Abstract

ZnSe nanowires and nanobelts with zinc blende structure have been synthesized. The morphology and the growth mechanisms of the ZnSe nanostructures will be discussed. From the photoluminescence (PL) of the ZnSe nanostructures, it is interesting to note that red color emission with only a single peak at the photon energy of 2eV at room temperature is obtained while the typical bandgap transition energy of ZnSe is 2.7eV. When the temperature is reduced to 150K, the peak wavelength shifts to 2.3eV with yellowish emission and then blue emission with the peak at 2.7eV at temperature less than 50K. The overall wavelength shift of 700meV is obtained as compared to the conventional ZnSe of about 100meV (i.e., sevenfold extension). The ZnSe nanostructures with enhanced wavelength shift can potentially function as visible light temperature-indicator. The color change from red to yellowish and then to blue is large enough for the nanostructures to be used for temperature-sensing applications. The details of PL spectra of ZnSe at various temperatures are studied from (i) the spectral profile, (ii) the half-width half-maximum, and (iii) the peak photon energy of each of the emission centers. The results show that the simplified configuration coordinate model can be used to describe the emission spectra, and the frequency of the local vibrational mode of the emission centers is determined.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Li, X. Gong, C. Wang, J. Wang, K. Ip, and S. Hark, “Size-dependent periodically twinned ZnSe nanowires,” Adv. Mater. 16, 1436–1440 (2004).
    [CrossRef]
  2. S. K. Chan, Y. Cai, N. Wang, and I. K. Sou, “Control of growth orientation for epitaxially grown ZnSe nanowires,” Appl. Phys. Lett. 88, 013108 (2006).
    [CrossRef]
  3. X. T. Zhang, K. M. Ip, Z. Liu, Y. P. Leung, Q. Li, and S. K. Hark, “Structure and photoluminescence of ZnSe nanoribbons grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 84, 2641–2643 (2004).
    [CrossRef]
  4. Y. P. Leung, W. C. H. Choy, I. Markov, G. K. H. Pang, H. C. Ong, and T. I. Yuk, “Synthesis of wurtzite ZnSe nanorings by thermal evaporation,” Appl. Phys. Lett. 88, 183110(2006).
    [CrossRef]
  5. J. Hu, Y. Bando, and D. Golberg, “Sn-catalyzed thermal evaporation synthesis of tetrapod-branched ZnSe nanorod architectures,” Small 1, 95–99 (2004).
    [CrossRef]
  6. P. V. Kamat and B. Patrick, “Photophysics and photochemistry of quantized zinc oxide colloids,” J. Phys. Chem. 96, 6829–6834 (1992).
    [CrossRef]
  7. W. C. H. Choy, C. F. Guo, K. H. Pang, Y. P. Leung, G. Z. Wang, and K. W. Cheah, “ZnO nanorods on in situ synthesized ZnSe grains,” J. Nanosci. Nanotechnol. 6, 802–806 (2006).
    [CrossRef] [PubMed]
  8. R. Solanki, J. Huo, J. L. Freeouf, and B. Miner, “Atomic layer deposition of ZnSe/CdSe superlattice nanowires,” Appl. Phys. Lett. 81, 3864–3866 (2002).
    [CrossRef]
  9. J. Q. Hu, Y. Bando, J. H. Zhan, and D. Golberg, “Si/ZnS and Si/ZnSe core/shell nanocrystal structures,” Appl. Phys. Lett. 85, 3593–3596 (2004).
    [CrossRef]
  10. C. Wang, J. Wang, Q. Li, and G. C. Yi, “ZnSe-Si bi-coaxial nanowire heterostructures,” Adv. Funct. Mater. 15, 1471–1477(2005).
    [CrossRef]
  11. M. Sohel, X. Zhou, H. Lu, M. N. Perez-Paz, M. Tamargo, and M. Munoz, “Optical characterization and evaluation of the conduction band offset for ZnCdSe/ZnMgSe quantum wells grown on InP(001) by molecular-beam epitaxy,” J. Vac. Sci. Technol. 23, 1209–1211 (2005).
    [CrossRef]
  12. A. Bukaluk, M. Trzcinski, F. Firszt, S. Lezgowski, and H. Mezczynska, “Auger depth profile analysis and photoluminescence investigations of Zn1−xMgxSe alloys,” Surf. Sci. 507–510, 175–180 (2002).
    [CrossRef]
  13. J. H. Chang, J. S. Song, K. Godo, T. Yao, M. Y. Shen, and T. Goto, “ZnCdTe/ZnTe/ZnMgSeTe quantum-well structures for the application to pure-green light-emitting devices,” Appl. Phys. Lett. 78, 566–569 (2001).
    [CrossRef]
  14. X. Zhou, M. Munoz, M. C. Tamargo, and Y. C. Chen, “Optically pumped laser characteristics of blue Znx′Cdy′Mg1−x′−y′Se/ZnxCdyMg1−x−ySe single quantum well lasers grown on InP,” J. Appl. Phys. 95, 7–10 (2004).
    [CrossRef]
  15. M. Strassburg, Th. Deniozou, A. Hoffmann, R. Heitz, U. W. Pohl, D. Bimberg, D. Litvinov, A. Rosenauer, D. Gerthsen, S. Schwedhelm, K. Lischka, and D. Schikora, “Coexistence of planar and three-dimensional quantum dots in CdSe/ZnSe structures,” Appl. Phys. Lett. 76, 685–867(2000).
    [CrossRef]
  16. H. Jeon, J. Ding, W. Patterson, A. V. Nurmikko, W. Xie, D. C. Grille, M. Kobayashi, and R. L. Gunshor, “Blue-green injection laser diodes in (Zn,Cd)Se/ZnSe quantum wells,” Appl. Phys. Lett. 59, 3619–3621 (1991).
    [CrossRef]
  17. W. C. H. Choy and K. S. Chan, “Theoretical analysis of diffused quantum wells optical lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 9, 698–707 (2003), invited.
    [CrossRef]
  18. E. Marquardt, B. Opitz, M. Scholl, and M. Heuken, “Electroabsorption and light modulation with ZnSe/ZnSSe multiquantum wells grown by metalorganic vapor phase epitaxy,” J. Appl. Phys. 75, 8022–8026 (1994).
    [CrossRef]
  19. W. C. H. Choy, “Optical properties of InGaAs/InAlAs diffused double quantum wells,” J. Appl. Phys. 87, 2956–2966 (2000).
    [CrossRef]
  20. W. C. H. Choy, E. H. Li, and B. L. Weiss, “Asymmetric AlGaAs/GaAs double quantum wells phase modulator using surface acoustic wave,” IEEE J. Quantum Electron. 34, 1846–1853(1998).
    [CrossRef]
  21. See for example S. Fujita, H. Mimoto, and T. Noguchi, “Photoluminescence in ZnSe grown by liquid-phase epitaxy from Zn–Ga solution,” J. Appl. Phys. 50, 1079–1087 (1979).
    [CrossRef]
  22. W. Stutius, “Growth and doping of ZnSe and ZnSxSe1−x by organometallic chemical vapor deposition,” J. Cryst. Growth 59, 1–9 (1982).
    [CrossRef]
  23. Z. T. Zhang, Z. Liu, Y. P. Leung, Q. Li, and S. K. Hark, “Growth and luminescence of zinc-blende-structured ZnSe nanowires by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 83, 5533–5535 (2003).
    [CrossRef]
  24. Z. L. Wang, X. Y. Kong, and J. M. Zuo, “Induced growth of asymmetric nanocantilever arrays on polar surfaces,” Phys. Rev. Lett. 91, 185502 (2003).
    [CrossRef] [PubMed]
  25. C. C. Klick and J. J. Schulman, “Luminescence in Solids,” in Vol.  5 of Solid State Physics, F.Seitz and D.Turnbull, eds. (Academic, 1957), pp. 97–99.
    [CrossRef]
  26. S. Shionoya, T. Koda, K. Era, and H. Fujiwara, “Nature of luminescence transitions in ZnS crystals,” J. Phys. Soc. Jpn. 19, 1157–1167 (1964).
    [CrossRef]
  27. N. Sankar and K. Ramachandran, “On the thermal and optical properties of ZnSe and doped ZnSe crystals grown by PVT,” J. Cryst. Growth 247, 157–165 (2003).
    [CrossRef]
  28. M. Isshiki, T. Yoshida, K. Igaki, Y. Hayashi, and Y. Nakano, “Photoluminescence spectra of In-doped ZnSe single crystals,” J. Phys. C 19, 4375–4381 (1986).
    [CrossRef]
  29. V. V. Blinov, E. M. Gavrishchuk, V. G. Galstyan, V. S. Zimogorshii, I. A. Karetnikov, N. K. Morozova, and V. G. Plotnichenko, “Effect of oxygen doping on the IR transmission and cathodoluminescence of ZnSe,” Inorg. Mater. 37, 1228–1234 (2001).
    [CrossRef]
  30. P. Yu and M. Cardona, “Electronic properties of defects,” in Fundamentals of Semiconductors: Physics and Materials Properties (Springer, 2001), pp. 160–202.

