Abstract

Mn-doped nanocrystals (NCs) have attracted much attention for their excellent properties. In our work, colloidal Mn-doped NCs with high quantum yield are synthesized and enveloped with silica hydrosol. The blend of NCs and silica hydrosol is coated on a blue light-emitting diode (LED), and the appropriate thickness of the NC film is found. White light is gained through the mix of the blue emission of the LED and the orange emission from Mn-doped NC films. The chromaticity coordinates and the image of the white LED indicate that Mn-doped NCs can be a good substitute for YAG:Ce phosphor, and the reliability of the white LED can be improved by enveloping NCs with SiO2.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED,” Opt. Mater. 33, 688–691 (2011).
    [CrossRef]
  2. J. R. Oh, S.-H. Cho, J. H. Oh, Y.-K. Kim, Y.-H. Lee, W. Kim, and Y. R. Do, “The realization of a whole palette of colors in a green gap by monochromatic phosphor-converted light-emitting diodes,” Opt. Express 19, 4188–4198 (2011).
    [CrossRef] [PubMed]
  3. W. Chung, H. J. Yu, S. H. Park, B.-H. Chun, and S. H. Kim, “YAG and CdSe/ZnSe nanoparticles hybrid phosphor for white LED with high color rendering index,” Mater. Chem. Phys. 126, 162–166 (2011).
    [CrossRef]
  4. M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, and V. I. Klimov, “Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion,” Nano Lett. 6, 1396–1400 (2006).
    [CrossRef] [PubMed]
  5. J.-U. Kim, Y.-S. Kim, and H. Yang, “Nanocrystalline Y3Al5O12:Ce phosphor-based white light-emitting diodes embedded with CdS:Mn/ZnS core/shell quantum dots,” Mater. Lett. 63, 614–616 (2009).
    [CrossRef]
  6. W. C. H. Choy, S. Xiong, and Y. Sun, “A facile synthesis of zinc blende ZnSe nanocrystals,” J. Phys. D 42, 125410 (2009).
    [CrossRef]
  7. N. Pradhan, D. M. Battaglia, Y. Liu, and X. Peng, “Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels,” Nano Lett. 7, 312–317 (2007).
    [CrossRef] [PubMed]
  8. Y. P. Leung, W. C. H. Choy, I. Markoy, G. K. H. Pang, H. C. Ong, and T. I. Yuk, “Synthesis of wurtzite ZnSe nanorings by thermal evaporation,” Appl. Phys. Lett. 88, 183110 (2006).
    [CrossRef]
  9. S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436, 91–94 (2005).
    [CrossRef] [PubMed]
  10. D. J. Norris, A. L. Efros, and S. C. Erwin, “Doped nanocrystals,” Science 319, 1776–1779 (2008).
    [CrossRef] [PubMed]
  11. N. Pradhan and X. Peng, “Efficient and color-tunable Mn-doped ZnSe nanocrystals emitters: control of optical performance via greener synthetic chemistry,” J. Am. Chem. Soc. 129, 3339–3347 (2007).
    [CrossRef] [PubMed]
  12. W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
    [CrossRef]
  13. Y. Wang, P. Yuan, H. Xu, and J. Wang, “Synthesis of Ce:YAG phosphor via homogeneous precipitation under microwave irradiation,” J. Rare Earths 24, 183–186 (2006).
    [CrossRef]
  14. R. Mirhosseini, M. F. Schubert, S. Chhajed, J. Cho, J. K. Kim, and E. F. Schubert, “Improved color rendering and luminous efficacy in phosphor-converted white light-emitting diodes by use of dual-blue emitting active regions,” Opt. Express 17, 10806–10813 (2009).
    [CrossRef] [PubMed]
  15. S. Acharya, D. D. Sarma, N. R. Jana, and N. Pradhan, “An alternate route to high-quality ZnSe and Mn-doped nanocrystals,” J. Phys. Chem. Lett. 1, 485–488 (2010).
    [CrossRef]
  16. R. Zeng, M. Rutherford, R. Xie, B. Zou, and X. Peng, “Synthesis of highly emissive Mn-doped ZnSe nanocrystals without pyrophoric reagents,” Chem. Mater. 22, 2107–2133 (2010).
    [CrossRef]
  17. Y. Yang, O. Chen, A. Angerhofer, and Y. C. Cao, “Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals,” J. Am. Chem. Soc. 128, 12428–12429 (2006).
    [CrossRef] [PubMed]
  18. S. Ithurria, P. Guyot-Sionnest, B. Mahler, and B. Dubertret, “Mn2+ as a radial pressure gauge in colloidal core/shell nanocrystals,” Phys. Rev. Lett. 99, 265501 (2007).
    [CrossRef]
  19. W. Chen, G. Li, J.-O. Malm, Y. Huang, R. Wallenberg, H. Han, Z. Wang, and J.-O. Bovin, “Pressure dependence of Mn2+ fluorescence in ZnS:Mn2+ nanoparticles,” J. Lumin. 91, 139–145 (2000).
    [CrossRef]

