Abstract

A ferrodispersion, which comprises micrometer-sized magnetizable spheres dispersed in a ferrofluid, is shown to store retrievable optical energy. It is observed that when such dispersion is subjected to a transverse magnetic field and a linearly polarized monochromatic light with its electric vector perpendicular to the applied field is incident on it, then for a critical static magnetic field of moderate intensity the emerging light disappears. Upon removing the light and then switching off the field, again light of the same frequency and same state of polarization reappears. A time delay between emission of the light and switching off the field is observed. The statistical distribution of this delay is reported. Intensity of the retrieval signal is found to depend on the storage time. This effect is investigated. Storing and retrieval of optical energy will be useful for developing a magnetically tunable optical capacitor.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Liu, Z. Dutton, C. N. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
    [CrossRef] [PubMed]
  2. J. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [CrossRef] [PubMed]
  3. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimaki, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
    [CrossRef] [PubMed]
  4. N. Engheta, A. Salandrino, and A. Alu, “Circuit elements at optical frequencies: nano-inductor, nano-capacitor, and nano-resistor,” Phys. Rev. Lett. 95, 095504 (2005).
    [CrossRef] [PubMed]
  5. Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nature 3, 406–410 (2007).
    [CrossRef]
  6. R. J. Patel and R. V. Mehta, “Experimental investigations on magnetically induced photonic band gap in ferrodispersions,” Eur. Phys. J. Appl. Phys. 52, 30702 (2010).
    [CrossRef]
  7. R. V. Mehta, R. Patel, B. Chudasama, H. B. Desai, S. P. Bhatnagar, and R. V. Upadhyay, “Magnetically controlled storage and retrieval of light from dispersion of large magnetic spheres in a ferrofluid,” Curr. Sci. 93, 1071–1072 (2007).
  8. R. V. Mehta, R. Patel, B. Chudasama, and R. V. Upadhyay, “Experimental investigation of magnetically induced unusual emission of light from a ferrodispersion,” Opt. Lett. 33,1987–1989 (2008).
    [CrossRef] [PubMed]
  9. H. Bhatt, R. J. Patel, and R. V. Mehta, “Magnetically induced Mie resonance in a magnetic sphere suspended in a ferrofluid,” J. Opt. Soc. Am. A 27, 873–877 (2010).
    [CrossRef]
  10. R. E. Rosensweig, Ferrohydrodynamics (Cambridge University, 1986).
  11. R. V. Upadhyay, R. V. Mehta, K. Parekh, D. Srinivas, and R. P. Pant, “Gd-substituted ferrite ferrofluid: a possible candidate to enhance pyromagnetic coefficient,” J. Magn. Magn. Mater. 201, 129–132 (1999).
    [CrossRef]
  12. K. Parekh, R. V. Upadhyay, and R. V. Mehta, “Particle size determination: viscosity study,” Indian J. Eng. Mater. Sci. 5, 343–346 (1998).
  13. Y. Yang, L. Li, and C. Chang, “Yield stress of ferrofluid-based magnetorheological fluid,” Rheol. Acta 48, 457–466 (2009).
    [CrossRef]
  14. R. Patel, R. V. Upadhyay, and R. V. Mehta, “Optical properties of magnetic and non-magnetic composites of ferrofluids,” J. Magn. Magn. Mater. 300, e217–e220 (2006).
    [CrossRef]
  15. R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
    [CrossRef] [PubMed]
  16. A. Lagendijk and B. A. Van Tiggelen, “Resonant multiple scattering of light,” Phys. Rep. 270, 143–215 (1996).
    [CrossRef]
  17. A. Bott and W. Zdunkowski, “Electromagnetic energy within dielectric spheres,” J. Opt. Soc. Am. A 4, 1361–1965 (1987).
    [CrossRef]
  18. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957), Chap. 9.
  19. S. Lepri, S. Cavalieri, G.-L. Oppo, and D. S. Wiersma, “Statistical regimes of random laser fluctuations,” Phys. Rev. A 75, 063820 (2007).
    [CrossRef]
  20. Geoffrey L. Rogers, “Multiple path analysis of reflectance from turbid media,” J. Opt. Soc. Am. A 25, 2879–2883 (2008).
    [CrossRef]
  21. P. Barthelemy, J. Bertolotti, and D. S. Wiersma, “A Levy flight for light,” Nature 453, 495–498 (2008).
    [CrossRef] [PubMed]
  22. R. Vergaz, J.-M. Sánchez-Pena, D. Barrios, C. Vázquez, and P. Contreras-Lallana, “Modelling and electro-optical testing of suspended particle devices,” Sol. Energy Mater. Sol. Cells , 921483–1487 (2008).
    [CrossRef]
  23. R. Vergaz, J. M. S. Pena, D. Barrios, I. Pérez, and J. C. Torres, “Electrooptical behaviour and control of a suspended particle device,” Opto-Electron. Rev. 15, 154–158 (2007).
    [CrossRef]