2006 (3)

S. K. Chan, Y. Cai, N. Wang, and I. K. Sou, “Control of growth orientation for epitaxially grown ZnSe nanowires,” Appl. Phys. Lett. 88, 013108 (2006).
[CrossRef]

Y. P. Leung, W. C. H. Choy, I. Markov, G. K. H. Pang, H. C. Ong, and T. I. Yuk, “Synthesis of wurtzite ZnSe nanorings by thermal evaporation,” Appl. Phys. Lett. 88, 183110(2006).
[CrossRef]

W. C. H. Choy, C. F. Guo, K. H. Pang, Y. P. Leung, G. Z. Wang, and K. W. Cheah, “ZnO nanorods on in situ synthesized ZnSe grains,” J. Nanosci. Nanotechnol. 6, 802–806 (2006).
[CrossRef] [PubMed]

2005 (2)

C. Wang, J. Wang, Q. Li, and G. C. Yi, “ZnSe-Si bi-coaxial nanowire heterostructures,” Adv. Funct. Mater. 15, 1471–1477(2005).
[CrossRef]

M. Sohel, X. Zhou, H. Lu, M. N. Perez-Paz, M. Tamargo, and M. Munoz, “Optical characterization and evaluation of the conduction band offset for ZnCdSe/ZnMgSe quantum wells grown on InP(001) by molecular-beam epitaxy,” J. Vac. Sci. Technol. 23, 1209–1211 (2005).
[CrossRef]

2004 (5)

X. Zhou, M. Munoz, M. C. Tamargo, and Y. C. Chen, “Optically pumped laser characteristics of blue Znx′Cdy′Mg1−x′−y′Se/ZnxCdyMg1−x−ySe single quantum well lasers grown on InP,” J. Appl. Phys. 95, 7–10 (2004).
[CrossRef]

Q. Li, X. Gong, C. Wang, J. Wang, K. Ip, and S. Hark, “Size-dependent periodically twinned ZnSe nanowires,” Adv. Mater. 16, 1436–1440 (2004).
[CrossRef]

J. Q. Hu, Y. Bando, J. H. Zhan, and D. Golberg, “Si/ZnS and Si/ZnSe core/shell nanocrystal structures,” Appl. Phys. Lett. 85, 3593–3596 (2004).
[CrossRef]

J. Hu, Y. Bando, and D. Golberg, “Sn-catalyzed thermal evaporation synthesis of tetrapod-branched ZnSe nanorod architectures,” Small 1, 95–99 (2004).
[CrossRef]

X. T. Zhang, K. M. Ip, Z. Liu, Y. P. Leung, Q. Li, and S. K. Hark, “Structure and photoluminescence of ZnSe nanoribbons grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 84, 2641–2643 (2004).
[CrossRef]

2003 (4)

W. C. H. Choy and K. S. Chan, “Theoretical analysis of diffused quantum wells optical lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 9, 698–707 (2003), invited.
[CrossRef]

Z. T. Zhang, Z. Liu, Y. P. Leung, Q. Li, and S. K. Hark, “Growth and luminescence of zinc-blende-structured ZnSe nanowires by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 83, 5533–5535 (2003).
[CrossRef]

Z. L. Wang, X. Y. Kong, and J. M. Zuo, “Induced growth of asymmetric nanocantilever arrays on polar surfaces,” Phys. Rev. Lett. 91, 185502 (2003).
[CrossRef] [PubMed]

N. Sankar and K. Ramachandran, “On the thermal and optical properties of ZnSe and doped ZnSe crystals grown by PVT,” J. Cryst. Growth 247, 157–165 (2003).
[CrossRef]

2002 (2)

A. Bukaluk, M. Trzcinski, F. Firszt, S. Lezgowski, and H. Mezczynska, “Auger depth profile analysis and photoluminescence investigations of Zn1−xMgxSe alloys,” Surf. Sci. 507–510, 175–180 (2002).
[CrossRef]

R. Solanki, J. Huo, J. L. Freeouf, and B. Miner, “Atomic layer deposition of ZnSe/CdSe superlattice nanowires,” Appl. Phys. Lett. 81, 3864–3866 (2002).
[CrossRef]

2001 (2)

J. H. Chang, J. S. Song, K. Godo, T. Yao, M. Y. Shen, and T. Goto, “ZnCdTe/ZnTe/ZnMgSeTe quantum-well structures for the application to pure-green light-emitting devices,” Appl. Phys. Lett. 78, 566–569 (2001).
[CrossRef]

V. V. Blinov, E. M. Gavrishchuk, V. G. Galstyan, V. S. Zimogorshii, I. A. Karetnikov, N. K. Morozova, and V. G. Plotnichenko, “Effect of oxygen doping on the IR transmission and cathodoluminescence of ZnSe,” Inorg. Mater. 37, 1228–1234 (2001).
[CrossRef]

2000 (2)

W. C. H. Choy, “Optical properties of InGaAs/InAlAs diffused double quantum wells,” J. Appl. Phys. 87, 2956–2966 (2000).
[CrossRef]

M. Strassburg, Th. Deniozou, A. Hoffmann, R. Heitz, U. W. Pohl, D. Bimberg, D. Litvinov, A. Rosenauer, D. Gerthsen, S. Schwedhelm, K. Lischka, and D. Schikora, “Coexistence of planar and three-dimensional quantum dots in CdSe/ZnSe structures,” Appl. Phys. Lett. 76, 685–867(2000).
[CrossRef]

1998 (1)

W. C. H. Choy, E. H. Li, and B. L. Weiss, “Asymmetric AlGaAs/GaAs double quantum wells phase modulator using surface acoustic wave,” IEEE J. Quantum Electron. 34, 1846–1853(1998).
[CrossRef]

1994 (1)

E. Marquardt, B. Opitz, M. Scholl, and M. Heuken, “Electroabsorption and light modulation with ZnSe/ZnSSe multiquantum wells grown by metalorganic vapor phase epitaxy,” J. Appl. Phys. 75, 8022–8026 (1994).
[CrossRef]

1992 (1)

P. V. Kamat and B. Patrick, “Photophysics and photochemistry of quantized zinc oxide colloids,” J. Phys. Chem. 96, 6829–6834 (1992).
[CrossRef]

1991 (1)

H. Jeon, J. Ding, W. Patterson, A. V. Nurmikko, W. Xie, D. C. Grille, M. Kobayashi, and R. L. Gunshor, “Blue-green injection laser diodes in (Zn,Cd)Se/ZnSe quantum wells,” Appl. Phys. Lett. 59, 3619–3621 (1991).
[CrossRef]

1986 (1)

M. Isshiki, T. Yoshida, K. Igaki, Y. Hayashi, and Y. Nakano, “Photoluminescence spectra of In-doped ZnSe single crystals,” J. Phys. C 19, 4375–4381 (1986).
[CrossRef]

1982 (1)

W. Stutius, “Growth and doping of ZnSe and ZnSxSe1−x by organometallic chemical vapor deposition,” J. Cryst. Growth 59, 1–9 (1982).
[CrossRef]

1979 (1)

See for example S. Fujita, H. Mimoto, and T. Noguchi, “Photoluminescence in ZnSe grown by liquid-phase epitaxy from Zn–Ga solution,” J. Appl. Phys. 50, 1079–1087 (1979).
[CrossRef]

1964 (1)

S. Shionoya, T. Koda, K. Era, and H. Fujiwara, “Nature of luminescence transitions in ZnS crystals,” J. Phys. Soc. Jpn. 19, 1157–1167 (1964).
[CrossRef]

Bando, Y.

