Abstract

Using a 3D fully-vectorial coupled Bloch-mode method, we present a systematic study of the transport of slow-light pulses in single-mode photonic-crystal waveguides (PhCW) with a realistic disorder model. For the intermediate regime corresponding to waveguide lengths of the order of the mean-free path (3dB attenuation), we show that the group-velocity has a strong impact on the pulse broadening and distortion, limiting the practical use of PhCW to group indices below 50. For smaller group velocities, the pulse experiences an additional delay and the group-velocity is no longer a meaningful quantity.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Soljacic and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219(2004).
    [CrossRef] [PubMed]
  2. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef] [PubMed]
  3. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
    [CrossRef] [PubMed]
  4. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
    [CrossRef] [PubMed]
  5. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005).
    [CrossRef]
  6. B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Backscattering in monomode periodic waveguides,” Phys. Rev. B 78, 245108 (2008).
    [CrossRef]
  7. S. Mazoyer, P. Lalanne, J. C. Rodier, J. P. Hugonin, M. Spasenović, L. Kuipers, D. M. Beggs, and T. F. Krauss, “Statistical fluctuations of transmission in slow light photonic-crystal waveguides,” Opt. Express 18, 14654–14663 (2010).
    [CrossRef] [PubMed]
  8. Y. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, “Different regimes of light localization in disordered photonic crystals,” Phys. Rev. B 60, 1555–62 (1999).
    [CrossRef]
  9. N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332(2009).
    [CrossRef]
  10. K. A. Atlasov, M. Felici, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “1D photonic band formation and photon localization in finite-size photonic-crystal waveguides,” Opt. Express 18, 117–122 (2009).
    [CrossRef]
  11. P. D. García, S. Smolka, S. Stobbe, and P. Lodahl, “Density of states controls Anderson localization in disordered photonic crystal waveguides,” Phys. Rev. B 82, 165103(2010).
    [CrossRef]
  12. J. Topolancik, B. Illic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99, 253901 (2007).
    [CrossRef]
  13. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
    [CrossRef]
  14. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–53(2009).
    [CrossRef] [PubMed]
  15. A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. Vy Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17, 552–557 (2009).
    [CrossRef] [PubMed]
  16. K. Suzuki and T. Baba, “Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides,” Opt. Express 18, 26675 (2010).
    [CrossRef] [PubMed]
  17. S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett. 103, 063903 (2009).
    [CrossRef] [PubMed]
  18. G. Lecamp, J. P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express 15, 11042–60 (2007).
    [CrossRef] [PubMed]
  19. L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenovic, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–38 (2010).
    [CrossRef]
  20. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  21. A. Baron, S. Mazoyer, W. Smiga, and P. Lalanne, “Attenuation coefficient of single-mode periodic waveguides,” Phys. Rev. Lett. 107, 153901 (2011).
    [CrossRef] [PubMed]
  22. B. A. van Tiggelen, A. Lagendijk, M. P. van Albada, and A. Tip, “Speed of light in random media,” Phys. Rev. B 45, 12233–12243 (1992).
    [CrossRef]
  23. R. T. Chiao and A. M. Steinberg, in Progress in Optics, E.Wolf, ed. (Elsevier, 1997), Vol.  XXXVII, p. 345.f.

2011 (1)

A. Baron, S. Mazoyer, W. Smiga, and P. Lalanne, “Attenuation coefficient of single-mode periodic waveguides,” Phys. Rev. Lett. 107, 153901 (2011).
[CrossRef] [PubMed]

2010 (5)

2009 (5)

2008 (1)

B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Backscattering in monomode periodic waveguides,” Phys. Rev. B 78, 245108 (2008).
[CrossRef]

2007 (2)

G. Lecamp, J. P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express 15, 11042–60 (2007).
[CrossRef] [PubMed]

J. Topolancik, B. Illic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99, 253901 (2007).
[CrossRef]

2005 (3)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef] [PubMed]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005).
[CrossRef]

2004 (1)

M. Soljacic and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219(2004).
[CrossRef] [PubMed]

2001 (1)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

1999 (1)

Y. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, “Different regimes of light localization in disordered photonic crystals,” Phys. Rev. B 60, 1555–62 (1999).
[CrossRef]

1992 (1)

B. A. van Tiggelen, A. Lagendijk, M. P. van Albada, and A. Tip, “Speed of light in random media,” Phys. Rev. B 45, 12233–12243 (1992).
[CrossRef]

Atlasov, K. A.

Baba, T.

Baron, A.

Beggs, D. M.

Canciamilla, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
[CrossRef]

Chiao, R. T.

R. T. Chiao and A. M. Steinberg, in Progress in Optics, E.Wolf, ed. (Elsevier, 1997), Vol.  XXXVII, p. 345.f.

Coldren, L. A.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Combrié, S.

Corcoran, B.

Corzine, S. W.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

De La Rue, R.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
[CrossRef]

de Rossi, A.

Delaye, P.

Dubreuil, N.

Dwir, B.

Ebnali-Heidari, M.