2010 (2)

R. J. Patel and R. V. Mehta, “Experimental investigations on magnetically induced photonic band gap in ferrodispersions,” Eur. Phys. J. Appl. Phys. 52, 30702 (2010).
[CrossRef]

H. Bhatt, R. J. Patel, and R. V. Mehta, “Magnetically induced Mie resonance in a magnetic sphere suspended in a ferrofluid,” J. Opt. Soc. Am. A 27, 873–877 (2010).
[CrossRef]

2009 (1)

Y. Yang, L. Li, and C. Chang, “Yield stress of ferrofluid-based magnetorheological fluid,” Rheol. Acta 48, 457–466 (2009).
[CrossRef]

2008 (4)

Geoffrey L. Rogers, “Multiple path analysis of reflectance from turbid media,” J. Opt. Soc. Am. A 25, 2879–2883 (2008).
[CrossRef]

P. Barthelemy, J. Bertolotti, and D. S. Wiersma, “A Levy flight for light,” Nature 453, 495–498 (2008).
[CrossRef] [PubMed]

R. Vergaz, J.-M. Sánchez-Pena, D. Barrios, C. Vázquez, and P. Contreras-Lallana, “Modelling and electro-optical testing of suspended particle devices,” Sol. Energy Mater. Sol. Cells , 921483–1487 (2008).
[CrossRef]

R. V. Mehta, R. Patel, B. Chudasama, and R. V. Upadhyay, “Experimental investigation of magnetically induced unusual emission of light from a ferrodispersion,” Opt. Lett. 33,1987–1989 (2008).
[CrossRef] [PubMed]

2007 (5)

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nature 3, 406–410 (2007).
[CrossRef]

R. V. Mehta, R. Patel, B. Chudasama, H. B. Desai, S. P. Bhatnagar, and R. V. Upadhyay, “Magnetically controlled storage and retrieval of light from dispersion of large magnetic spheres in a ferrofluid,” Curr. Sci. 93, 1071–1072 (2007).

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimaki, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[CrossRef] [PubMed]

R. Vergaz, J. M. S. Pena, D. Barrios, I. Pérez, and J. C. Torres, “Electrooptical behaviour and control of a suspended particle device,” Opto-Electron. Rev. 15, 154–158 (2007).
[CrossRef]

S. Lepri, S. Cavalieri, G.-L. Oppo, and D. S. Wiersma, “Statistical regimes of random laser fluctuations,” Phys. Rev. A 75, 063820 (2007).
[CrossRef]

2006 (3)

R. Patel, R. V. Upadhyay, and R. V. Mehta, “Optical properties of magnetic and non-magnetic composites of ferrofluids,” J. Magn. Magn. Mater. 300, e217–e220 (2006).
[CrossRef]

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[CrossRef] [PubMed]

J. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

2005 (1)

N. Engheta, A. Salandrino, and A. Alu, “Circuit elements at optical frequencies: nano-inductor, nano-capacitor, and nano-resistor,” Phys. Rev. Lett. 95, 095504 (2005).
[CrossRef] [PubMed]

2001 (1)

C. Liu, Z. Dutton, C. N. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

1999 (1)

R. V. Upadhyay, R. V. Mehta, K. Parekh, D. Srinivas, and R. P. Pant, “Gd-substituted ferrite ferrofluid: a possible candidate to enhance pyromagnetic coefficient,” J. Magn. Magn. Mater. 201, 129–132 (1999).
[CrossRef]

1998 (1)

K. Parekh, R. V. Upadhyay, and R. V. Mehta, “Particle size determination: viscosity study,” Indian J. Eng. Mater. Sci. 5, 343–346 (1998).