2011 (3)

W. Chung, H. J. Yu, S. H. Park, B.-H. Chun, and S. H. Kim, “YAG and CdSe/ZnSe nanoparticles hybrid phosphor for white LED with high color rendering index,” Mater. Chem. Phys. 126, 162–166 (2011).
[CrossRef]

S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED,” Opt. Mater. 33, 688–691 (2011).
[CrossRef]

J. R. Oh, S.-H. Cho, J. H. Oh, Y.-K. Kim, Y.-H. Lee, W. Kim, and Y. R. Do, “The realization of a whole palette of colors in a green gap by monochromatic phosphor-converted light-emitting diodes,” Opt. Express 19, 4188–4198 (2011).
[CrossRef] [PubMed]

2010 (2)

S. Acharya, D. D. Sarma, N. R. Jana, and N. Pradhan, “An alternate route to high-quality ZnSe and Mn-doped nanocrystals,” J. Phys. Chem. Lett. 1, 485–488 (2010).
[CrossRef]

R. Zeng, M. Rutherford, R. Xie, B. Zou, and X. Peng, “Synthesis of highly emissive Mn-doped ZnSe nanocrystals without pyrophoric reagents,” Chem. Mater. 22, 2107–2133 (2010).
[CrossRef]

2009 (3)

R. Mirhosseini, M. F. Schubert, S. Chhajed, J. Cho, J. K. Kim, and E. F. Schubert, “Improved color rendering and luminous efficacy in phosphor-converted white light-emitting diodes by use of dual-blue emitting active regions,” Opt. Express 17, 10806–10813 (2009).
[CrossRef] [PubMed]

J.-U. Kim, Y.-S. Kim, and H. Yang, “Nanocrystalline Y3Al5O12:Ce phosphor-based white light-emitting diodes embedded with CdS:Mn/ZnS core/shell quantum dots,” Mater. Lett. 63, 614–616 (2009).
[CrossRef]

W. C. H. Choy, S. Xiong, and Y. Sun, “A facile synthesis of zinc blende ZnSe nanocrystals,” J. Phys. D 42, 125410 (2009).
[CrossRef]

2008 (1)

D. J. Norris, A. L. Efros, and S. C. Erwin, “Doped nanocrystals,” Science 319, 1776–1779 (2008).
[CrossRef] [PubMed]

2007 (3)

N. Pradhan and X. Peng, “Efficient and color-tunable Mn-doped ZnSe nanocrystals emitters: control of optical performance via greener synthetic chemistry,” J. Am. Chem. Soc. 129, 3339–3347 (2007).
[CrossRef] [PubMed]

N. Pradhan, D. M. Battaglia, Y. Liu, and X. Peng, “Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels,” Nano Lett. 7, 312–317 (2007).
[CrossRef] [PubMed]

S. Ithurria, P. Guyot-Sionnest, B. Mahler, and B. Dubertret, “Mn2+ as a radial pressure gauge in colloidal core/shell nanocrystals,” Phys. Rev. Lett. 99, 265501 (2007).
[CrossRef]

