Abstract

A polarization bifocal lens based on the polarization effect caused by asymmetrical hole arrays had been designed, fabricated, and characterized experimentally. By considering the fact that the skin depth of an infrared electromagnetic field inside metal is much shorter than the incident wavelength, a polarization bifocal lens composed of high deep-width ratio metallic holes was realized by using a gold-coated silicon structure to replace the one directly formed on a thick metal film. An infrared optical experiment setup is built based on the secondary imagery method for characterizing the focal length of the designed bifocal lens. The measured focal lengths of the fabricated bifocal lens coincide well with the designed values, which proves the validity for realizing the polarization elements with the proposed structure and the feasibility of the fabrication process.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Lemke, U. Grozinger, I. Heinrichsen, U. Klaas, P. Lutzow-Wentzky, J. Schubert, F. Garzon, W. Kratschmer, M. Wells, H.-P. Gemund, E. Kreysa, and J. Wolf, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng. 33, 20–25 (1994).
    [CrossRef]
  2. T. J. Rogue, F. G. Smith, and J. E. Rice, “Passive target detection using polarized components of infrared signatures,” Proc. SPIE 1317, 242–251 (1990).
    [CrossRef]
  3. D. P. C. Mogensen and J. Gluckstad, “A phase-based optical encryption system with polarisation encoding,” Opt. Commun. 173, 177–183 (2000).
    [CrossRef]
  4. F. Xu, J. E. Ford, and Y. Fainman, “Polarization-selective computer-generated holograms: design, fabrication, and applications,” Appl. Opt. 34, 256–266 (1995).
    [CrossRef] [PubMed]
  5. A. V. Krishnamoorthy, F. Xu, J. E. Ford, and Y. Fainman, “Polarization-controlled multistage switch based on polarization-selective computer-generated holograms,” Appl. Opt. 36, 997–1010 (1997).
    [CrossRef] [PubMed]
  6. F. Gori, “Measuring Stokes parameters by means of polarization grating,” Opt. Lett. 24, 584–586 (1999).
    [CrossRef]
  7. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287(2002).
    [CrossRef]
  8. K. J. Moh, X. C. Yuan, J. Bu, D. K. Y. Low, and R. E. Burge, “Direct noninterference cylindrical vector beam generation applied in the femtosecond regime,” Appl. Phys. Lett. 89, 251114 (2006).
    [CrossRef]
  9. X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32, 3549–3551 (2007).
    [CrossRef] [PubMed]
  10. M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett. 32, 3272–3274 (2007).
    [CrossRef] [PubMed]
  11. B. C. Lim, P. B. Phua, W. J. Lai, and M. H. Hong, “Fast switchable electro-optic radial polarization retarder,” Opt. Lett. 33, 950–952 (2008).
    [CrossRef] [PubMed]
  12. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008).
    [CrossRef]
  13. N. Davidson, A. A. Friesem, and E. Hasman, “Computer-generated relief grating as space-variant polarization elements,” Opt. Lett. 17, 1541–1543 (1992).
    [CrossRef] [PubMed]
  14. R.-C. Tyan, A. A. Salvekar, H.-P. Chou, C.-C. Cheng, A. Scherer, P.-C. Sun, F. Xu, and Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14, 1627–1636(1997).
    [CrossRef]
  15. S. Yin, C. Zhou, X. Dong, and C. Du, “Polarization dependent devices realized by using asymmetrical hole array on a metallic film,” Opt. Express 17, 598–602(2009).
    [CrossRef] [PubMed]

2009 (1)

2008 (2)

B. C. Lim, P. B. Phua, W. J. Lai, and M. H. Hong, “Fast switchable electro-optic radial polarization retarder,” Opt. Lett. 33, 950–952 (2008).
[CrossRef] [PubMed]

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008).
[CrossRef]

2007 (2)

2006 (1)

K. J. Moh, X. C. Yuan, J. Bu, D. K. Y. Low, and R. E. Burge, “Direct noninterference cylindrical vector beam generation applied in the femtosecond regime,” Appl. Phys. Lett. 89, 251114 (2006).
[CrossRef]

2002 (1)

2000 (1)

D. P. C. Mogensen and J. Gluckstad, “A phase-based optical encryption system with polarisation encoding,” Opt. Commun. 173, 177–183 (2000).
[CrossRef]

1999 (1)

1997 (2)

1995 (1)

1994 (1)

D. Lemke, U. Grozinger, I. Heinrichsen, U. Klaas, P. Lutzow-Wentzky, J. Schubert, F. Garzon, W. Kratschmer, M. Wells, H.-P. Gemund, E. Kreysa, and J. Wolf, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng. 33, 20–25 (1994).
[CrossRef]

1992 (1)

1990 (1)

T. J. Rogue, F. G. Smith, and J. E. Rice, “Passive target detection using polarized components of infrared signatures,” Proc. SPIE 1317, 242–251 (1990).
[CrossRef]

Ahmed, M. A.

Biener, G.

Bomzon, Z.

Bu, J.

