch, A. Itagi, J. Zhu, J. A. Bain, and D. D. Stancil, “An integrated read/write head for hybrid recording,” Jpn. J. Appl. Phys. 41, 1821–1824 (2002).
[CrossRef]

Seigler, M. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photon. 3, 220–224 (2009).
[CrossRef]

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42, 2417–2421 (2006).
[CrossRef]

Sendur, I. K.

W. A. Challener, T. W. McDaniel, C. D. Mihalcea, K. R. Mountfield, K. Pelhos, and I. K. Sendur, “Light delivery techniques for heat-assisted magnetic recordings,” Jpn. J. Appl. Phys. 42, 981–988 (2003).
[CrossRef]

Sendur, K.

K. Sendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef] [PubMed]

Shi, X.

Srisungsitthisunti, P.

E. C. Kinzel, P. Srisungsitthisunti, Y. Li, A. Raman, and X. Xu, “Extraordinary transmission from high-gain nanoaperture antennas,” Appl. Phys. Lett. 96, 211116 (2010).
[CrossRef]

Stancil, D. D.

T. E. Schlesinger, T. Rausch, A. Itagi, J. Zhu, J. A. Bain, and D. D. Stancil, “An integrated read/write head for hybrid recording,” Jpn. J. Appl. Phys. 41, 1821–1824 (2002).
[CrossRef]

Thio, T.

Thornton, R. L.

Uppuluri, S. M.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361–364 (2006).
[CrossRef] [PubMed]

Uppuluri, S. M. V.

Wang, D.

Wang, L.

L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 261105 (2007).
[CrossRef]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361–364 (2006).
[CrossRef] [PubMed]

Weller, D.

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42, 2417–2421 (2006).
[CrossRef]

Wu, X.

T. Rausch, C. Mihalcea, K. Pelhos, D. Karns, K. Mountfield, Y. A. Kubota, X. Wu, G. Ju, W. A. Challener, C. Peng, L. Li, Y.-T. Hsia, and E. C. Gage, “Near field heat assisted magnetic recording with a planar solid immersion lens,” Jpn. J. Appl. Phys., Part 1 45, 1314–1320 (2006).
[CrossRef]

Xu, X.

S. M. V. Uppuluri, E. C. Kinzel, Y. Li, and X. Xu, “Parallel optical nanolithography using nanoscale bowtie aperture array,” Opt. Express 18, 7369–7375 (2010).
[CrossRef] [PubMed]

E. C. Kinzel, P. Srisungsitthisunti, Y. Li, A. Raman, and X. Xu, “Extraordinary transmission from high-gain nanoaperture antennas,” Appl. Phys. Lett. 96, 211116 (2010).
[CrossRef]

L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 261105 (2007).
[CrossRef]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361–364 (2006).
[CrossRef] [PubMed]

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88, 153110 (2006).
[CrossRef]

E. X. Jin and X. Xu, “Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43, 407–417 (2004).
[CrossRef]

Yang, T.

Yang, X.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photon. 3, 220–224 (2009).
[CrossRef]

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42, 2417–2421 (2006).
[CrossRef]

Zhu, J.

T. E. Schlesinger, T. Rausch, A. Itagi, J. Zhu, J. A. Bain, and D. D. Stancil, “An integrated read/write head for hybrid recording,” Jpn. J. Appl. Phys. 41, 1821–1824 (2002).
[CrossRef]

Zhu, X.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photon. 3, 220–224 (2009).
[CrossRef]

Appl. Phys. Lett. (4)

C. Peng, C. Mihalcea, D. Buechel, W. A. Challener, and E. C. Gage, “Near field optical recording with a planar solid immersion mirror,” Appl. Phys. Lett. 87, 151105 (2005).
[CrossRef]

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88, 153110 (2006).
[CrossRef]

L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 261105 (2007).
[CrossRef]

E. C. Kinzel, P. Srisungsitthisunti, Y. Li, A. Raman, and X. Xu, “Extraordinary transmission from high-gain nanoaperture antennas,” Appl. Phys. Lett. 96, 211116 (2010).
[CrossRef]

IEEE Trans. Magn. (1)