J. Hu, Y. Bando, and D. Golberg, “Sn-catalyzed thermal evaporation synthesis of tetrapod-branched ZnSe nanorod architectures,” Small 1, 95–99 (2004).
[CrossRef]

J. Q. Hu, Y. Bando, J. H. Zhan, and D. Golberg, “Si/ZnS and Si/ZnSe core/shell nanocrystal structures,” Appl. Phys. Lett. 85, 3593–3596 (2004).
[CrossRef]

Bimberg, D.

M. Strassburg, Th. Deniozou, A. Hoffmann, R. Heitz, U. W. Pohl, D. Bimberg, D. Litvinov, A. Rosenauer, D. Gerthsen, S. Schwedhelm, K. Lischka, and D. Schikora, “Coexistence of planar and three-dimensional quantum dots in CdSe/ZnSe structures,” Appl. Phys. Lett. 76, 685–867(2000).
[CrossRef]

Blinov, V. V.

V. V. Blinov, E. M. Gavrishchuk, V. G. Galstyan, V. S. Zimogorshii, I. A. Karetnikov, N. K. Morozova, and V. G. Plotnichenko, “Effect of oxygen doping on the IR transmission and cathodoluminescence of ZnSe,” Inorg. Mater. 37, 1228–1234 (2001).
[CrossRef]

Bukaluk, A.

A. Bukaluk, M. Trzcinski, F. Firszt, S. Lezgowski, and H. Mezczynska, “Auger depth profile analysis and photoluminescence investigations of Zn1−xMgxSe alloys,” Surf. Sci. 507–510, 175–180 (2002).
[CrossRef]

Cai, Y.

S. K. Chan, Y. Cai, N. Wang, and I. K. Sou, “Control of growth orientation for epitaxially grown ZnSe nanowires,” Appl. Phys. Lett. 88, 013108 (2006).
[CrossRef]

Cardona, M.

P. Yu and M. Cardona, “Electronic properties of defects,” in Fundamentals of Semiconductors: Physics and Materials Properties (Springer, 2001), pp. 160–202.

Chan, K. S.

W. C. H. Choy and K. S. Chan, “Theoretical analysis of diffused quantum wells optical lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 9, 698–707 (2003), invited.
[CrossRef]

Chan, S. K.

S. K. Chan, Y. Cai, N. Wang, and I. K. Sou, “Control of growth orientation for epitaxially grown ZnSe nanowires,” Appl. Phys. Lett. 88, 013108 (2006).
[CrossRef]

Chang, J. H.

J. H. Chang, J. S. Song, K. Godo, T. Yao, M. Y. Shen, and T. Goto, “ZnCdTe/ZnTe/ZnMgSeTe quantum-well structures for the application to pure-green light-emitting devices,” Appl. Phys. Lett. 78, 566–569 (2001).
[CrossRef]

Cheah, K. W.

W. C. H. Choy, C. F. Guo, K. H. Pang, Y. P. Leung, G. Z. Wang, and K. W. Cheah, “ZnO nanorods on in situ synthesized ZnSe grains,” J. Nanosci. Nanotechnol. 6, 802–806 (2006).
[CrossRef] [PubMed]

Chen, Y. C.

X. Zhou, M. Munoz, M. C. Tamargo, and Y. C. Chen, “Optically pumped laser characteristics of blue Znx′Cdy′Mg1−x′−y′Se/ZnxCdyMg1−x−ySe single quantum well lasers grown on InP,” J. Appl. Phys. 95, 7–10 (2004).
[CrossRef]

Choy, W. C. H.

W. C. H. Choy, C. F. Guo, K. H. Pang, Y. P. Leung, G. Z. Wang, and K. W. Cheah, “ZnO nanorods on in situ synthesized ZnSe grains,” J. Nanosci. Nanotechnol. 6, 802–806 (2006).
[CrossRef] [PubMed]

Y. P. Leung, W. C. H. Choy, I. Markov, G. K. H. Pang, H. C. Ong, and T. I. Yuk, “Synthesis of wurtzite ZnSe nanorings by thermal evaporation,” Appl. Phys. Lett. 88, 183110(2006).
[CrossRef]

W. C. H. Choy and K. S. Chan, “Theoretical analysis of diffused quantum wells optical lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 9, 698–707 (2003), invited.
[CrossRef]

W. C. H. Choy, “Optical properties of InGaAs/InAlAs diffused double quantum wells,” J. Appl. Phys. 87, 2956–2966 (2000).
[CrossRef]

W. C. H. Choy, E. H. Li, and B. L. Weiss, “Asymmetric AlGaAs/GaAs double quantum wells phase modulator using surface acoustic wave,” IEEE J. Quantum Electron. 34, 1846–1853(1998).
[CrossRef]

Deniozou, Th.

M. Strassburg, Th. Deniozou, A. Hoffmann, R. Heitz, U. W. Pohl, D. Bimberg, D. Litvinov, A. Rosenauer, D. Gerthsen, S. Schwedhelm, K. Lischka, and D. Schikora, “Coexistence of planar and three-dimensional quantum dots in CdSe/ZnSe structures,” Appl. Phys. Lett. 76, 685–867(2000).
[CrossRef]

Ding, J.

H. Jeon, J. Ding, W. Patterson, A. V. Nurmikko, W. Xie, D. C. Grille, M. Kobayashi, and R. L. Gunshor, “Blue-green injection laser diodes in (Zn,Cd)Se/ZnSe quantum wells,” Appl. Phys. Lett. 59, 3619–3621 (1991).
[CrossRef]

Era, K.

S. Shionoya, T. Koda, K. Era, and H. Fujiwara, “Nature of luminescence transitions in ZnS crystals,” J. Phys. Soc. Jpn. 19, 1157–1167 (1964).
[CrossRef]

Firszt, F.

A. Bukaluk, M. Trzcinski, F. Firszt, S. Lezgowski, and H. Mezczynska, “Auger depth profile analysis and photoluminescence investigations of Zn1−xMgxSe alloys,” Surf. Sci. 507–510, 175–180 (2002).
[CrossRef]

Freeouf, J. L.

R. Solanki, J. Huo, J. L. Freeouf, and B. Miner, “Atomic layer deposition of ZnSe/CdSe superlattice nanowires,” Appl. Phys. Lett. 81, 3864–3866 (2002).
[CrossRef]

Fujita, S.

See for example S. Fujita, H. Mimoto, and T. Noguchi, “Photoluminescence in ZnSe grown by liquid-phase epitaxy from Zn–Ga solution,” J. Appl. Phys. 50, 1079–1087 (1979).
[CrossRef]

Fujiwara, H.

S. Shionoya, T. Koda, K. Era, and H. Fujiwara, “Nature of luminescence transitions in ZnS crystals,” J. Phys. Soc. Jpn. 19, 1157–1167 (1964).
[CrossRef]

Galstyan, V. G.

V. V. Blinov, E. M. Gavrishchuk, V. G. Galstyan, V. S. Zimogorshii, I. A. Karetnikov, N. K. Morozova, and V. G. Plotnichenko, “Effect of oxygen doping on the IR transmission and cathodoluminescence of ZnSe,” Inorg. Mater. 37, 1228–1234 (2001).
[CrossRef]

Gavrishchuk, E. M.

V. V. Blinov, E. M. Gavrishchuk, V. G. Galstyan, V. S. Zimogorshii, I. A. Karetnikov, N. K. Morozova, and V. G. Plotnichenko, “Effect of oxygen doping on the IR transmission and cathodoluminescence of ZnSe,” Inorg. Mater. 37, 1228–1234 (2001).
[CrossRef]

Gerthsen, D.