2006 (4)

Y. Yang, O. Chen, A. Angerhofer, and Y. C. Cao, “Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals,” J. Am. Chem. Soc. 128, 12428–12429 (2006).
[CrossRef] [PubMed]

Y. Wang, P. Yuan, H. Xu, and J. Wang, “Synthesis of Ce:YAG phosphor via homogeneous precipitation under microwave irradiation,” J. Rare Earths 24, 183–186 (2006).
[CrossRef]

Y. P. Leung, W. C. H. Choy, I. Markoy, G. K. H. Pang, H. C. Ong, and T. I. Yuk, “Synthesis of wurtzite ZnSe nanorings by thermal evaporation,” Appl. Phys. Lett. 88, 183110 (2006).
[CrossRef]

M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, and V. I. Klimov, “Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion,” Nano Lett. 6, 1396–1400 (2006).
[CrossRef] [PubMed]

2005 (1)

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436, 91–94 (2005).
[CrossRef] [PubMed]

2003 (1)

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[CrossRef]

2000 (1)

W. Chen, G. Li, J.-O. Malm, Y. Huang, R. Wallenberg, H. Han, Z. Wang, and J.-O. Bovin, “Pressure dependence of Mn2+ fluorescence in ZnS:Mn2+ nanoparticles,” J. Lumin. 91, 139–145 (2000).
[CrossRef]

Acharya, S.

S. Acharya, D. D. Sarma, N. R. Jana, and N. Pradhan, “An alternate route to high-quality ZnSe and Mn-doped nanocrystals,” J. Phys. Chem. Lett. 1, 485–488 (2010).
[CrossRef]

Achermann, M.

M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, and V. I. Klimov, “Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion,” Nano Lett. 6, 1396–1400 (2006).
[CrossRef] [PubMed]

Angerhofer, A.

Y. Yang, O. Chen, A. Angerhofer, and Y. C. Cao, “Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals,” J. Am. Chem. Soc. 128, 12428–12429 (2006).
[CrossRef] [PubMed]

Battaglia, D. M.

N. Pradhan, D. M. Battaglia, Y. Liu, and X. Peng, “Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels,” Nano Lett. 7, 312–317 (2007).
[CrossRef] [PubMed]

Bovin, J.-O.

W. Chen, G. Li, J.-O. Malm, Y. Huang, R. Wallenberg, H. Han, Z. Wang, and J.-O. Bovin, “Pressure dependence of Mn2+ fluorescence in ZnS:Mn2+ nanoparticles,” J. Lumin. 91, 139–145 (2000).
[CrossRef]

Cao, Y. C.

Y. Yang, O. Chen, A. Angerhofer, and Y. C. Cao, “Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals,” J. Am. Chem. Soc. 128, 12428–12429 (2006).
[CrossRef] [PubMed]

Chen, O.

Y. Yang, O. Chen, A. Angerhofer, and Y. C. Cao, “Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals,” J. Am. Chem. Soc. 128, 12428–12429 (2006).
[CrossRef] [PubMed]

Chen, W.

W. Chen, G. Li, J.-O. Malm, Y. Huang, R. Wallenberg, H. Han, Z. Wang, and J.-O. Bovin, “Pressure dependence of Mn2+ fluorescence in ZnS:Mn2+ nanoparticles,” J. Lumin. 91, 139–145 (2000).
[CrossRef]

Chhajed, S.

Cho, J.

Cho, S.-H.

Choy, W. C. H.

W. C. H. Choy, S. Xiong, and Y. Sun, “A facile synthesis of zinc blende ZnSe nanocrystals,” J. Phys. D 42, 125410 (2009).
[CrossRef]

Y. P. Leung, W. C. H. Choy, I. Markoy, G. K. H. Pang, H. C. Ong, and T. I. Yuk, “Synthesis of wurtzite ZnSe nanorings by thermal evaporation,” Appl. Phys. Lett. 88, 183110 (2006).
[CrossRef]

Chun, B.-H.