K. J. Moh, X. C. Yuan, J. Bu, D. K. Y. Low, and R. E. Burge, “Direct noninterference cylindrical vector beam generation applied in the femtosecond regime,” Appl. Phys. Lett. 89, 251114 (2006).
[CrossRef]

Burge, R. E.

K. J. Moh, X. C. Yuan, J. Bu, D. K. Y. Low, and R. E. Burge, “Direct noninterference cylindrical vector beam generation applied in the femtosecond regime,” Appl. Phys. Lett. 89, 251114 (2006).
[CrossRef]

Cheng, C.-C.

Chou, H.-P.

Davidson, N.

Ding, J.

Dong, X.

Du, C.

Fainman, Y.

Ford, J. E.

Friesem, A. A.

Garzon, F.

D. Lemke, U. Grozinger, I. Heinrichsen, U. Klaas, P. Lutzow-Wentzky, J. Schubert, F. Garzon, W. Kratschmer, M. Wells, H.-P. Gemund, E. Kreysa, and J. Wolf, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng. 33, 20–25 (1994).
[CrossRef]

Gemund, H.-P.

D. Lemke, U. Grozinger, I. Heinrichsen, U. Klaas, P. Lutzow-Wentzky, J. Schubert, F. Garzon, W. Kratschmer, M. Wells, H.-P. Gemund, E. Kreysa, and J. Wolf, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng. 33, 20–25 (1994).
[CrossRef]

Gluckstad, J.

D. P. C. Mogensen and J. Gluckstad, “A phase-based optical encryption system with polarisation encoding,” Opt. Commun. 173, 177–183 (2000).
[CrossRef]

Gori, F.

Graf, T.

Grozinger, U.

D. Lemke, U. Grozinger, I. Heinrichsen, U. Klaas, P. Lutzow-Wentzky, J. Schubert, F. Garzon, W. Kratschmer, M. Wells, H.-P. Gemund, E. Kreysa, and J. Wolf, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng. 33, 20–25 (1994).
[CrossRef]

Guo, C. S.

Hasman, E.

Heinrichsen, I.

D. Lemke, U. Grozinger, I. Heinrichsen, U. Klaas, P. Lutzow-Wentzky, J. Schubert, F. Garzon, W. Kratschmer, M. Wells, H.-P. Gemund, E. Kreysa, and J. Wolf, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng. 33, 20–25 (1994).
[CrossRef]

Hong, M. H.

Jackel, S.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008).
[CrossRef]

Klaas, U.

D. Lemke, U. Grozinger, I. Heinrichsen, U. Klaas, P. Lutzow-Wentzky, J. Schubert, F. Garzon, W. Kratschmer, M. Wells, H.-P. Gemund, E. Kreysa, and J. Wolf, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng. 33, 20–25 (1994).
[CrossRef]

Kleiner, V.

Kratschmer, W.

D. Lemke, U. Grozinger, I. Heinrichsen, U. Klaas, P. Lutzow-Wentzky, J. Schubert, F. Garzon, W. Kratschmer, M. Wells, H.-P. Gemund, E. Kreysa, and J. Wolf, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng. 33, 20–25 (1994).
[CrossRef]

Kreysa, E.

D. Lemke, U. Grozinger, I. Heinrichsen, U. Klaas, P. Lutzow-Wentzky, J. Schubert, F. Garzon, W. Kratschmer, M. Wells, H.-P. Gemund, E. Kreysa, and J. Wolf, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng. 33, 20–25 (1994).
[CrossRef]

Krishnamoorthy, A. V.

Lai, W. J.

Lemke, D.

D. Lemke, U. Grozinger, I. Heinrichsen, U. Klaas, P. Lutzow-Wentzky, J. Schubert, F. Garzon, W. Kratschmer, M. Wells, H.-P. Gemund, E. Kreysa, and J. Wolf, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng. 33, 20–25 (1994).
[CrossRef]

Lim, B. C.

Low, D. K. Y.

K. J. Moh, X. C. Yuan, J. Bu, D. K. Y. Low, and R. E. Burge, “Direct noninterference cylindrical vector beam generation applied in the femtosecond regime,” Appl. Phys. Lett. 89, 251114 (2006).
[CrossRef]

Lumer, Y.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008).
[CrossRef]

Lutzow-Wentzky, P.

D. Lemke, U. Grozinger, I. Heinrichsen, U. Klaas, P. Lutzow-Wentzky, J. Schubert, F. Garzon, W. Kratschmer, M. Wells, H.-P. Gemund, E. Kreysa, and J. Wolf, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng. 33, 20–25 (1994).
[CrossRef]

Machavariani, G.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008).
[CrossRef]

Meir, A.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008).
[CrossRef]

Mogensen, D. P. C.

D. P. C. Mogensen and J. Gluckstad, “A phase-based optical encryption system with polarisation encoding,” Opt. Commun. 173, 177–183 (2000).
[CrossRef]

Moh, K. J.