M. Strassburg, Th. Deniozou, A. Hoffmann, R. Heitz, U. W. Pohl, D. Bimberg, D. Litvinov, A. Rosenauer, D. Gerthsen, S. Schwedhelm, K. Lischka, and D. Schikora, “Coexistence of planar and three-dimensional quantum dots in CdSe/ZnSe structures,” Appl. Phys. Lett. 76, 685–867(2000).
[CrossRef]

Godo, K.

J. H. Chang, J. S. Song, K. Godo, T. Yao, M. Y. Shen, and T. Goto, “ZnCdTe/ZnTe/ZnMgSeTe quantum-well structures for the application to pure-green light-emitting devices,” Appl. Phys. Lett. 78, 566–569 (2001).
[CrossRef]

Golberg, D.

J. Q. Hu, Y. Bando, J. H. Zhan, and D. Golberg, “Si/ZnS and Si/ZnSe core/shell nanocrystal structures,” Appl. Phys. Lett. 85, 3593–3596 (2004).
[CrossRef]

J. Hu, Y. Bando, and D. Golberg, “Sn-catalyzed thermal evaporation synthesis of tetrapod-branched ZnSe nanorod architectures,” Small 1, 95–99 (2004).
[CrossRef]

Gong, X.

Q. Li, X. Gong, C. Wang, J. Wang, K. Ip, and S. Hark, “Size-dependent periodically twinned ZnSe nanowires,” Adv. Mater. 16, 1436–1440 (2004).
[CrossRef]

Goto, T.

J. H. Chang, J. S. Song, K. Godo, T. Yao, M. Y. Shen, and T. Goto, “ZnCdTe/ZnTe/ZnMgSeTe quantum-well structures for the application to pure-green light-emitting devices,” Appl. Phys. Lett. 78, 566–569 (2001).
[CrossRef]

Grille, D. C.

H. Jeon, J. Ding, W. Patterson, A. V. Nurmikko, W. Xie, D. C. Grille, M. Kobayashi, and R. L. Gunshor, “Blue-green injection laser diodes in (Zn,Cd)Se/ZnSe quantum wells,” Appl. Phys. Lett. 59, 3619–3621 (1991).
[CrossRef]

Gunshor, R. L.

H. Jeon, J. Ding, W. Patterson, A. V. Nurmikko, W. Xie, D. C. Grille, M. Kobayashi, and R. L. Gunshor, “Blue-green injection laser diodes in (Zn,Cd)Se/ZnSe quantum wells,” Appl. Phys. Lett. 59, 3619–3621 (1991).
[CrossRef]

Guo, C. F.

W. C. H. Choy, C. F. Guo, K. H. Pang, Y. P. Leung, G. Z. Wang, and K. W. Cheah, “ZnO nanorods on in situ synthesized ZnSe grains,” J. Nanosci. Nanotechnol. 6, 802–806 (2006).
[CrossRef] [PubMed]

Hark, S.

Q. Li, X. Gong, C. Wang, J. Wang, K. Ip, and S. Hark, “Size-dependent periodically twinned ZnSe nanowires,” Adv. Mater. 16, 1436–1440 (2004).
[CrossRef]

Hark, S. K.

X. T. Zhang, K. M. Ip, Z. Liu, Y. P. Leung, Q. Li, and S. K. Hark, “Structure and photoluminescence of ZnSe nanoribbons grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 84, 2641–2643 (2004).
[CrossRef]

Z. T. Zhang, Z. Liu, Y. P. Leung, Q. Li, and S. K. Hark, “Growth and luminescence of zinc-blende-structured ZnSe nanowires by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 83, 5533–5535 (2003).
[CrossRef]

Hayashi, Y.

M. Isshiki, T. Yoshida, K. Igaki, Y. Hayashi, and Y. Nakano, “Photoluminescence spectra of In-doped ZnSe single crystals,” J. Phys. C 19, 4375–4381 (1986).
[CrossRef]

Heitz, R.

M. Strassburg, Th. Deniozou, A. Hoffmann, R. Heitz, U. W. Pohl, D. Bimberg, D. Litvinov, A. Rosenauer, D. Gerthsen, S. Schwedhelm, K. Lischka, and D. Schikora, “Coexistence of planar and three-dimensional quantum dots in CdSe/ZnSe structures,” Appl. Phys. Lett. 76, 685–867(2000).
[CrossRef]

Heuken, M.

E. Marquardt, B. Opitz, M. Scholl, and M. Heuken, “Electroabsorption and light modulation with ZnSe/ZnSSe multiquantum wells grown by metalorganic vapor phase epitaxy,” J. Appl. Phys. 75, 8022–8026 (1994).
[CrossRef]

Hoffmann, A.

M. Strassburg, Th. Deniozou, A. Hoffmann, R. Heitz, U. W. Pohl, D. Bimberg, D. Litvinov, A. Rosenauer, D. Gerthsen, S. Schwedhelm, K. Lischka, and D. Schikora, “Coexistence of planar and three-dimensional quantum dots in CdSe/ZnSe structures,” Appl. Phys. Lett. 76, 685–867(2000).
[CrossRef]

Hu, J.

J. Hu, Y. Bando, and D. Golberg, “Sn-catalyzed thermal evaporation synthesis of tetrapod-branched ZnSe nanorod architectures,” Small 1, 95–99 (2004).
[CrossRef]

Hu, J. Q.

J. Q. Hu, Y. Bando, J. H. Zhan, and D. Golberg, “Si/ZnS and Si/ZnSe core/shell nanocrystal structures,” Appl. Phys. Lett. 85, 3593–3596 (2004).
[CrossRef]

Huo, J.

R. Solanki, J. Huo, J. L. Freeouf, and B. Miner, “Atomic layer deposition of ZnSe/CdSe superlattice nanowires,” Appl. Phys. Lett. 81, 3864–3866 (2002).
[CrossRef]

Igaki, K.

M. Isshiki, T. Yoshida, K. Igaki, Y. Hayashi, and Y. Nakano, “Photoluminescence spectra of In-doped ZnSe single crystals,” J. Phys. C 19, 4375–4381 (1986).
[CrossRef]

Ip, K.

Q. Li, X. Gong, C. Wang, J. Wang, K. Ip, and S. Hark, “Size-dependent periodically twinned ZnSe nanowires,” Adv. Mater. 16, 1436–1440 (2004).
[CrossRef]

Ip, K. M.

X. T. Zhang, K. M. Ip, Z. Liu, Y. P. Leung, Q. Li, and S. K. Hark, “Structure and photoluminescence of ZnSe nanoribbons grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 84, 2641–2643 (2004).
[CrossRef]

Isshiki, M.

M. Isshiki, T. Yoshida, K. Igaki, Y. Hayashi, and Y. Nakano, “Photoluminescence spectra of In-doped ZnSe single crystals,” J. Phys. C 19, 4375–4381 (1986).
[CrossRef]

Jeon, H.

H. Jeon, J. Ding, W. Patterson, A. V. Nurmikko, W. Xie, D. C. Grille, M. Kobayashi, and R. L. Gunshor, “Blue-green injection laser diodes in (Zn,Cd)Se/ZnSe quantum wells,” Appl. Phys. Lett. 59, 3619–3621 (1991).
[CrossRef]

Kamat, P. V.

P. V. Kamat and B. Patrick, “Photophysics and photochemistry of quantized zinc oxide colloids,” J. Phys. Chem. 96, 6829–6834 (1992).
[CrossRef]

Karetnikov, I. A.

V. V. Blinov, E. M. Gavrishchuk, V. G. Galstyan, V. S. Zimogorshii, I. A. Karetnikov, N. K. Morozova, and V. G. Plotnichenko, “Effect of oxygen doping on the IR transmission and cathodoluminescence of ZnSe,” Inorg. Mater. 37, 1228–1234 (2001).
[CrossRef]

Klick, C. C.

C. C. Klick and J. J. Schulman, “Luminescence in Solids,” in Vol.  5 of Solid State Physics, F.Seitz and D.Turnbull, eds. (Academic, 1957), pp. 97–99.
[CrossRef]

Kobayashi, M.

