Abstract

A hyperbolic dispersion medium with a planar surface that can be used for subwavelength focusing is proposed. By combining the hyperbolic medium in a single slit with diffraction limit width, a laser beam could be focused to a subwavelength spot in the near field. Compared to a conventional superlens, the subdiffraction focusing in this work has higher optical throughput. Using a planar hyperbolic medium, which is actually alternating silver/dielectric multilayers, we showed that the focusing resolution of the designed device is down to λ/5 using green light illumination (at a wavelength of 514.5nm).

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
    [CrossRef] [PubMed]
  2. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782(1994).
    [CrossRef] [PubMed]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [CrossRef] [PubMed]
  4. V. G. Veselago, “Electrodynamics of substancies with simultaneously negative values of electric and magnetic permeabilities,” Sov. Phys. Usp. 10, 509–514 (1968).
    [CrossRef]
  5. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
    [CrossRef] [PubMed]
  6. D. O. S. Melville and R. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127–2134(2005).
    [CrossRef] [PubMed]
  7. G. X. Li, Jensen Li, H. L. Tam, C. T. Chan, and K. W. Cheah, “Near field imaging with resonant cavity lens,” Opt. Express 18, 2325–2331 (2010).
    [CrossRef] [PubMed]
  8. F. M. Huang, N. I. Zheludev, Y. Chen, and F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90, 091119 (2007).
    [CrossRef]
  9. F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9, 1249–1254 (2009).
    [CrossRef] [PubMed]
  10. S. Thongrattanasiri and V. A. Podolskiy, “Hypergratings: nanophotonics in planar anisotropic metamaterials,” Opt. Lett. 34, 890–892 (2009).
    [CrossRef] [PubMed]
  11. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7, 403–408 (2007).
    [CrossRef] [PubMed]
  12. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
    [CrossRef]
  13. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
    [CrossRef] [PubMed]
  14. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
    [CrossRef] [PubMed]
  15. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).
    [CrossRef] [PubMed]
  16. J. Zhao, Y. Feng, B. Zhu, and T. Jiang, “Sub-wavelength image manipulating through compensated anisotropic metamaterial prisms,” Opt. Express 16, 18057–18066 (2008).
    [CrossRef] [PubMed]
  17. A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optic,” Opt. Lett. 33, 43–45 (2008).
    [CrossRef]
  18. W. Wang, H. Xing, L. Fang, Y. Liu, J. Ma, L. Lin, C. Wang, and X. Luo, “Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial,” Opt. Express 16, 21142–21148 (2008).
    [CrossRef] [PubMed]
  19. Y. Xiong, Z. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm,” Appl. Phys. Lett. 94, 203108 (2009).
    [CrossRef]
  20. G. X. Li, H. L. Tam, F. Y. Wang, and K. W. Cheah, “Superlens from complementary anisotropic metamaterials,” J. Appl. Phys. 102, 116101 (2007).
    [CrossRef]
  21. H. Liu, Shivanand, and K. J. Webb, “Subwavelength imaging with nonmagnetic anisotropic bilayers,” Opt. Lett. 34, 2243–2245 (2008).
    [CrossRef]
  22. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).
    [CrossRef]
  23. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).
  24. M. J. Weber, Handbook of Optical materials (CRC, 2003).

2010 (1)

2009 (3)

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9, 1249–1254 (2009).
[CrossRef] [PubMed]

S. Thongrattanasiri and V. A. Podolskiy, “Hypergratings: nanophotonics in planar anisotropic metamaterials,” Opt. Lett. 34, 890–892 (2009).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm,” Appl. Phys. Lett. 94, 203108 (2009).
[CrossRef]

2008 (4)

2007 (5)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef] [PubMed]

I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7, 403–408 (2007).
[CrossRef] [PubMed]

F. M. Huang, N. I. Zheludev, Y. Chen, and F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90, 091119 (2007).
[CrossRef]

G. X. Li, H. L. Tam, F. Y. Wang, and K. W. Cheah, “Superlens from complementary anisotropic metamaterials,” J. Appl. Phys. 102, 116101 (2007).
[CrossRef]

2006 (3)

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).
[CrossRef]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[CrossRef]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
[CrossRef] [PubMed]

2005 (2)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

D. O. S. Melville and R. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127–2134(2005).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

1994 (1)

1991 (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

1968 (1)

V. G. Veselago, “Electrodynamics of substancies with simultaneously negative values of electric and magnetic permeabilities,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Alekseyev, L. V.

Betzig, E.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Blaikie, R.

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

Chan, C. T.

Cheah, K. W.

G. X. Li, Jensen Li, H. L. Tam, C. T. Chan, and K. W. Cheah, “Near field imaging with resonant cavity lens,” Opt. Express 18, 2325–2331 (2010).
[CrossRef] [PubMed]

G. X. Li, H. L. Tam, F. Y. Wang, and K. W. Cheah, “Superlens from complementary anisotropic metamaterials,” J. Appl. Phys. 102, 116101 (2007).
[CrossRef]

Chen, Y.

F. M. Huang, N. I. Zheludev, Y. Chen, and F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90, 091119 (2007).
[CrossRef]

Davis, C. C.

I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).
[CrossRef] [PubMed]

Durant, S.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7, 403–408 (2007).
[CrossRef] [PubMed]

Engheta, N.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[CrossRef]

Fang, L.

Fang, N.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7, 403–408 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Feng, Y.

Garcia de Abajo, F. J.

F. M. Huang, N. I. Zheludev, Y. Chen, and F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90, 091119 (2007).
[CrossRef]

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Hell, S. W.

Huang, F. M.

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9, 1249–1254 (2009).
[CrossRef] [PubMed]

F. M. Huang, N. I. Zheludev, Y. Chen, and F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90, 091119 (2007).
[CrossRef]

Hung, Y. J.