1996 (1)

A. Lagendijk and B. A. Van Tiggelen, “Resonant multiple scattering of light,” Phys. Rep. 270, 143–215 (1996).
[CrossRef]

1987 (1)

Alu, A.

N. Engheta, A. Salandrino, and A. Alu, “Circuit elements at optical frequencies: nano-inductor, nano-capacitor, and nano-resistor,” Phys. Rev. Lett. 95, 095504 (2005).
[CrossRef] [PubMed]

Barrios, D.

R. Vergaz, J.-M. Sánchez-Pena, D. Barrios, C. Vázquez, and P. Contreras-Lallana, “Modelling and electro-optical testing of suspended particle devices,” Sol. Energy Mater. Sol. Cells , 921483–1487 (2008).
[CrossRef]

R. Vergaz, J. M. S. Pena, D. Barrios, I. Pérez, and J. C. Torres, “Electrooptical behaviour and control of a suspended particle device,” Opto-Electron. Rev. 15, 154–158 (2007).
[CrossRef]

Barthelemy, P.

P. Barthelemy, J. Bertolotti, and D. S. Wiersma, “A Levy flight for light,” Nature 453, 495–498 (2008).
[CrossRef] [PubMed]

Behroozi, C. N.

C. Liu, Z. Dutton, C. N. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

Bertolotti, J.

P. Barthelemy, J. Bertolotti, and D. S. Wiersma, “A Levy flight for light,” Nature 453, 495–498 (2008).
[CrossRef] [PubMed]

Bhatnagar, S. P.

R. V. Mehta, R. Patel, B. Chudasama, H. B. Desai, S. P. Bhatnagar, and R. V. Upadhyay, “Magnetically controlled storage and retrieval of light from dispersion of large magnetic spheres in a ferrofluid,” Curr. Sci. 93, 1071–1072 (2007).

Bhatt, H.

Bott, A.

Cavalieri, S.

S. Lepri, S. Cavalieri, G.-L. Oppo, and D. S. Wiersma, “Statistical regimes of random laser fluctuations,” Phys. Rev. A 75, 063820 (2007).
[CrossRef]

Chang, C.

Y. Yang, L. Li, and C. Chang, “Yield stress of ferrofluid-based magnetorheological fluid,” Rheol. Acta 48, 457–466 (2009).
[CrossRef]

Chudasama, B.

R. V. Mehta, R. Patel, B. Chudasama, and R. V. Upadhyay, “Experimental investigation of magnetically induced unusual emission of light from a ferrodispersion,” Opt. Lett. 33,1987–1989 (2008).
[CrossRef] [PubMed]

R. V. Mehta, R. Patel, B. Chudasama, H. B. Desai, S. P. Bhatnagar, and R. V. Upadhyay, “Magnetically controlled storage and retrieval of light from dispersion of large magnetic spheres in a ferrofluid,” Curr. Sci. 93, 1071–1072 (2007).

Contreras-Lallana, P.

R. Vergaz, J.-M. Sánchez-Pena, D. Barrios, C. Vázquez, and P. Contreras-Lallana, “Modelling and electro-optical testing of suspended particle devices,” Sol. Energy Mater. Sol. Cells , 921483–1487 (2008).
[CrossRef]

Desai, H. B.

R. V. Mehta, R. Patel, B. Chudasama, H. B. Desai, S. P. Bhatnagar, and R. V. Upadhyay, “Magnetically controlled storage and retrieval of light from dispersion of large magnetic spheres in a ferrofluid,” Curr. Sci. 93, 1071–1072 (2007).

Desai, R.

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[CrossRef] [PubMed]

Dong, P.

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nature 3, 406–410 (2007).
[CrossRef]

Dutton, Z.