K. J. Moh, X. C. Yuan, J. Bu, D. K. Y. Low, and R. E. Burge, “Direct noninterference cylindrical vector beam generation applied in the femtosecond regime,” Appl. Phys. Lett. 89, 251114 (2006).
[CrossRef]

Moshe, I.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008).
[CrossRef]

Ni, W. J.

Phua, P. B.

Rice, J. E.

T. J. Rogue, F. G. Smith, and J. E. Rice, “Passive target detection using polarized components of infrared signatures,” Proc. SPIE 1317, 242–251 (1990).
[CrossRef]

Rogue, T. J.

T. J. Rogue, F. G. Smith, and J. E. Rice, “Passive target detection using polarized components of infrared signatures,” Proc. SPIE 1317, 242–251 (1990).
[CrossRef]

Salvekar, A. A.

Scherer, A.

Schubert, J.

D. Lemke, U. Grozinger, I. Heinrichsen, U. Klaas, P. Lutzow-Wentzky, J. Schubert, F. Garzon, W. Kratschmer, M. Wells, H.-P. Gemund, E. Kreysa, and J. Wolf, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng. 33, 20–25 (1994).
[CrossRef]

Smith, F. G.

T. J. Rogue, F. G. Smith, and J. E. Rice, “Passive target detection using polarized components of infrared signatures,” Proc. SPIE 1317, 242–251 (1990).
[CrossRef]

Sun, P.-C.

Tyan, R.-C.

Vogel, M. M.

Voss, A.

Wang, H. T.

Wang, X. L.

Wells, M.

D. Lemke, U. Grozinger, I. Heinrichsen, U. Klaas, P. Lutzow-Wentzky, J. Schubert, F. Garzon, W. Kratschmer, M. Wells, H.-P. Gemund, E. Kreysa, and J. Wolf, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng. 33, 20–25 (1994).
[CrossRef]

Wolf, J.

D. Lemke, U. Grozinger, I. Heinrichsen, U. Klaas, P. Lutzow-Wentzky, J. Schubert, F. Garzon, W. Kratschmer, M. Wells, H.-P. Gemund, E. Kreysa, and J. Wolf, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng. 33, 20–25 (1994).
[CrossRef]

Xu, F.

Yin, S.

Yuan, X. C.

K. J. Moh, X. C. Yuan, J. Bu, D. K. Y. Low, and R. E. Burge, “Direct noninterference cylindrical vector beam generation applied in the femtosecond regime,” Appl. Phys. Lett. 89, 251114 (2006).
[CrossRef]

Zhou, C.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

K. J. Moh, X. C. Yuan, J. Bu, D. K. Y. Low, and R. E. Burge, “Direct noninterference cylindrical vector beam generation applied in the femtosecond regime,” Appl. Phys. Lett. 89, 251114 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (2)

D. P. C. Mogensen and J. Gluckstad, “A phase-based optical encryption system with polarisation encoding,” Opt. Commun. 173, 177–183 (2000).
[CrossRef]

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008).
[CrossRef]

Opt. Eng. (1)

D. Lemke, U. Grozinger, I. Heinrichsen, U. Klaas, P. Lutzow-Wentzky, J. Schubert, F. Garzon, W. Kratschmer, M. Wells, H.-P. Gemund, E. Kreysa, and J. Wolf, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng. 33, 20–25 (1994).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Proc. SPIE (1)

T. J. Rogue, F. G. Smith, and J. E. Rice, “Passive target detection using polarized components of infrared signatures,” Proc. SPIE 1317, 242–251 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Metal-coated structure. (b) Structure directly fabricated on metal. d represents the skin depth of the metal at the incident wavelength λ; h is the thickness of the metal film.

Fig. 2
Fig. 2

Diagram of the bifocal-polarization lens formed by rectangular metallic hole array.

Fig. 3
Fig. 3

(a) Schematic view of the process for fabricating the gold-coated silicon-based bifocal lens; (b) photo of the fabricated bifocal lens, which is in the center of the 4 in . wafer; (c) top-view microscopy image of fabricated bifocal lens.

Fig. 4
Fig. 4

Diagram of the experimental setup for focal lengths measurement of the bifocal lens. The focal length of ZnSe lenses L1, L2, and L3 are 2.54, 10, and 5.08 cm , respectively. P1 is an infrared polarizer, and O1 represents the object for imaging.

Fig. 5
Fig. 5

Real images formed on the polysilicon-based infrared FPA when the polarization direction of the incident beam is along x and y. (a), (b) Real images of O1 in the magnified and reduced forms, respectively, for incident polarization direction along the x direction. (c), (d) Real images in the reduced and magnified forms of O1, respectively, when the polarization direction is along the y direction.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

φ x = t · k 0 2 π 2 / a y 2 φ y = t · k 0 2 π 2 / a x 2 ,
a x i = 1 2 { λ 2 t 2 [ m + ( Δ r i 2 + f y 2 f y ) / λ ] 2 } 1 / 2 a y i = 1 2 { λ 2 t 2 [ m + ( Δ r i 2 + f x 2 f x ) / λ ] 2 } 1 / 2 ,
f = A 2 L 2 4 A .

Metrics