W. Chung, H. J. Yu, S. H. Park, B.-H. Chun, and S. H. Kim, “YAG and CdSe/ZnSe nanoparticles hybrid phosphor for white LED with high color rendering index,” Mater. Chem. Phys. 126, 162–166 (2011).
[CrossRef]

Chung, W.

W. Chung, H. J. Yu, S. H. Park, B.-H. Chun, and S. H. Kim, “YAG and CdSe/ZnSe nanoparticles hybrid phosphor for white LED with high color rendering index,” Mater. Chem. Phys. 126, 162–166 (2011).
[CrossRef]

Crawford, M. H.

M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, and V. I. Klimov, “Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion,” Nano Lett. 6, 1396–1400 (2006).
[CrossRef] [PubMed]

Do, Y. R.

Dubertret, B.

S. Ithurria, P. Guyot-Sionnest, B. Mahler, and B. Dubertret, “Mn2+ as a radial pressure gauge in colloidal core/shell nanocrystals,” Phys. Rev. Lett. 99, 265501 (2007).
[CrossRef]

Efros, A. L.

D. J. Norris, A. L. Efros, and S. C. Erwin, “Doped nanocrystals,” Science 319, 1776–1779 (2008).
[CrossRef] [PubMed]

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436, 91–94 (2005).
[CrossRef] [PubMed]

Erwin, S. C.

D. J. Norris, A. L. Efros, and S. C. Erwin, “Doped nanocrystals,” Science 319, 1776–1779 (2008).
[CrossRef] [PubMed]

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436, 91–94 (2005).
[CrossRef] [PubMed]

Fujimoto, Y.

S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED,” Opt. Mater. 33, 688–691 (2011).
[CrossRef]

Fujioka, K.

S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED,” Opt. Mater. 33, 688–691 (2011).
[CrossRef]

Guo, W.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[CrossRef]

Guyot-Sionnest, P.

S. Ithurria, P. Guyot-Sionnest, B. Mahler, and B. Dubertret, “Mn2+ as a radial pressure gauge in colloidal core/shell nanocrystals,” Phys. Rev. Lett. 99, 265501 (2007).
[CrossRef]

Haftel, M. I.

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436, 91–94 (2005).
[CrossRef] [PubMed]

Han, H.

W. Chen, G. Li, J.-O. Malm, Y. Huang, R. Wallenberg, H. Han, Z. Wang, and J.-O. Bovin, “Pressure dependence of Mn2+ fluorescence in ZnS:Mn2+ nanoparticles,” J. Lumin. 91, 139–145 (2000).
[CrossRef]

Huang, Y.

W. Chen, G. Li, J.-O. Malm, Y. Huang, R. Wallenberg, H. Han, Z. Wang, and J.-O. Bovin, “Pressure dependence of Mn2+ fluorescence in ZnS:Mn2+ nanoparticles,” J. Lumin. 91, 139–145 (2000).
[CrossRef]

Ithurria, S.

S. Ithurria, P. Guyot-Sionnest, B. Mahler, and B. Dubertret, “Mn2+ as a radial pressure gauge in colloidal core/shell nanocrystals,” Phys. Rev. Lett. 99, 265501 (2007).
[CrossRef]

Jana, N. R.

S. Acharya, D. D. Sarma, N. R. Jana, and N. Pradhan, “An alternate route to high-quality ZnSe and Mn-doped nanocrystals,” J. Phys. Chem. Lett. 1, 485–488 (2010).
[CrossRef]

Kennedy, T. A.

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436, 91–94 (2005).
[CrossRef] [PubMed]

Kim, J. K.

Kim, J.-U.

J.-U. Kim, Y.-S. Kim, and H. Yang, “Nanocrystalline Y3Al5O12:Ce phosphor-based white light-emitting diodes embedded with CdS:Mn/ZnS core/shell quantum dots,” Mater. Lett. 63, 614–616 (2009).
[CrossRef]

Kim, S. H.

W. Chung, H. J. Yu, S. H. Park, B.-H. Chun, and S. H. Kim, “YAG and CdSe/ZnSe nanoparticles hybrid phosphor for white LED with high color rendering index,” Mater. Chem. Phys. 126, 162–166 (2011).
[CrossRef]

Kim, W.