C. Liu, Z. Dutton, C. N. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

Engheta, N.

N. Engheta, A. Salandrino, and A. Alu, “Circuit elements at optical frequencies: nano-inductor, nano-capacitor, and nano-resistor,” Phys. Rev. Lett. 95, 095504 (2005).
[CrossRef] [PubMed]

Fedotov, V. A.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimaki, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[CrossRef] [PubMed]

Hau, L. V.

C. Liu, Z. Dutton, C. N. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

Lagendijk, A.

A. Lagendijk and B. A. Van Tiggelen, “Resonant multiple scattering of light,” Phys. Rep. 270, 143–215 (1996).
[CrossRef]

Lepri, S.

S. Lepri, S. Cavalieri, G.-L. Oppo, and D. S. Wiersma, “Statistical regimes of random laser fluctuations,” Phys. Rev. A 75, 063820 (2007).
[CrossRef]

Li, L.

Y. Yang, L. Li, and C. Chang, “Yield stress of ferrofluid-based magnetorheological fluid,” Rheol. Acta 48, 457–466 (2009).
[CrossRef]

Lipson, M.

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nature 3, 406–410 (2007).
[CrossRef]

Liu, C.

C. Liu, Z. Dutton, C. N. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

Mehta, R. V.

R. J. Patel and R. V. Mehta, “Experimental investigations on magnetically induced photonic band gap in ferrodispersions,” Eur. Phys. J. Appl. Phys. 52, 30702 (2010).
[CrossRef]

H. Bhatt, R. J. Patel, and R. V. Mehta, “Magnetically induced Mie resonance in a magnetic sphere suspended in a ferrofluid,” J. Opt. Soc. Am. A 27, 873–877 (2010).
[CrossRef]

R. V. Mehta, R. Patel, B. Chudasama, and R. V. Upadhyay, “Experimental investigation of magnetically induced unusual emission of light from a ferrodispersion,” Opt. Lett. 33,1987–1989 (2008).
[CrossRef] [PubMed]

R. V. Mehta, R. Patel, B. Chudasama, H. B. Desai, S. P. Bhatnagar, and R. V. Upadhyay, “Magnetically controlled storage and retrieval of light from dispersion of large magnetic spheres in a ferrofluid,” Curr. Sci. 93, 1071–1072 (2007).

R. Patel, R. V. Upadhyay, and R. V. Mehta, “Optical properties of magnetic and non-magnetic composites of ferrofluids,” J. Magn. Magn. Mater. 300, e217–e220 (2006).
[CrossRef]

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[CrossRef] [PubMed]

R. V. Upadhyay, R. V. Mehta, K. Parekh, D. Srinivas, and R. P. Pant, “Gd-substituted ferrite ferrofluid: a possible candidate to enhance pyromagnetic coefficient,” J. Magn. Magn. Mater. 201, 129–132 (1999).
[CrossRef]

K. Parekh, R. V. Upadhyay, and R. V. Mehta, “Particle size determination: viscosity study,” Indian J. Eng. Mater. Sci. 5, 343–346 (1998).

Oppo, G.-L.

S. Lepri, S. Cavalieri, G.-L. Oppo, and D. S. Wiersma, “Statistical regimes of random laser fluctuations,” Phys. Rev. A 75, 063820 (2007).
[CrossRef]

Pant, R. P.

R. V. Upadhyay, R. V. Mehta, K. Parekh, D. Srinivas, and R. P. Pant, “Gd-substituted ferrite ferrofluid: a possible candidate to enhance pyromagnetic coefficient,” J. Magn. Magn. Mater. 201, 129–132 (1999).
[CrossRef]

Papasimaki, N.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimaki, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[CrossRef] [PubMed]

Parekh, K.

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[CrossRef] [PubMed]

R. V. Upadhyay, R. V. Mehta, K. Parekh, D. Srinivas, and R. P. Pant, “Gd-substituted ferrite ferrofluid: a possible candidate to enhance pyromagnetic coefficient,” J. Magn. Magn. Mater. 201, 129–132 (1999).
[CrossRef]

K. Parekh, R. V. Upadhyay, and R. V. Mehta, “Particle size determination: viscosity study,” Indian J. Eng. Mater. Sci. 5, 343–346 (1998).