H. Jeon, J. Ding, W. Patterson, A. V. Nurmikko, W. Xie, D. C. Grille, M. Kobayashi, and R. L. Gunshor, “Blue-green injection laser diodes in (Zn,Cd)Se/ZnSe quantum wells,” Appl. Phys. Lett. 59, 3619–3621 (1991).
[CrossRef]

Koda, T.

S. Shionoya, T. Koda, K. Era, and H. Fujiwara, “Nature of luminescence transitions in ZnS crystals,” J. Phys. Soc. Jpn. 19, 1157–1167 (1964).
[CrossRef]

Kong, X. Y.

Z. L. Wang, X. Y. Kong, and J. M. Zuo, “Induced growth of asymmetric nanocantilever arrays on polar surfaces,” Phys. Rev. Lett. 91, 185502 (2003).
[CrossRef] [PubMed]

Leung, Y. P.

W. C. H. Choy, C. F. Guo, K. H. Pang, Y. P. Leung, G. Z. Wang, and K. W. Cheah, “ZnO nanorods on in situ synthesized ZnSe grains,” J. Nanosci. Nanotechnol. 6, 802–806 (2006).
[CrossRef] [PubMed]

Y. P. Leung, W. C. H. Choy, I. Markov, G. K. H. Pang, H. C. Ong, and T. I. Yuk, “Synthesis of wurtzite ZnSe nanorings by thermal evaporation,” Appl. Phys. Lett. 88, 183110(2006).
[CrossRef]

X. T. Zhang, K. M. Ip, Z. Liu, Y. P. Leung, Q. Li, and S. K. Hark, “Structure and photoluminescence of ZnSe nanoribbons grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 84, 2641–2643 (2004).
[CrossRef]

Z. T. Zhang, Z. Liu, Y. P. Leung, Q. Li, and S. K. Hark, “Growth and luminescence of zinc-blende-structured ZnSe nanowires by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 83, 5533–5535 (2003).
[CrossRef]

Lezgowski, S.

A. Bukaluk, M. Trzcinski, F. Firszt, S. Lezgowski, and H. Mezczynska, “Auger depth profile analysis and photoluminescence investigations of Zn1−xMgxSe alloys,” Surf. Sci. 507–510, 175–180 (2002).
[CrossRef]

Li, E. H.

W. C. H. Choy, E. H. Li, and B. L. Weiss, “Asymmetric AlGaAs/GaAs double quantum wells phase modulator using surface acoustic wave,” IEEE J. Quantum Electron. 34, 1846–1853(1998).
[CrossRef]

Li, Q.

C. Wang, J. Wang, Q. Li, and G. C. Yi, “ZnSe-Si bi-coaxial nanowire heterostructures,” Adv. Funct. Mater. 15, 1471–1477(2005).
[CrossRef]

X. T. Zhang, K. M. Ip, Z. Liu, Y. P. Leung, Q. Li, and S. K. Hark, “Structure and photoluminescence of ZnSe nanoribbons grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 84, 2641–2643 (2004).
[CrossRef]

Q. Li, X. Gong, C. Wang, J. Wang, K. Ip, and S. Hark, “Size-dependent periodically twinned ZnSe nanowires,” Adv. Mater. 16, 1436–1440 (2004).
[CrossRef]

Z. T. Zhang, Z. Liu, Y. P. Leung, Q. Li, and S. K. Hark, “Growth and luminescence of zinc-blende-structured ZnSe nanowires by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 83, 5533–5535 (2003).
[CrossRef]

Lischka, K.

M. Strassburg, Th. Deniozou, A. Hoffmann, R. Heitz, U. W. Pohl, D. Bimberg, D. Litvinov, A. Rosenauer, D. Gerthsen, S. Schwedhelm, K. Lischka, and D. Schikora, “Coexistence of planar and three-dimensional quantum dots in CdSe/ZnSe structures,” Appl. Phys. Lett. 76, 685–867(2000).
[CrossRef]

Litvinov, D.

M. Strassburg, Th. Deniozou, A. Hoffmann, R. Heitz, U. W. Pohl, D. Bimberg, D. Litvinov, A. Rosenauer, D. Gerthsen, S. Schwedhelm, K. Lischka, and D. Schikora, “Coexistence of planar and three-dimensional quantum dots in CdSe/ZnSe structures,” Appl. Phys. Lett. 76, 685–867(2000).
[CrossRef]

Liu, Z.

X. T. Zhang, K. M. Ip, Z. Liu, Y. P. Leung, Q. Li, and S. K. Hark, “Structure and photoluminescence of ZnSe nanoribbons grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 84, 2641–2643 (2004).
[CrossRef]

Z. T. Zhang, Z. Liu, Y. P. Leung, Q. Li, and S. K. Hark, “Growth and luminescence of zinc-blende-structured ZnSe nanowires by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 83, 5533–5535 (2003).
[CrossRef]

Lu, H.

M. Sohel, X. Zhou, H. Lu, M. N. Perez-Paz, M. Tamargo, and M. Munoz, “Optical characterization and evaluation of the conduction band offset for ZnCdSe/ZnMgSe quantum wells grown on InP(001) by molecular-beam epitaxy,” J. Vac. Sci. Technol. 23, 1209–1211 (2005).
[CrossRef]

Markov, I.

Y. P. Leung, W. C. H. Choy, I. Markov, G. K. H. Pang, H. C. Ong, and T. I. Yuk, “Synthesis of wurtzite ZnSe nanorings by thermal evaporation,” Appl. Phys. Lett. 88, 183110(2006).
[CrossRef]

Marquardt, E.

E. Marquardt, B. Opitz, M. Scholl, and M. Heuken, “Electroabsorption and light modulation with ZnSe/ZnSSe multiquantum wells grown by metalorganic vapor phase epitaxy,” J. Appl. Phys. 75, 8022–8026 (1994).
[CrossRef]

Mezczynska, H.

A. Bukaluk, M. Trzcinski, F. Firszt, S. Lezgowski, and H. Mezczynska, “Auger depth profile analysis and photoluminescence investigations of Zn1−xMgxSe alloys,” Surf. Sci. 507–510, 175–180 (2002).
[CrossRef]

Mimoto, H.

See for example S. Fujita, H. Mimoto, and T. Noguchi, “Photoluminescence in ZnSe grown by liquid-phase epitaxy from Zn–Ga solution,” J. Appl. Phys. 50, 1079–1087 (1979).
[CrossRef]

Miner, B.

R. Solanki, J. Huo, J. L. Freeouf, and B. Miner, “Atomic layer deposition of ZnSe/CdSe superlattice nanowires,” Appl. Phys. Lett. 81, 3864–3866 (2002).
[CrossRef]

Morozova, N. K.

V. V. Blinov, E. M. Gavrishchuk, V. G. Galstyan, V. S. Zimogorshii, I. A. Karetnikov, N. K. Morozova, and V. G. Plotnichenko, “Effect of oxygen doping on the IR transmission and cathodoluminescence of ZnSe,” Inorg. Mater. 37, 1228–1234 (2001).
[CrossRef]

Munoz, M.

M. Sohel, X. Zhou, H. Lu, M. N. Perez-Paz, M. Tamargo, and M. Munoz, “Optical characterization and evaluation of the conduction band offset for ZnCdSe/ZnMgSe quantum wells grown on InP(001) by molecular-beam epitaxy,” J. Vac. Sci. Technol. 23, 1209–1211 (2005).
[CrossRef]

X. Zhou, M. Munoz, M. C. Tamargo, and Y. C. Chen, “Optically pumped laser characteristics of blue Znx′Cdy′Mg1−x′−y′Se/ZnxCdyMg1−x−ySe single quantum well lasers grown on InP,” J. Appl. Phys. 95, 7–10 (2004).
[CrossRef]

Nakano, Y.

M. Isshiki, T. Yoshida, K. Igaki, Y. Hayashi, and Y. Nakano, “Photoluminescence spectra of In-doped ZnSe single crystals,” J. Phys. C 19, 4375–4381 (1986).
[CrossRef]

Noguchi, T.