Kim, Y.-K.

Kim, Y.-S.

J.-U. Kim, Y.-S. Kim, and H. Yang, “Nanocrystalline Y3Al5O12:Ce phosphor-based white light-emitting diodes embedded with CdS:Mn/ZnS core/shell quantum dots,” Mater. Lett. 63, 614–616 (2009).
[CrossRef]

Klimov, V. I.

M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, and V. I. Klimov, “Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion,” Nano Lett. 6, 1396–1400 (2006).
[CrossRef] [PubMed]

Koleske, D. D.

M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, and V. I. Klimov, “Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion,” Nano Lett. 6, 1396–1400 (2006).
[CrossRef] [PubMed]

Lee, Y.-H.

Leung, Y. P.

Y. P. Leung, W. C. H. Choy, I. Markoy, G. K. H. Pang, H. C. Ong, and T. I. Yuk, “Synthesis of wurtzite ZnSe nanorings by thermal evaporation,” Appl. Phys. Lett. 88, 183110 (2006).
[CrossRef]

Li, G.

W. Chen, G. Li, J.-O. Malm, Y. Huang, R. Wallenberg, H. Han, Z. Wang, and J.-O. Bovin, “Pressure dependence of Mn2+ fluorescence in ZnS:Mn2+ nanoparticles,” J. Lumin. 91, 139–145 (2000).
[CrossRef]

Liu, Y.

N. Pradhan, D. M. Battaglia, Y. Liu, and X. Peng, “Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels,” Nano Lett. 7, 312–317 (2007).
[CrossRef] [PubMed]

Mahler, B.

S. Ithurria, P. Guyot-Sionnest, B. Mahler, and B. Dubertret, “Mn2+ as a radial pressure gauge in colloidal core/shell nanocrystals,” Phys. Rev. Lett. 99, 265501 (2007).
[CrossRef]

Malm, J.-O.

W. Chen, G. Li, J.-O. Malm, Y. Huang, R. Wallenberg, H. Han, Z. Wang, and J.-O. Bovin, “Pressure dependence of Mn2+ fluorescence in ZnS:Mn2+ nanoparticles,” J. Lumin. 91, 139–145 (2000).
[CrossRef]

Markoy, I.

Y. P. Leung, W. C. H. Choy, I. Markoy, G. K. H. Pang, H. C. Ong, and T. I. Yuk, “Synthesis of wurtzite ZnSe nanorings by thermal evaporation,” Appl. Phys. Lett. 88, 183110 (2006).
[CrossRef]

Mirhosseini, R.

Nishiura, S.

S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED,” Opt. Mater. 33, 688–691 (2011).
[CrossRef]

Norris, D. J.

D. J. Norris, A. L. Efros, and S. C. Erwin, “Doped nanocrystals,” Science 319, 1776–1779 (2008).
[CrossRef] [PubMed]

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436, 91–94 (2005).
[CrossRef] [PubMed]

Oh, J. H.

Oh, J. R.

Ong, H. C.

Y. P. Leung, W. C. H. Choy, I. Markoy, G. K. H. Pang, H. C. Ong, and T. I. Yuk, “Synthesis of wurtzite ZnSe nanorings by thermal evaporation,” Appl. Phys. Lett. 88, 183110 (2006).
[CrossRef]

Pang, G. K. H.

Y. P. Leung, W. C. H. Choy, I. Markoy, G. K. H. Pang, H. C. Ong, and T. I. Yuk, “Synthesis of wurtzite ZnSe nanorings by thermal evaporation,” Appl. Phys. Lett. 88, 183110 (2006).
[CrossRef]

Park, S. H.

W. Chung, H. J. Yu, S. H. Park, B.-H. Chun, and S. H. Kim, “YAG and CdSe/ZnSe nanoparticles hybrid phosphor for white LED with high color rendering index,” Mater. Chem. Phys. 126, 162–166 (2011).
[CrossRef]

Peng, X.