Patel, R.

R. V. Mehta, R. Patel, B. Chudasama, and R. V. Upadhyay, “Experimental investigation of magnetically induced unusual emission of light from a ferrodispersion,” Opt. Lett. 33,1987–1989 (2008).
[CrossRef] [PubMed]

R. V. Mehta, R. Patel, B. Chudasama, H. B. Desai, S. P. Bhatnagar, and R. V. Upadhyay, “Magnetically controlled storage and retrieval of light from dispersion of large magnetic spheres in a ferrofluid,” Curr. Sci. 93, 1071–1072 (2007).

R. Patel, R. V. Upadhyay, and R. V. Mehta, “Optical properties of magnetic and non-magnetic composites of ferrofluids,” J. Magn. Magn. Mater. 300, e217–e220 (2006).
[CrossRef]

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[CrossRef] [PubMed]

Patel, R. J.

H. Bhatt, R. J. Patel, and R. V. Mehta, “Magnetically induced Mie resonance in a magnetic sphere suspended in a ferrofluid,” J. Opt. Soc. Am. A 27, 873–877 (2010).
[CrossRef]

R. J. Patel and R. V. Mehta, “Experimental investigations on magnetically induced photonic band gap in ferrodispersions,” Eur. Phys. J. Appl. Phys. 52, 30702 (2010).
[CrossRef]

Pena, J. M. S.

R. Vergaz, J. M. S. Pena, D. Barrios, I. Pérez, and J. C. Torres, “Electrooptical behaviour and control of a suspended particle device,” Opto-Electron. Rev. 15, 154–158 (2007).
[CrossRef]

Pendry, J.

J. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

Pérez, I.

R. Vergaz, J. M. S. Pena, D. Barrios, I. Pérez, and J. C. Torres, “Electrooptical behaviour and control of a suspended particle device,” Opto-Electron. Rev. 15, 154–158 (2007).
[CrossRef]

Prosvirnin, S. L.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimaki, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[CrossRef] [PubMed]

Rogers, Geoffrey L.

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimaki, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[CrossRef] [PubMed]

Rosensweig, R. E.

R. E. Rosensweig, Ferrohydrodynamics (Cambridge University, 1986).

Salandrino, A.

N. Engheta, A. Salandrino, and A. Alu, “Circuit elements at optical frequencies: nano-inductor, nano-capacitor, and nano-resistor,” Phys. Rev. Lett. 95, 095504 (2005).
[CrossRef] [PubMed]

Sánchez-Pena, J.-M.

R. Vergaz, J.-M. Sánchez-Pena, D. Barrios, C. Vázquez, and P. Contreras-Lallana, “Modelling and electro-optical testing of suspended particle devices,” Sol. Energy Mater. Sol. Cells , 921483–1487 (2008).
[CrossRef]

Schurig, D.

J. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

Smith, D. R.

J. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

Srinivas, D.

R. V. Upadhyay, R. V. Mehta, K. Parekh, D. Srinivas, and R. P. Pant, “Gd-substituted ferrite ferrofluid: a possible candidate to enhance pyromagnetic coefficient,” J. Magn. Magn. Mater. 201, 129–132 (1999).
[CrossRef]

Torres, J. C.

R. Vergaz, J. M. S. Pena, D. Barrios, I. Pérez, and J. C. Torres, “Electrooptical behaviour and control of a suspended particle device,” Opto-Electron. Rev. 15, 154–158 (2007).
[CrossRef]

Upadhyay, R. V.

R. V. Mehta, R. Patel, B. Chudasama, and R. V. Upadhyay, “Experimental investigation of magnetically induced unusual emission of light from a ferrodispersion,” Opt. Lett. 33,1987–1989 (2008).
[CrossRef] [PubMed]

R. V. Mehta, R. Patel, B. Chudasama, H. B. Desai, S. P. Bhatnagar, and R. V. Upadhyay, “Magnetically controlled storage and retrieval of light from dispersion of large magnetic spheres in a ferrofluid,” Curr. Sci. 93, 1071–1072 (2007).