See for example S. Fujita, H. Mimoto, and T. Noguchi, “Photoluminescence in ZnSe grown by liquid-phase epitaxy from Zn–Ga solution,” J. Appl. Phys. 50, 1079–1087 (1979).
[CrossRef]

Nurmikko, A. V.

H. Jeon, J. Ding, W. Patterson, A. V. Nurmikko, W. Xie, D. C. Grille, M. Kobayashi, and R. L. Gunshor, “Blue-green injection laser diodes in (Zn,Cd)Se/ZnSe quantum wells,” Appl. Phys. Lett. 59, 3619–3621 (1991).
[CrossRef]

Ong, H. C.

Y. P. Leung, W. C. H. Choy, I. Markov, G. K. H. Pang, H. C. Ong, and T. I. Yuk, “Synthesis of wurtzite ZnSe nanorings by thermal evaporation,” Appl. Phys. Lett. 88, 183110(2006).
[CrossRef]

Opitz, B.

E. Marquardt, B. Opitz, M. Scholl, and M. Heuken, “Electroabsorption and light modulation with ZnSe/ZnSSe multiquantum wells grown by metalorganic vapor phase epitaxy,” J. Appl. Phys. 75, 8022–8026 (1994).
[CrossRef]

Pang, G. K. H.

Y. P. Leung, W. C. H. Choy, I. Markov, G. K. H. Pang, H. C. Ong, and T. I. Yuk, “Synthesis of wurtzite ZnSe nanorings by thermal evaporation,” Appl. Phys. Lett. 88, 183110(2006).
[CrossRef]

Pang, K. H.

W. C. H. Choy, C. F. Guo, K. H. Pang, Y. P. Leung, G. Z. Wang, and K. W. Cheah, “ZnO nanorods on in situ synthesized ZnSe grains,” J. Nanosci. Nanotechnol. 6, 802–806 (2006).
[CrossRef] [PubMed]

Patrick, B.

P. V. Kamat and B. Patrick, “Photophysics and photochemistry of quantized zinc oxide colloids,” J. Phys. Chem. 96, 6829–6834 (1992).
[CrossRef]

Patterson, W.

H. Jeon, J. Ding, W. Patterson, A. V. Nurmikko, W. Xie, D. C. Grille, M. Kobayashi, and R. L. Gunshor, “Blue-green injection laser diodes in (Zn,Cd)Se/ZnSe quantum wells,” Appl. Phys. Lett. 59, 3619–3621 (1991).
[CrossRef]

Perez-Paz, M. N.

M. Sohel, X. Zhou, H. Lu, M. N. Perez-Paz, M. Tamargo, and M. Munoz, “Optical characterization and evaluation of the conduction band offset for ZnCdSe/ZnMgSe quantum wells grown on InP(001) by molecular-beam epitaxy,” J. Vac. Sci. Technol. 23, 1209–1211 (2005).
[CrossRef]

Plotnichenko, V. G.

V. V. Blinov, E. M. Gavrishchuk, V. G. Galstyan, V. S. Zimogorshii, I. A. Karetnikov, N. K. Morozova, and V. G. Plotnichenko, “Effect of oxygen doping on the IR transmission and cathodoluminescence of ZnSe,” Inorg. Mater. 37, 1228–1234 (2001).
[CrossRef]

Pohl, U. W.

M. Strassburg, Th. Deniozou, A. Hoffmann, R. Heitz, U. W. Pohl, D. Bimberg, D. Litvinov, A. Rosenauer, D. Gerthsen, S. Schwedhelm, K. Lischka, and D. Schikora, “Coexistence of planar and three-dimensional quantum dots in CdSe/ZnSe structures,” Appl. Phys. Lett. 76, 685–867(2000).
[CrossRef]

Ramachandran, K.

N. Sankar and K. Ramachandran, “On the thermal and optical properties of ZnSe and doped ZnSe crystals grown by PVT,” J. Cryst. Growth 247, 157–165 (2003).
[CrossRef]

Rosenauer, A.

M. Strassburg, Th. Deniozou, A. Hoffmann, R. Heitz, U. W. Pohl, D. Bimberg, D. Litvinov, A. Rosenauer, D. Gerthsen, S. Schwedhelm, K. Lischka, and D. Schikora, “Coexistence of planar and three-dimensional quantum dots in CdSe/ZnSe structures,” Appl. Phys. Lett. 76, 685–867(2000).
[CrossRef]

Sankar, N.

N. Sankar and K. Ramachandran, “On the thermal and optical properties of ZnSe and doped ZnSe crystals grown by PVT,” J. Cryst. Growth 247, 157–165 (2003).
[CrossRef]

Schikora, D.

M. Strassburg, Th. Deniozou, A. Hoffmann, R. Heitz, U. W. Pohl, D. Bimberg, D. Litvinov, A. Rosenauer, D. Gerthsen, S. Schwedhelm, K. Lischka, and D. Schikora, “Coexistence of planar and three-dimensional quantum dots in CdSe/ZnSe structures,” Appl. Phys. Lett. 76, 685–867(2000).
[CrossRef]

Scholl, M.

E. Marquardt, B. Opitz, M. Scholl, and M. Heuken, “Electroabsorption and light modulation with ZnSe/ZnSSe multiquantum wells grown by metalorganic vapor phase epitaxy,” J. Appl. Phys. 75, 8022–8026 (1994).
[CrossRef]

Schulman, J. J.

C. C. Klick and J. J. Schulman, “Luminescence in Solids,” in Vol.  5 of Solid State Physics, F.Seitz and D.Turnbull, eds. (Academic, 1957), pp. 97–99.
[CrossRef]

Schwedhelm, S.

M. Strassburg, Th. Deniozou, A. Hoffmann, R. Heitz, U. W. Pohl, D. Bimberg, D. Litvinov, A. Rosenauer, D. Gerthsen, S. Schwedhelm, K. Lischka, and D. Schikora, “Coexistence of planar and three-dimensional quantum dots in CdSe/ZnSe structures,” Appl. Phys. Lett. 76, 685–867(2000).
[CrossRef]

Shen, M. Y.

J. H. Chang, J. S. Song, K. Godo, T. Yao, M. Y. Shen, and T. Goto, “ZnCdTe/ZnTe/ZnMgSeTe quantum-well structures for the application to pure-green light-emitting devices,” Appl. Phys. Lett. 78, 566–569 (2001).
[CrossRef]

Shionoya, S.

S. Shionoya, T. Koda, K. Era, and H. Fujiwara, “Nature of luminescence transitions in ZnS crystals,” J. Phys. Soc. Jpn. 19, 1157–1167 (1964).
[CrossRef]

Sohel, M.

M. Sohel, X. Zhou, H. Lu, M. N. Perez-Paz, M. Tamargo, and M. Munoz, “Optical characterization and evaluation of the conduction band offset for ZnCdSe/ZnMgSe quantum wells grown on InP(001) by molecular-beam epitaxy,” J. Vac. Sci. Technol. 23, 1209–1211 (2005).
[CrossRef]

Solanki, R.

R. Solanki, J. Huo, J. L. Freeouf, and B. Miner, “Atomic layer deposition of ZnSe/CdSe superlattice nanowires,” Appl. Phys. Lett. 81, 3864–3866 (2002).
[CrossRef]

Song, J. S.

J. H. Chang, J. S. Song, K. Godo, T. Yao, M. Y. Shen, and T. Goto, “ZnCdTe/ZnTe/ZnMgSeTe quantum-well structures for the application to pure-green light-emitting devices,” Appl. Phys. Lett. 78, 566–569 (2001).
[CrossRef]

Sou, I. K.

S. K. Chan, Y. Cai, N. Wang, and I. K. Sou, “Control of growth orientation for epitaxially grown ZnSe nanowires,” Appl. Phys. Lett. 88, 013108 (2006).
[CrossRef]

Strassburg, M.

M. Strassburg, Th. Deniozou, A. Hoffmann, R. Heitz, U. W. Pohl, D. Bimberg, D. Litvinov, A. Rosenauer, D. Gerthsen, S. Schwedhelm, K. Lischka, and D. Schikora, “Coexistence of planar and three-dimensional quantum dots in CdSe/ZnSe structures,” Appl. Phys. Lett. 76, 685–867(2000).
[CrossRef]

Stutius, W.