R. E. Rottmayer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. A. Seigler, D. Weller, and X. Yang, “Heat-assisted magnetic recording,” IEEE Trans. Magn. 42, 2417–2421 (2006).
[CrossRef]

Jpn. J. Appl. Phys. (4)

W. A. Challener, T. W. McDaniel, C. D. Mihalcea, K. R. Mountfield, K. Pelhos, and I. K. Sendur, “Light delivery techniques for heat-assisted magnetic recordings,” Jpn. J. Appl. Phys. 42, 981–988 (2003).
[CrossRef]

W. A. Challener, E. Gage, A. Itagi, and C. Peng, “Optical transducers for near-field recording,” Jpn. J. Appl. Phys. 45, 6632–6642 (2006).
[CrossRef]

E. X. Jin and X. Xu, “Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43, 407–417 (2004).
[CrossRef]

T. E. Schlesinger, T. Rausch, A. Itagi, J. Zhu, J. A. Bain, and D. D. Stancil, “An integrated read/write head for hybrid recording,” Jpn. J. Appl. Phys. 41, 1821–1824 (2002).
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (1)

T. Rausch, C. Mihalcea, K. Pelhos, D. Karns, K. Mountfield, Y. A. Kubota, X. Wu, G. Ju, W. A. Challener, C. Peng, L. Li, Y.-T. Hsia, and E. C. Gage, “Near field heat assisted magnetic recording with a planar solid immersion lens,” Jpn. J. Appl. Phys., Part 1 45, 1314–1320 (2006).
[CrossRef]

Nano Lett. (1)

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361–364 (2006).
[CrossRef] [PubMed]

Nat. Photon. (2)

L. Pan and D. B. Bogy, “Heat Assisted Magnetic Recording,” Nat. Photon. 3, 189–190 (2009).
[CrossRef]

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photon. 3, 220–224 (2009).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

K. Sendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

Proc. IEEE (1)

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE 96, 1810–1835(2008).
[CrossRef]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Other (3)

W. A. Challener, “Transducer for heat assisted magnetic recording,” U.S. patent 7,272,079 (18 September, 2007).

HFSS 12.1, Ansoft LLC (2009).

E. D. Palik, Handbook of optical constants of solid (Academic, SanDiego, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Geometry of the aperture NFTs. (a) Cross-sectional view of the media stack, (b) bowtie aperture (the outer corners are filleted with a radius f = 5 nm and the inner corners with a radius r = 2 nm ), (c) half-bowtie aperture, and (d) C aperture.

Fig. 2
Fig. 2

(a) FWHM in x and y directions as a function of aperture gap d. The spot sizes are calculated at the entrance surface of the FePt layer, which is 4 nm from the exit side of the aperture. Heat generation in (b) the x direction and (c) the y direction.

Fig. 3
Fig. 3

(a) Heat generation for different t and aperture outline dimensions. Heat generation at different depths into the FePt layer in (b)  x z plane and (c)  y z plane. (d) Transmission efficiency as a function of the gap size.

Fig. 4
Fig. 4

(a) Transmission efficiency as a function of dimensions a and t, calculated on the exit side of the aperture with a region of 40 nm × 17   nm . (b) Heat absorption ( MW / m 3 ) for a 495 nm bowtie aperture. t = 100 nm .

Fig. 5
Fig. 5

Heat spots ( MW / m 3 ) for (a) a 345 nm long half-bowtie aperture, t = 100 nm , and (b) C aperture, a = 250 nm , b = 100 nm , t = 75 nm . Both have s = 15 nm , d = 5 nm .

Fig. 6
Fig. 6

(a) Cross-section and (b) top views of bowtie aperture with one groove.

Fig. 7
Fig. 7

(a) Transmission enhancement for a 500 nm bowtie aperture with one groove as a function of w 0 and r 1 . (b) Electric field on the y z plane for the 500 nm bowtie aperture with one groove. The inset shows an identically sized bowtie without groove.

Tables (1)

Tables Icon

Table 1 Thicknesses and Optical Properties of the Media Stack

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P 0 = π / 2 E 0 2 2 η w 2 ,
q = 1 / 2 Re ( E · J * + j w B · H * ) ,

Metrics