R. Zeng, M. Rutherford, R. Xie, B. Zou, and X. Peng, “Synthesis of highly emissive Mn-doped ZnSe nanocrystals without pyrophoric reagents,” Chem. Mater. 22, 2107–2133 (2010).
[CrossRef]

N. Pradhan, D. M. Battaglia, Y. Liu, and X. Peng, “Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels,” Nano Lett. 7, 312–317 (2007).
[CrossRef] [PubMed]

N. Pradhan and X. Peng, “Efficient and color-tunable Mn-doped ZnSe nanocrystals emitters: control of optical performance via greener synthetic chemistry,” J. Am. Chem. Soc. 129, 3339–3347 (2007).
[CrossRef] [PubMed]

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[CrossRef]

Petruska, M. A.

M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, and V. I. Klimov, “Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion,” Nano Lett. 6, 1396–1400 (2006).
[CrossRef] [PubMed]

Pradhan, N.

S. Acharya, D. D. Sarma, N. R. Jana, and N. Pradhan, “An alternate route to high-quality ZnSe and Mn-doped nanocrystals,” J. Phys. Chem. Lett. 1, 485–488 (2010).
[CrossRef]

N. Pradhan, D. M. Battaglia, Y. Liu, and X. Peng, “Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels,” Nano Lett. 7, 312–317 (2007).
[CrossRef] [PubMed]

N. Pradhan and X. Peng, “Efficient and color-tunable Mn-doped ZnSe nanocrystals emitters: control of optical performance via greener synthetic chemistry,” J. Am. Chem. Soc. 129, 3339–3347 (2007).
[CrossRef] [PubMed]

Qu, L.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[CrossRef]

Rutherford, M.

R. Zeng, M. Rutherford, R. Xie, B. Zou, and X. Peng, “Synthesis of highly emissive Mn-doped ZnSe nanocrystals without pyrophoric reagents,” Chem. Mater. 22, 2107–2133 (2010).
[CrossRef]

Sarma, D. D.

S. Acharya, D. D. Sarma, N. R. Jana, and N. Pradhan, “An alternate route to high-quality ZnSe and Mn-doped nanocrystals,” J. Phys. Chem. Lett. 1, 485–488 (2010).
[CrossRef]

Schubert, E. F.

Schubert, M. F.

Sun, Y.

W. C. H. Choy, S. Xiong, and Y. Sun, “A facile synthesis of zinc blende ZnSe nanocrystals,” J. Phys. D 42, 125410 (2009).
[CrossRef]

Tanabe, S.

S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED,” Opt. Mater. 33, 688–691 (2011).
[CrossRef]

Wallenberg, R.

W. Chen, G. Li, J.-O. Malm, Y. Huang, R. Wallenberg, H. Han, Z. Wang, and J.-O. Bovin, “Pressure dependence of Mn2+ fluorescence in ZnS:Mn2+ nanoparticles,” J. Lumin. 91, 139–145 (2000).
[CrossRef]

Wang, J.

Y. Wang, P. Yuan, H. Xu, and J. Wang, “Synthesis of Ce:YAG phosphor via homogeneous precipitation under microwave irradiation,” J. Rare Earths 24, 183–186 (2006).
[CrossRef]

Wang, Y.

Y. Wang, P. Yuan, H. Xu, and J. Wang, “Synthesis of Ce:YAG phosphor via homogeneous precipitation under microwave irradiation,” J. Rare Earths 24, 183–186 (2006).
[CrossRef]

Wang, Z.

W. Chen, G. Li, J.-O. Malm, Y. Huang, R. Wallenberg, H. Han, Z. Wang, and J.-O. Bovin, “Pressure dependence of Mn2+ fluorescence in ZnS:Mn2+ nanoparticles,” J. Lumin. 91, 139–145 (2000).
[CrossRef]

Xie, R.

R. Zeng, M. Rutherford, R. Xie, B. Zou, and X. Peng, “Synthesis of highly emissive Mn-doped ZnSe nanocrystals without pyrophoric reagents,” Chem. Mater. 22, 2107–2133 (2010).
[CrossRef]

Xiong, S.