W. Stutius, “Growth and doping of ZnSe and ZnSxSe1−x by organometallic chemical vapor deposition,” J. Cryst. Growth 59, 1–9 (1982).
[CrossRef]

Tamargo, M.

M. Sohel, X. Zhou, H. Lu, M. N. Perez-Paz, M. Tamargo, and M. Munoz, “Optical characterization and evaluation of the conduction band offset for ZnCdSe/ZnMgSe quantum wells grown on InP(001) by molecular-beam epitaxy,” J. Vac. Sci. Technol. 23, 1209–1211 (2005).
[CrossRef]

Tamargo, M. C.

X. Zhou, M. Munoz, M. C. Tamargo, and Y. C. Chen, “Optically pumped laser characteristics of blue Znx′Cdy′Mg1−x′−y′Se/ZnxCdyMg1−x−ySe single quantum well lasers grown on InP,” J. Appl. Phys. 95, 7–10 (2004).
[CrossRef]

Trzcinski, M.

A. Bukaluk, M. Trzcinski, F. Firszt, S. Lezgowski, and H. Mezczynska, “Auger depth profile analysis and photoluminescence investigations of Zn1−xMgxSe alloys,” Surf. Sci. 507–510, 175–180 (2002).
[CrossRef]

Wang, C.

C. Wang, J. Wang, Q. Li, and G. C. Yi, “ZnSe-Si bi-coaxial nanowire heterostructures,” Adv. Funct. Mater. 15, 1471–1477(2005).
[CrossRef]

Q. Li, X. Gong, C. Wang, J. Wang, K. Ip, and S. Hark, “Size-dependent periodically twinned ZnSe nanowires,” Adv. Mater. 16, 1436–1440 (2004).
[CrossRef]

Wang, G. Z.

W. C. H. Choy, C. F. Guo, K. H. Pang, Y. P. Leung, G. Z. Wang, and K. W. Cheah, “ZnO nanorods on in situ synthesized ZnSe grains,” J. Nanosci. Nanotechnol. 6, 802–806 (2006).
[CrossRef] [PubMed]

Wang, J.

C. Wang, J. Wang, Q. Li, and G. C. Yi, “ZnSe-Si bi-coaxial nanowire heterostructures,” Adv. Funct. Mater. 15, 1471–1477(2005).
[CrossRef]

Q. Li, X. Gong, C. Wang, J. Wang, K. Ip, and S. Hark, “Size-dependent periodically twinned ZnSe nanowires,” Adv. Mater. 16, 1436–1440 (2004).
[CrossRef]

Wang, N.

S. K. Chan, Y. Cai, N. Wang, and I. K. Sou, “Control of growth orientation for epitaxially grown ZnSe nanowires,” Appl. Phys. Lett. 88, 013108 (2006).
[CrossRef]

Wang, Z. L.

Z. L. Wang, X. Y. Kong, and J. M. Zuo, “Induced growth of asymmetric nanocantilever arrays on polar surfaces,” Phys. Rev. Lett. 91, 185502 (2003).
[CrossRef] [PubMed]

Weiss, B. L.

W. C. H. Choy, E. H. Li, and B. L. Weiss, “Asymmetric AlGaAs/GaAs double quantum wells phase modulator using surface acoustic wave,” IEEE J. Quantum Electron. 34, 1846–1853(1998).
[CrossRef]

Xie, W.

H. Jeon, J. Ding, W. Patterson, A. V. Nurmikko, W. Xie, D. C. Grille, M. Kobayashi, and R. L. Gunshor, “Blue-green injection laser diodes in (Zn,Cd)Se/ZnSe quantum wells,” Appl. Phys. Lett. 59, 3619–3621 (1991).
[CrossRef]

Yao, T.

J. H. Chang, J. S. Song, K. Godo, T. Yao, M. Y. Shen, and T. Goto, “ZnCdTe/ZnTe/ZnMgSeTe quantum-well structures for the application to pure-green light-emitting devices,” Appl. Phys. Lett. 78, 566–569 (2001).
[CrossRef]

Yi, G. C.

C. Wang, J. Wang, Q. Li, and G. C. Yi, “ZnSe-Si bi-coaxial nanowire heterostructures,” Adv. Funct. Mater. 15, 1471–1477(2005).
[CrossRef]

Yoshida, T.

M. Isshiki, T. Yoshida, K. Igaki, Y. Hayashi, and Y. Nakano, “Photoluminescence spectra of In-doped ZnSe single crystals,” J. Phys. C 19, 4375–4381 (1986).
[CrossRef]

Yu, P.

P. Yu and M. Cardona, “Electronic properties of defects,” in Fundamentals of Semiconductors: Physics and Materials Properties (Springer, 2001), pp. 160–202.

Yuk, T. I.

Y. P. Leung, W. C. H. Choy, I. Markov, G. K. H. Pang, H. C. Ong, and T. I. Yuk, “Synthesis of wurtzite ZnSe nanorings by thermal evaporation,” Appl. Phys. Lett. 88, 183110(2006).
[CrossRef]

Zhan, J. H.

J. Q. Hu, Y. Bando, J. H. Zhan, and D. Golberg, “Si/ZnS and Si/ZnSe core/shell nanocrystal structures,” Appl. Phys. Lett. 85, 3593–3596 (2004).
[CrossRef]

Zhang, X. T.

X. T. Zhang, K. M. Ip, Z. Liu, Y. P. Leung, Q. Li, and S. K. Hark, “Structure and photoluminescence of ZnSe nanoribbons grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 84, 2641–2643 (2004).
[CrossRef]

Zhang, Z. T.

Z. T. Zhang, Z. Liu, Y. P. Leung, Q. Li, and S. K. Hark, “Growth and luminescence of zinc-blende-structured ZnSe nanowires by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 83, 5533–5535 (2003).
[CrossRef]

Zhou, X.

M. Sohel, X. Zhou, H. Lu, M. N. Perez-Paz, M. Tamargo, and M. Munoz, “Optical characterization and evaluation of the conduction band offset for ZnCdSe/ZnMgSe quantum wells grown on InP(001) by molecular-beam epitaxy,” J. Vac. Sci. Technol. 23, 1209–1211 (2005).
[CrossRef]

X. Zhou, M. Munoz, M. C. Tamargo, and Y. C. Chen, “Optically pumped laser characteristics of blue Znx′Cdy′Mg1−x′−y′Se/ZnxCdyMg1−x−ySe single quantum well lasers grown on InP,” J. Appl. Phys. 95, 7–10 (2004).
[CrossRef]

Zimogorshii, V. S.

V. V. Blinov, E. M. Gavrishchuk, V. G. Galstyan, V. S. Zimogorshii, I. A. Karetnikov, N. K. Morozova, and V. G. Plotnichenko, “Effect of oxygen doping on the IR transmission and cathodoluminescence of ZnSe,” Inorg. Mater. 37, 1228–1234 (2001).
[CrossRef]

Zuo, J. M.