Eggleton, B. J.

Felici, M.

Ferrari, C.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
[CrossRef]

Frey, R.

Gallo, P.

García, P. D.

P. D. García, S. Smolka, S. Stobbe, and P. Lodahl, “Density of states controls Anderson localization in disordered photonic crystal waveguides,” Phys. Rev. B 82, 165103(2010).
[CrossRef]

Grillet, C.

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef] [PubMed]

Houdré, R.

N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332(2009).
[CrossRef]

Hughes, S.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005).
[CrossRef]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef] [PubMed]

Hugonin, J. P.

Illic, B.

J. Topolancik, B. Illic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99, 253901 (2007).
[CrossRef]

Jágerská, J.

N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332(2009).
[CrossRef]

Joannopoulos, J. D.

M. Soljacic and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219(2004).
[CrossRef] [PubMed]

Kaliteevski, M. A.

Y. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, “Different regimes of light localization in disordered photonic crystals,” Phys. Rev. B 60, 1555–62 (1999).
[CrossRef]

Kapon, E.

Karlsson, K. F.

Krauss, T. F.

Kuipers, L.

Kuramochi, E.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005).
[CrossRef]

Lagendijk, A.

B. A. van Tiggelen, A. Lagendijk, M. P. van Albada, and A. Tip, “Speed of light in random media,” Phys. Rev. B 45, 12233–12243 (1992).
[CrossRef]

Lalanne, P.

Le Thomas, N.

N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332(2009).
[CrossRef]

Lecamp, G.

Lodahl, P.

P. D. García, S. Smolka, S. Stobbe, and P. Lodahl, “Density of states controls Anderson localization in disordered photonic crystal waveguides,” Phys. Rev. B 82, 165103(2010).
[CrossRef]

Mazoyer, S.

A. Baron, S. Mazoyer, W. Smiga, and P. Lalanne, “Attenuation coefficient of single-mode periodic waveguides,” Phys. Rev. Lett. 107, 153901 (2011).
[CrossRef] [PubMed]

S. Mazoyer, P. Lalanne, J. C. Rodier, J. P. Hugonin, M. Spasenović, L. Kuipers, D. M. Beggs, and T. F. Krauss, “Statistical fluctuations of transmission in slow light photonic-crystal waveguides,” Opt. Express 18, 14654–14663 (2010).
[CrossRef] [PubMed]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenovic, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–38 (2010).
[CrossRef]

S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett. 103, 063903 (2009).
[CrossRef] [PubMed]

B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Backscattering in monomode periodic waveguides,” Phys. Rev. B 78, 245108 (2008).
[CrossRef]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef] [PubMed]

Melloni, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
[CrossRef]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenovic, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–38 (2010).
[CrossRef]

Monat, C.

Morichetti, F.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
[CrossRef]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenovic, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–38 (2010).
[CrossRef]

Nikolaev, V. V.

Y. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, “Different regimes of light localization in disordered photonic crystals,” Phys. Rev. B 60, 1555–62 (1999).
[CrossRef]

Notomi, M.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef] [PubMed]

O’Faolain, L.

Ramunno, L.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005).
[CrossRef]

Rodier, J. C.

Roosen, G.

Rudra, A.

Ryasnyanskiy, A.

Sagnes, I.

N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332(2009).
[CrossRef]

Samarelli, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
[CrossRef]

Schulz, S. A.

Shinya, A.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Sipe, J. E.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef] [PubMed]

Smiga, W.

A. Baron, S. Mazoyer, W. Smiga, and P. Lalanne, “Attenuation coefficient of single-mode periodic waveguides,” Phys. Rev. Lett. 107, 153901 (2011).
[CrossRef] [PubMed]

Smolka, S.

P. D. García, S. Smolka, S. Stobbe, and P. Lodahl, “Density of states controls Anderson localization in disordered photonic crystal waveguides,” Phys. Rev. B 82, 165103(2010).
[CrossRef]

Soljacic, M.

M. Soljacic and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219(2004).
[CrossRef] [PubMed]

Sorel, M.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
[CrossRef]

Spasenovic, M.

Steinberg, A. M.

R. T. Chiao and A. M. Steinberg, in Progress in Optics, E.Wolf, ed. (Elsevier, 1997), Vol.  XXXVII, p. 345.f.

Stobbe, S.

P. D. García, S. Smolka, S. Stobbe, and P. Lodahl, “Density of states controls Anderson localization in disordered photonic crystal waveguides,” Phys. Rev. B 82, 165103(2010).
[CrossRef]

Suzuki, K.

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Talneau, A.

N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332(2009).
[CrossRef]

Tip, A.

B. A. van Tiggelen, A. Lagendijk, M. P. van Albada, and A. Tip, “Speed of light in random media,” Phys. Rev. B 45, 12233–12243 (1992).
[CrossRef]

Topolancik, J.

J. Topolancik, B. Illic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99, 253901 (2007).
[CrossRef]

Tran, Q. Vy

van Albada, M. P.