W. C. H. Choy, S. Xiong, and Y. Sun, “A facile synthesis of zinc blende ZnSe nanocrystals,” J. Phys. D 42, 125410 (2009).
[CrossRef]

Xu, H.

Y. Wang, P. Yuan, H. Xu, and J. Wang, “Synthesis of Ce:YAG phosphor via homogeneous precipitation under microwave irradiation,” J. Rare Earths 24, 183–186 (2006).
[CrossRef]

Yang, H.

J.-U. Kim, Y.-S. Kim, and H. Yang, “Nanocrystalline Y3Al5O12:Ce phosphor-based white light-emitting diodes embedded with CdS:Mn/ZnS core/shell quantum dots,” Mater. Lett. 63, 614–616 (2009).
[CrossRef]

Yang, Y.

Y. Yang, O. Chen, A. Angerhofer, and Y. C. Cao, “Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals,” J. Am. Chem. Soc. 128, 12428–12429 (2006).
[CrossRef] [PubMed]

Yu, H. J.

W. Chung, H. J. Yu, S. H. Park, B.-H. Chun, and S. H. Kim, “YAG and CdSe/ZnSe nanoparticles hybrid phosphor for white LED with high color rendering index,” Mater. Chem. Phys. 126, 162–166 (2011).
[CrossRef]

Yu, W. W.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[CrossRef]

Yuan, P.

Y. Wang, P. Yuan, H. Xu, and J. Wang, “Synthesis of Ce:YAG phosphor via homogeneous precipitation under microwave irradiation,” J. Rare Earths 24, 183–186 (2006).
[CrossRef]

Yuk, T. I.

Y. P. Leung, W. C. H. Choy, I. Markoy, G. K. H. Pang, H. C. Ong, and T. I. Yuk, “Synthesis of wurtzite ZnSe nanorings by thermal evaporation,” Appl. Phys. Lett. 88, 183110 (2006).
[CrossRef]

Zeng, R.

R. Zeng, M. Rutherford, R. Xie, B. Zou, and X. Peng, “Synthesis of highly emissive Mn-doped ZnSe nanocrystals without pyrophoric reagents,” Chem. Mater. 22, 2107–2133 (2010).
[CrossRef]

Zou, B.

R. Zeng, M. Rutherford, R. Xie, B. Zou, and X. Peng, “Synthesis of highly emissive Mn-doped ZnSe nanocrystals without pyrophoric reagents,” Chem. Mater. 22, 2107–2133 (2010).
[CrossRef]

Zu, L.

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436, 91–94 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

Y. P. Leung, W. C. H. Choy, I. Markoy, G. K. H. Pang, H. C. Ong, and T. I. Yuk, “Synthesis of wurtzite ZnSe nanorings by thermal evaporation,” Appl. Phys. Lett. 88, 183110 (2006).
[CrossRef]

Chem. Mater. (2)

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[CrossRef]

R. Zeng, M. Rutherford, R. Xie, B. Zou, and X. Peng, “Synthesis of highly emissive Mn-doped ZnSe nanocrystals without pyrophoric reagents,” Chem. Mater. 22, 2107–2133 (2010).
[CrossRef]

J. Am. Chem. Soc. (2)

Y. Yang, O. Chen, A. Angerhofer, and Y. C. Cao, “Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals,” J. Am. Chem. Soc. 128, 12428–12429 (2006).
[CrossRef] [PubMed]

N. Pradhan and X. Peng, “Efficient and color-tunable Mn-doped ZnSe nanocrystals emitters: control of optical performance via greener synthetic chemistry,” J. Am. Chem. Soc. 129, 3339–3347 (2007).
[CrossRef] [PubMed]

J. Lumin. (1)

W. Chen, G. Li, J.-O. Malm, Y. Huang, R. Wallenberg, H. Han, Z. Wang, and J.-O. Bovin, “Pressure dependence of Mn2+ fluorescence in ZnS:Mn2+ nanoparticles,” J. Lumin. 91, 139–145 (2000).
[CrossRef]