Z. L. Wang, X. Y. Kong, and J. M. Zuo, “Induced growth of asymmetric nanocantilever arrays on polar surfaces,” Phys. Rev. Lett. 91, 185502 (2003).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

C. Wang, J. Wang, Q. Li, and G. C. Yi, “ZnSe-Si bi-coaxial nanowire heterostructures,” Adv. Funct. Mater. 15, 1471–1477(2005).
[CrossRef]

Adv. Mater. (1)

Q. Li, X. Gong, C. Wang, J. Wang, K. Ip, and S. Hark, “Size-dependent periodically twinned ZnSe nanowires,” Adv. Mater. 16, 1436–1440 (2004).
[CrossRef]

Appl. Phys. Lett. (9)

S. K. Chan, Y. Cai, N. Wang, and I. K. Sou, “Control of growth orientation for epitaxially grown ZnSe nanowires,” Appl. Phys. Lett. 88, 013108 (2006).
[CrossRef]

X. T. Zhang, K. M. Ip, Z. Liu, Y. P. Leung, Q. Li, and S. K. Hark, “Structure and photoluminescence of ZnSe nanoribbons grown by metal organic chemical vapor deposition,” Appl. Phys. Lett. 84, 2641–2643 (2004).
[CrossRef]

Y. P. Leung, W. C. H. Choy, I. Markov, G. K. H. Pang, H. C. Ong, and T. I. Yuk, “Synthesis of wurtzite ZnSe nanorings by thermal evaporation,” Appl. Phys. Lett. 88, 183110(2006).
[CrossRef]

R. Solanki, J. Huo, J. L. Freeouf, and B. Miner, “Atomic layer deposition of ZnSe/CdSe superlattice nanowires,” Appl. Phys. Lett. 81, 3864–3866 (2002).
[CrossRef]

J. Q. Hu, Y. Bando, J. H. Zhan, and D. Golberg, “Si/ZnS and Si/ZnSe core/shell nanocrystal structures,” Appl. Phys. Lett. 85, 3593–3596 (2004).
[CrossRef]

J. H. Chang, J. S. Song, K. Godo, T. Yao, M. Y. Shen, and T. Goto, “ZnCdTe/ZnTe/ZnMgSeTe quantum-well structures for the application to pure-green light-emitting devices,” Appl. Phys. Lett. 78, 566–569 (2001).
[CrossRef]

M. Strassburg, Th. Deniozou, A. Hoffmann, R. Heitz, U. W. Pohl, D. Bimberg, D. Litvinov, A. Rosenauer, D. Gerthsen, S. Schwedhelm, K. Lischka, and D. Schikora, “Coexistence of planar and three-dimensional quantum dots in CdSe/ZnSe structures,” Appl. Phys. Lett. 76, 685–867(2000).
[CrossRef]

H. Jeon, J. Ding, W. Patterson, A. V. Nurmikko, W. Xie, D. C. Grille, M. Kobayashi, and R. L. Gunshor, “Blue-green injection laser diodes in (Zn,Cd)Se/ZnSe quantum wells,” Appl. Phys. Lett. 59, 3619–3621 (1991).
[CrossRef]

Z. T. Zhang, Z. Liu, Y. P. Leung, Q. Li, and S. K. Hark, “Growth and luminescence of zinc-blende-structured ZnSe nanowires by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 83, 5533–5535 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. C. H. Choy, E. H. Li, and B. L. Weiss, “Asymmetric AlGaAs/GaAs double quantum wells phase modulator using surface acoustic wave,” IEEE J. Quantum Electron. 34, 1846–1853(1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

W. C. H. Choy and K. S. Chan, “Theoretical analysis of diffused quantum wells optical lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 9, 698–707 (2003), invited.
[CrossRef]

Inorg. Mater. (1)

V. V. Blinov, E. M. Gavrishchuk, V. G. Galstyan, V. S. Zimogorshii, I. A. Karetnikov, N. K. Morozova, and V. G. Plotnichenko, “Effect of oxygen doping on the IR transmission and cathodoluminescence of ZnSe,” Inorg. Mater. 37, 1228–1234 (2001).
[CrossRef]

J. Appl. Phys. (4)

See for example S. Fujita, H. Mimoto, and T. Noguchi, “Photoluminescence in ZnSe grown by liquid-phase epitaxy from Zn–Ga solution,” J. Appl. Phys. 50, 1079–1087 (1979).
[CrossRef]

E. Marquardt, B. Opitz, M. Scholl, and M. Heuken, “Electroabsorption and light modulation with ZnSe/ZnSSe multiquantum wells grown by metalorganic vapor phase epitaxy,” J. Appl. Phys. 75, 8022–8026 (1994).
[CrossRef]

W. C. H. Choy, “Optical properties of InGaAs/InAlAs diffused double quantum wells,” J. Appl. Phys. 87, 2956–2966 (2000).
[CrossRef]

X. Zhou, M. Munoz, M. C. Tamargo, and Y. C. Chen, “Optically pumped laser characteristics of blue Znx′Cdy′Mg1−x′−y′Se/ZnxCdyMg1−x−ySe single quantum well lasers grown on InP,” J. Appl. Phys. 95, 7–10 (2004).
[CrossRef]

J. Cryst. Growth (2)

W. Stutius, “Growth and doping of ZnSe and ZnSxSe1−x by organometallic chemical vapor deposition,” J. Cryst. Growth 59, 1–9 (1982).
[CrossRef]

N. Sankar and K. Ramachandran, “On the thermal and optical properties of ZnSe and doped ZnSe crystals grown by PVT,” J. Cryst. Growth 247, 157–165 (2003).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

W. C. H. Choy, C. F. Guo, K. H. Pang, Y. P. Leung, G. Z. Wang, and K. W. Cheah, “ZnO nanorods on in situ synthesized ZnSe grains,” J. Nanosci. Nanotechnol. 6, 802–806 (2006).
[CrossRef] [PubMed]

J. Phys. C (1)

M. Isshiki, T. Yoshida, K. Igaki, Y. Hayashi, and Y. Nakano, “Photoluminescence spectra of In-doped ZnSe single crystals,” J. Phys. C 19, 4375–4381 (1986).
[CrossRef]

J. Phys. Chem. (1)

P. V. Kamat and B. Patrick, “Photophysics and photochemistry of quantized zinc oxide colloids,” J. Phys. Chem. 96, 6829–6834 (1992).
[CrossRef]

J. Phys. Soc. Jpn. (1)

S. Shionoya, T. Koda, K. Era, and H. Fujiwara, “Nature of luminescence transitions in ZnS crystals,” J. Phys. Soc. Jpn. 19, 1157–1167 (1964).
[CrossRef]

J. Vac. Sci. Technol. (1)

M. Sohel, X. Zhou, H. Lu, M. N. Perez-Paz, M. Tamargo, and M. Munoz, “Optical characterization and evaluation of the conduction band offset for ZnCdSe/ZnMgSe quantum wells grown on InP(001) by molecular-beam epitaxy,” J. Vac. Sci. Technol. 23, 1209–1211 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

Z. L. Wang, X. Y. Kong, and J. M. Zuo, “Induced growth of asymmetric nanocantilever arrays on polar surfaces,” Phys. Rev. Lett. 91, 185502 (2003).
[CrossRef] [PubMed]

Small (1)

J. Hu, Y. Bando, and D. Golberg, “Sn-catalyzed thermal evaporation synthesis of tetrapod-branched ZnSe nanorod architectures,” Small 1, 95–99 (2004).
[CrossRef]

Surf. Sci. (1)

A. Bukaluk, M. Trzcinski, F. Firszt, S. Lezgowski, and H. Mezczynska, “Auger depth profile analysis and photoluminescence investigations of Zn1−xMgxSe alloys,” Surf. Sci. 507–510, 175–180 (2002).
[CrossRef]

Other (2)

C. C. Klick and J. J. Schulman, “Luminescence in Solids,” in Vol.  5 of Solid State Physics, F.Seitz and D.Turnbull, eds. (Academic, 1957), pp. 97–99.
[CrossRef]

P. Yu and M. Cardona, “Electronic properties of defects,” in Fundamentals of Semiconductors: Physics and Materials Properties (Springer, 2001), pp. 160–202.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SEM of the as-synthesized nanobelts.

Fig. 2
Fig. 2

(a) TEM image of a typical nanowire 20 nm wide and (b) corresponding HRTEM image. The inset of Fig. 2b is the atom model of the ZnSe structure; solid circles are Zn sites, and open circles are Se sites.

Fig. 3
Fig. 3

(a) TEM image and (b) corresponding HRTEM image of the saw-toothed nanobelt and (c) the atom model of the ZnSe structure; solid circles are Zn sites, and open circles are Se sites.

Fig. 4
Fig. 4

PL spectra of ZnSe nanostructures at various temperatures.

Fig. 5
Fig. 5

Gaussian fitted PL spectrum of ZnSe nanostructures at (a)  150 K and (b)  50 K .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

HWHM = β [ coth ( h ν / 2 k T ) ] 0.5 ,

Metrics