I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).
[CrossRef] [PubMed]

Jacob, Z.

Jiang, T.

Kildishev, A. V.

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7, 403–408 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Li, G. X.

G. X. Li, Jensen Li, H. L. Tam, C. T. Chan, and K. W. Cheah, “Near field imaging with resonant cavity lens,” Opt. Express 18, 2325–2331 (2010).
[CrossRef] [PubMed]

G. X. Li, H. L. Tam, F. Y. Wang, and K. W. Cheah, “Superlens from complementary anisotropic metamaterials,” J. Appl. Phys. 102, 116101 (2007).
[CrossRef]

Li, Jensen

Lin, L.

Liu, H.

Liu, Y.

Liu, Z.

Y. Xiong, Z. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm,” Appl. Phys. Lett. 94, 203108 (2009).
[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7, 403–408 (2007).
[CrossRef] [PubMed]

Luo, X.

Ma, J.

Melville, D. O. S.

Narimanov, E.

Pendry, J. B.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

Pikus, Y.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7, 403–408 (2007).
[CrossRef] [PubMed]

Podolskiy, V. A.

Salandrino, A.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[CrossRef]

Shalaev, V. M.

Shivanand,

Smolyaninov, I.

I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).
[CrossRef] [PubMed]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7, 403–408 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Tam, H. L.

G. X. Li, Jensen Li, H. L. Tam, C. T. Chan, and K. W. Cheah, “Near field imaging with resonant cavity lens,” Opt. Express 18, 2325–2331 (2010).
[CrossRef] [PubMed]

G. X. Li, H. L. Tam, F. Y. Wang, and K. W. Cheah, “Superlens from complementary anisotropic metamaterials,” J. Appl. Phys. 102, 116101 (2007).
[CrossRef]

Thongrattanasiri, S.

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Tsai, D. P.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “Electrodynamics of substancies with simultaneously negative values of electric and magnetic permeabilities,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Wang, C.

Wang, F. Y.

G. X. Li, H. L. Tam, F. Y. Wang, and K. W. Cheah, “Superlens from complementary anisotropic metamaterials,” J. Appl. Phys. 102, 116101 (2007).
[CrossRef]

Wang, W.

Webb, K. J.

Weber, M. J.

M. J. Weber, Handbook of Optical materials (CRC, 2003).

Weiner, J. S.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Wichmann, J.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

Wood, B.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Xing, H.

Xiong, Y.

Y. Xiong, Z. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm,” Appl. Phys. Lett. 94, 203108 (2009).
[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7, 403–408 (2007).
[CrossRef] [PubMed]

Zhang, X.

Y. Xiong, Z. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm,” Appl. Phys. Lett. 94, 203108 (2009).
[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7, 403–408 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Zhao, J.

Zheludev, N. I.

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9, 1249–1254 (2009).
[CrossRef] [PubMed]

F. M. Huang, N. I. Zheludev, Y. Chen, and F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90, 091119 (2007).
[CrossRef]

Zhu, B.

Appl. Phys. Lett. (2)

F. M. Huang, N. I. Zheludev, Y. Chen, and F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90, 091119 (2007).
[CrossRef]

Y. Xiong, Z. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm,” Appl. Phys. Lett. 94, 203108 (2009).
[CrossRef]

J. Appl. Phys. (1)

G. X. Li, H. L. Tam, F. Y. Wang, and K. W. Cheah, “Superlens from complementary anisotropic metamaterials,” J. Appl. Phys. 102, 116101 (2007).
[CrossRef]

Nano Lett. (2)

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7, 403–408 (2007).
[CrossRef] [PubMed]

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9, 1249–1254 (2009).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. B (2)

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).
[CrossRef]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

Science (4)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef] [PubMed]

I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “Electrodynamics of substancies with simultaneously negative values of electric and magnetic permeabilities,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Other (2)

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

M. J. Weber, Handbook of Optical materials (CRC, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Subwavelength focusing in a hyperbolic medium. A TM polarized light at a wavelength of 514.5 nm is incident onto the single slit with a width of (a)  300 nm , (b)  150 nm , and (c)  10 nm . In (a) and (b), the image of the slit is focused in the hyperbolic medium with ε x = 0.8 , ε y = 2 . The focal length depends on the width of each slit. When the width of the slit is reduced to 10 nm , the focusing effect is not obvious, and two directed beams propagate along a direction with θ = ± arctan ε y / | ε x | .

Fig. 2
Fig. 2

(a) Magnetic field distribution in a Na 3 AlF 6 - Ag effective hyperbolic medium at λ = 514.5 nm ; the subdiffraction focusing after a single slit ( 300 nm width) is formed at the focal plane, shown as a purple line. The magnetic field distribution if the medium beyond the focal plane is changed to (b) water ( n = 1.33 ) and (c) photoresist ( n = 1.65 ).

Fig. 3
Fig. 3

Cross-sectional view of the magnetic field distribution at the focal plane of the hyperbolic medium in Fig. 2. The focusing resolution (FWHM) in the absorption layer, water, and photoresist is 98 nm , 100 nm , and 90 nm , respectively.

Fig. 4
Fig. 4

Magnetic field distribution in the Na 3 AlF 6 - Ag multilayer hyperbolic medium at λ = 514.5 nm ; the subdiffraction focusing after a single slit ( 300 nm width) is formed at the boundary between the hyperbolic medium and the water ( n = 1.33 ) environment.

Fig. 5
Fig. 5

Cross-sectional view of the magnetic field distribution at the focal plane of the multilayer hyperbolic medium in Fig. 4. The focusing resolution (FWHM) in water is 99 nm .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k x 2 / ε y k y 2 / | ε x | = ω 2 / c 2 .

Metrics