J. Phys. Chem. Lett. (1)

S. Acharya, D. D. Sarma, N. R. Jana, and N. Pradhan, “An alternate route to high-quality ZnSe and Mn-doped nanocrystals,” J. Phys. Chem. Lett. 1, 485–488 (2010).
[CrossRef]

J. Phys. D (1)

W. C. H. Choy, S. Xiong, and Y. Sun, “A facile synthesis of zinc blende ZnSe nanocrystals,” J. Phys. D 42, 125410 (2009).
[CrossRef]

J. Rare Earths (1)

Y. Wang, P. Yuan, H. Xu, and J. Wang, “Synthesis of Ce:YAG phosphor via homogeneous precipitation under microwave irradiation,” J. Rare Earths 24, 183–186 (2006).
[CrossRef]

Mater. Chem. Phys. (1)

W. Chung, H. J. Yu, S. H. Park, B.-H. Chun, and S. H. Kim, “YAG and CdSe/ZnSe nanoparticles hybrid phosphor for white LED with high color rendering index,” Mater. Chem. Phys. 126, 162–166 (2011).
[CrossRef]

Mater. Lett. (1)

J.-U. Kim, Y.-S. Kim, and H. Yang, “Nanocrystalline Y3Al5O12:Ce phosphor-based white light-emitting diodes embedded with CdS:Mn/ZnS core/shell quantum dots,” Mater. Lett. 63, 614–616 (2009).
[CrossRef]

Nano Lett. (2)

M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, and V. I. Klimov, “Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion,” Nano Lett. 6, 1396–1400 (2006).
[CrossRef] [PubMed]

N. Pradhan, D. M. Battaglia, Y. Liu, and X. Peng, “Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels,” Nano Lett. 7, 312–317 (2007).
[CrossRef] [PubMed]

Nature (1)

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436, 91–94 (2005).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Mater. (1)

S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED,” Opt. Mater. 33, 688–691 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

S. Ithurria, P. Guyot-Sionnest, B. Mahler, and B. Dubertret, “Mn2+ as a radial pressure gauge in colloidal core/shell nanocrystals,” Phys. Rev. Lett. 99, 265501 (2007).
[CrossRef]

Science (1)

D. J. Norris, A. L. Efros, and S. C. Erwin, “Doped nanocrystals,” Science 319, 1776–1779 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Absorption (Abs) and photoluminescence (PL, under the excitation wavelength 350 nm ) spectra of the as-synthesized ZnSe core and ZnSe:Mn/ZnSe nanocrystals. The broad Abs and PL bands at longer wavelengths are from the chemical residue after the NCs’ synthesis.

Fig. 2
Fig. 2

PL spectra of LED coated with different layers of NCs/PMMA films driven by the nominal working voltage.

Fig. 3
Fig. 3

PL spectra of LED coated with nine layers of NCs/PMMA films working under different applied voltages.

Fig. 4
Fig. 4

Chromaticity coordinates of LED coated with different layers of Mn-doped NC films. The inset shows the images of the blue LED and the nine-layer NC-coated white LED. The five rectangles [except the ideal point ( 0.33 , 0.33 ) ] and four circles correspond to LEDs with different layers of NC films and different driving voltages. Considering the emission wavelengths of commercial GaN-based LEDs and Mn-doped NCs with different synthesizing methods, Mn-doped NC-coated LEDs can yield light whose chromaticity is inside the dotted quadrilateral.

Fig. 5
Fig. 5

TEM image of Mn-doped NCs enveloped in silica hydrosol. Inset A is the electronic diffraction pattern. Inset B is the high- resolution TEM image of NCs.

Fig. 6
Fig. 6

PL spectra of colloidal NCs, hydrosol ZnSe:Mn/ZnSe NCs, and NCs in SiO 2 . The inset table shows the efficiency and PL peak wavelength of each of them.

Fig. 7
Fig. 7

XRD patterns for ZnSe:Mn/ZnSe NCs and NCs embedded in SiO 2 .

Metrics