R. Patel, R. V. Upadhyay, and R. V. Mehta, “Optical properties of magnetic and non-magnetic composites of ferrofluids,” J. Magn. Magn. Mater. 300, e217–e220 (2006).
[CrossRef]

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[CrossRef] [PubMed]

R. V. Upadhyay, R. V. Mehta, K. Parekh, D. Srinivas, and R. P. Pant, “Gd-substituted ferrite ferrofluid: a possible candidate to enhance pyromagnetic coefficient,” J. Magn. Magn. Mater. 201, 129–132 (1999).
[CrossRef]

K. Parekh, R. V. Upadhyay, and R. V. Mehta, “Particle size determination: viscosity study,” Indian J. Eng. Mater. Sci. 5, 343–346 (1998).

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957), Chap. 9.

Van Tiggelen, B. A.

A. Lagendijk and B. A. Van Tiggelen, “Resonant multiple scattering of light,” Phys. Rep. 270, 143–215 (1996).
[CrossRef]

Vázquez, C.

R. Vergaz, J.-M. Sánchez-Pena, D. Barrios, C. Vázquez, and P. Contreras-Lallana, “Modelling and electro-optical testing of suspended particle devices,” Sol. Energy Mater. Sol. Cells , 921483–1487 (2008).
[CrossRef]

Vergaz, R.

R. Vergaz, J.-M. Sánchez-Pena, D. Barrios, C. Vázquez, and P. Contreras-Lallana, “Modelling and electro-optical testing of suspended particle devices,” Sol. Energy Mater. Sol. Cells , 921483–1487 (2008).
[CrossRef]

R. Vergaz, J. M. S. Pena, D. Barrios, I. Pérez, and J. C. Torres, “Electrooptical behaviour and control of a suspended particle device,” Opto-Electron. Rev. 15, 154–158 (2007).
[CrossRef]

Wiersma, D. S.

P. Barthelemy, J. Bertolotti, and D. S. Wiersma, “A Levy flight for light,” Nature 453, 495–498 (2008).
[CrossRef] [PubMed]

S. Lepri, S. Cavalieri, G.-L. Oppo, and D. S. Wiersma, “Statistical regimes of random laser fluctuations,” Phys. Rev. A 75, 063820 (2007).
[CrossRef]

Xu, Q.

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nature 3, 406–410 (2007).
[CrossRef]

Yang, Y.

Y. Yang, L. Li, and C. Chang, “Yield stress of ferrofluid-based magnetorheological fluid,” Rheol. Acta 48, 457–466 (2009).
[CrossRef]

Zdunkowski, W.

Zheludev, N. I.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimaki, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[CrossRef] [PubMed]

Curr. Sci. (1)

R. V. Mehta, R. Patel, B. Chudasama, H. B. Desai, S. P. Bhatnagar, and R. V. Upadhyay, “Magnetically controlled storage and retrieval of light from dispersion of large magnetic spheres in a ferrofluid,” Curr. Sci. 93, 1071–1072 (2007).

Eur. Phys. J. Appl. Phys. (1)

R. J. Patel and R. V. Mehta, “Experimental investigations on magnetically induced photonic band gap in ferrodispersions,” Eur. Phys. J. Appl. Phys. 52, 30702 (2010).
[CrossRef]

Indian J. Eng. Mater. Sci. (1)

K. Parekh, R. V. Upadhyay, and R. V. Mehta, “Particle size determination: viscosity study,” Indian J. Eng. Mater. Sci. 5, 343–346 (1998).