B. A. van Tiggelen, A. Lagendijk, M. P. van Albada, and A. Tip, “Speed of light in random media,” Phys. Rev. B 45, 12233–12243 (1992).
[CrossRef]

van Tiggelen, B. A.

B. A. van Tiggelen, A. Lagendijk, M. P. van Albada, and A. Tip, “Speed of light in random media,” Phys. Rev. B 45, 12233–12243 (1992).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef] [PubMed]

Y. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, “Different regimes of light localization in disordered photonic crystals,” Phys. Rev. B 60, 1555–62 (1999).
[CrossRef]

Vollmer, F.

J. Topolancik, B. Illic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99, 253901 (2007).
[CrossRef]

Wang, B.

B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Backscattering in monomode periodic waveguides,” Phys. Rev. B 78, 245108 (2008).
[CrossRef]

Watanabe, T.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005).
[CrossRef]

White, T. P.

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Young, J. F.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef] [PubMed]

Zabelin, V.

N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332(2009).
[CrossRef]

Zhang, H.

N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332(2009).
[CrossRef]

IEEE Photon. J. (1)

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
[CrossRef]

Nat. Mater. (1)

M. Soljacic and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219(2004).
[CrossRef] [PubMed]

Nature (1)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef] [PubMed]

Opt. Express (7)

G. Lecamp, J. P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express 15, 11042–60 (2007).
[CrossRef] [PubMed]

A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. Vy Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17, 552–557 (2009).
[CrossRef] [PubMed]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–53(2009).
[CrossRef] [PubMed]

K. A. Atlasov, M. Felici, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “1D photonic band formation and photon localization in finite-size photonic-crystal waveguides,” Opt. Express 18, 117–122 (2009).
[CrossRef]

S. Mazoyer, P. Lalanne, J. C. Rodier, J. P. Hugonin, M. Spasenović, L. Kuipers, D. M. Beggs, and T. F. Krauss, “Statistical fluctuations of transmission in slow light photonic-crystal waveguides,” Opt. Express 18, 14654–14663 (2010).
[CrossRef] [PubMed]

K. Suzuki and T. Baba, “Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides,” Opt. Express 18, 26675 (2010).
[CrossRef] [PubMed]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenovic, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–38 (2010).
[CrossRef]

Phys. Rev. B (6)

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005).
[CrossRef]

B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Backscattering in monomode periodic waveguides,” Phys. Rev. B 78, 245108 (2008).
[CrossRef]

P. D. García, S. Smolka, S. Stobbe, and P. Lodahl, “Density of states controls Anderson localization in disordered photonic crystal waveguides,” Phys. Rev. B 82, 165103(2010).
[CrossRef]

Y. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, “Different regimes of light localization in disordered photonic crystals,” Phys. Rev. B 60, 1555–62 (1999).
[CrossRef]

N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332(2009).
[CrossRef]

B. A. van Tiggelen, A. Lagendijk, M. P. van Albada, and A. Tip, “Speed of light in random media,” Phys. Rev. B 45, 12233–12243 (1992).
[CrossRef]

Phys. Rev. Lett. (5)

A. Baron, S. Mazoyer, W. Smiga, and P. Lalanne, “Attenuation coefficient of single-mode periodic waveguides,” Phys. Rev. Lett. 107, 153901 (2011).
[CrossRef] [PubMed]

S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett. 103, 063903 (2009).
[CrossRef] [PubMed]

J. Topolancik, B. Illic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99, 253901 (2007).
[CrossRef]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Other (2)

R. T. Chiao and A. M. Steinberg, in Progress in Optics, E.Wolf, ed. (Elsevier, 1997), Vol.  XXXVII, p. 345.f.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Photonic-crystal waveguide considered in the present work. (a) The disorder model assumes that only the hole-size of the two inner-rows is varying with a Gaussian-random distribution of standard deviation σ. (b) Dispersion diagram of the TE-like Bloch-mode of the ideal waveguide, calculated with a 3D fully-vectorial method for a 220 nm thick silicon layer (refractive index 3.45), for a lattice constant a = 420 nm and a hole radius r = 0.3 a.

Fig. 2
Fig. 2

Examples of calculated transmission spectra for three waveguide lengths L = 100 , 200, and 500 a . The pink, light-green, and blue spectral intervals that are respectively centered at n g = 20 , 50, and 70, are 0.2 nm large. This corresponds to spectral intervals twice larger than the 25 ps pulse FWHM.

Fig. 3
Fig. 3

Pulse distorsion after propagation through a finite-length disordered PhC waveguide. The colored curves correspond to typical examples obtained for different disorder realizations, calculated for σ = 1.7 nm . For comparison, the black-dashed curves correspond to the ideal case, in which the same pulse propagates into the PhC waveguide in the absence of disorder. Three lengths, L = 100 , 200, and 500 a , and three group indices, n g = 20 , 50, and 70 are considered.

Tables (1)

Tables Icon

Table 1 Statistics for the Pulses Displayed in Fig. 3 a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ t E = I 1 t | s ( t ) | 2 d t ,

Metrics