J. Magn. Magn. Mater. (2)

R. Patel, R. V. Upadhyay, and R. V. Mehta, “Optical properties of magnetic and non-magnetic composites of ferrofluids,” J. Magn. Magn. Mater. 300, e217–e220 (2006).
[CrossRef]

R. V. Upadhyay, R. V. Mehta, K. Parekh, D. Srinivas, and R. P. Pant, “Gd-substituted ferrite ferrofluid: a possible candidate to enhance pyromagnetic coefficient,” J. Magn. Magn. Mater. 201, 129–132 (1999).
[CrossRef]

J. Opt. Soc. Am. A (3)

Nature (3)

P. Barthelemy, J. Bertolotti, and D. S. Wiersma, “A Levy flight for light,” Nature 453, 495–498 (2008).
[CrossRef] [PubMed]

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nature 3, 406–410 (2007).
[CrossRef]

C. Liu, Z. Dutton, C. N. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

Opt. Lett. (1)

Opto-Electron. Rev. (1)

R. Vergaz, J. M. S. Pena, D. Barrios, I. Pérez, and J. C. Torres, “Electrooptical behaviour and control of a suspended particle device,” Opto-Electron. Rev. 15, 154–158 (2007).
[CrossRef]

Phys. Rep. (1)

A. Lagendijk and B. A. Van Tiggelen, “Resonant multiple scattering of light,” Phys. Rep. 270, 143–215 (1996).
[CrossRef]

Phys. Rev. A (1)

S. Lepri, S. Cavalieri, G.-L. Oppo, and D. S. Wiersma, “Statistical regimes of random laser fluctuations,” Phys. Rev. A 75, 063820 (2007).
[CrossRef]

Phys. Rev. Lett. (3)

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, “Experimental evidence of zero forward scattering by magnetic spheres,” Phys. Rev. Lett. 96, 127402 (2006).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimaki, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[CrossRef] [PubMed]

N. Engheta, A. Salandrino, and A. Alu, “Circuit elements at optical frequencies: nano-inductor, nano-capacitor, and nano-resistor,” Phys. Rev. Lett. 95, 095504 (2005).
[CrossRef] [PubMed]

Rheol. Acta (1)

Y. Yang, L. Li, and C. Chang, “Yield stress of ferrofluid-based magnetorheological fluid,” Rheol. Acta 48, 457–466 (2009).
[CrossRef]

Science (1)

J. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

R. Vergaz, J.-M. Sánchez-Pena, D. Barrios, C. Vázquez, and P. Contreras-Lallana, “Modelling and electro-optical testing of suspended particle devices,” Sol. Energy Mater. Sol. Cells , 921483–1487 (2008).
[CrossRef]

Other (2)

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957), Chap. 9.

R. E. Rosensweig, Ferrohydrodynamics (Cambridge University, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic layout of experimental setup used to store and retrieve light in a suspension of micrometer-sized magnetite spheres in magnetic fluid. E.M., electromagnetic; PC, personal computer.

Fig. 2
Fig. 2

Oscilloscope traces for the reference beam, magnetic field, magnetic field control, and retrieved pulse. This shows that the retrieved pulse emerges after nearly 500 ms after switching off the magnetic field.

Fig. 3
Fig. 3

Random behavior of the amplitude of the retrieved flash as a function of time delay.

Fig. 4
Fig. 4

Retrieved intensity per unit time (optical capacity) as a function of size of the scatterer for the storage time of 200 s . Inset: increase of power of retrieved radiation with storage time. It is observed that after 200 s the output power is greater than the incident power of 0.076 mW .

Fig. 5
Fig. 5

Effect of storage time on retrieved intensity for different sized micrometer-sized magnetizable spheres. Inset shows the number of retrievals in 50 s as a function of the refractive index of the ferrofluid in which the large magnetic particles are dispersed.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

i 1 , 2 = | S 1 , 2 ( m s , α , θ ) | 2 ,
m f = m L ( ξ ) + m 0 ,
L ( ξ ) = coth ( ξ ) 1 / ξ ,
τ d ( λ ) = { W ( λ , S ) } · { σ sca ( λ ) c 0 } 1 .
W ( λ , S ) = 3 4 W 0 Σ ( 2 n + 1 ) / ( β 2 β * 2 ) { α n [ ( a n * / β ) ( a n / β * ) ] + { γ n [ ( a n * / β * ) ( a n / β ) ] } ,
a n = ψ n * ( β ) / ψ n ( β ) , β = ( m MMS ) · α , W 0 = 2 / 3 π d 3 E 0 ε f .
C sphere = 4 π ε s R .
C MS = 4 π ε h R ,
ε f f = { m f } 2 .

Metrics