Abstract

We present temperature-dependent refractive index along crystallographic b[010] and a direction perpendicular to (100)-plane for monoclinic phase (β) Ga2O3 single crystal grown by the optical floating zone technique. The experimental results are consistent with the theoretical result of Litimein et al. [1]. Also, the Sellmeier equation for wavelengths in the range of 0.41.55μm is formulated at different temperatures in the range of 30175°C. The thermal coefficient of refractive index in the above specified range is 105/°C.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Litimein, D. Rached, R. Khenata, and H. Baltache, “FPLAPW study of the structural, electronic, and optical properties of Ga2O3: Monoclinic and hexagonal phases,” J. Alloys Compd. 488, 148–156 (2009).
    [CrossRef]
  2. E. G. Víllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, and K. Aoki, “Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping,” Appl. Phys. Lett. 92, 202120 (2008).
    [CrossRef]
  3. L. L. Liu, M. K. Li, D. Q. Yu, J. Zhang, H. Zhang, C. Qian, and Z. Yang, “Fabrication and characteristics of N-doped β-Ga2O3 nanowires,” Appl. Phys. A: Mater. Sci. Proc. 98, 831–835(2010).
    [CrossRef]
  4. E. Nogales, B. Méndez, J. Piqueras, and J. A. García, “Europium doped gallium oxide nanostructures for room temperature luminescent photonic devices,” Nanotechnology 20, 115201 (2009).
    [CrossRef] [PubMed]
  5. E. G. Víllora, K. Shimamura, K. Aoki, T. Ujiie, and K. Kitamura, “Epitaxial relationship between wurtzite GaN and β-Ga2O3,” Appl. Phys. Lett. 90, 234102 (2007).
    [CrossRef]
  6. H. He, R. Orlando, M. A. Blanco, R. Pandey, E. Amzallag, I. Baraille, and M. Rérat, “First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases,” Phys. Rev. B 74195123 (2006).
    [CrossRef]
  7. M. Rebien, W. Herion, M. Hong, J. P. Mannaerts, and M. Fleischer, “Optical properties of gallium oxide thin films,” Appl. Phys. Lett. 81, 250–252 (2002).
    [CrossRef]
  8. M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinidis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zydzik, “Ga2O3 films for electronic and optoelectronic applications,” J. Appl. Phys. 77, 686–693 (1995).
    [CrossRef]
  9. Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, “Czochralski grown Ga2O3 crystals,” J. Cryst. Growth 220, 510–514 (2000).
    [CrossRef]
  10. E. G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, “Large-size β-Ga2O3 single crystals and wafers,” J. Cryst. Growth 270, 420–426 (2004).
    [CrossRef]
  11. A. K. Sinha, A. Sagdeo, P. Gupta, A. Kumar, M. N. Singh, R. K. Gupta, S. R. Kane, and S. K. Deb, “Commissioning of angle dispersive x-ray diffraction beamline on Indus-2,” 55th DAE Solid State Physics Symposium, 2010, Manipal, India, 26–30 December 2010, paper D48..
  12. H. Onodera, I. Awal, and J. Ikenoue, “Refractive-index measurement of bulk materials: prism coupling method,” Appl. Opt. 22, 1194–1197 (1983).
    [CrossRef] [PubMed]
  13. X. Ming, F. Lu, H. Liu, M. Chen, and L. Wang, “Formation and characterization of ZnO:Tm+ optical waveguides fabricated by Tm+ and O+ ion implantation,” J. Phys. D 42, 165303 (2009).
    [CrossRef]
  14. I. G. Kim, S. Takekawa, Y. Furukawa, M. Lee, and K. Kitamura, “Growth of LixTa1−xO3 single crystals and their optical properties,” J. Cryst. Growth 229, 243–247 (2001).
    [CrossRef]
  15. D. Zhang, Q. Yang, P. Hua, H. Liu, Y. Cui, L. Sun, Y. Xu, and E. Pun, “Sellmeier equation for doubly Er/Mg-doped congruent LiNbO3 crystals,” J. Opt. Soc. Am. B 26, 620–626 (2009).
    [CrossRef]
  16. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
    [CrossRef]
  17. H. Y. Shen, X. L. Meng, G. Zhang, J. J. Qin, W. Liu, L. Zhu, C. H. Huang, L. X. Huang, and M. Wei, “Sellmeier’s equation and the expression of the thermal refractive-index coefficient for a Nd0.007Gd0.993VO4 crystal,” Appl. Opt. 43, 955–960(2004).
    [CrossRef] [PubMed]

2010 (1)

L. L. Liu, M. K. Li, D. Q. Yu, J. Zhang, H. Zhang, C. Qian, and Z. Yang, “Fabrication and characteristics of N-doped β-Ga2O3 nanowires,” Appl. Phys. A: Mater. Sci. Proc. 98, 831–835(2010).
[CrossRef]

2009 (4)

E. Nogales, B. Méndez, J. Piqueras, and J. A. García, “Europium doped gallium oxide nanostructures for room temperature luminescent photonic devices,” Nanotechnology 20, 115201 (2009).
[CrossRef] [PubMed]

F. Litimein, D. Rached, R. Khenata, and H. Baltache, “FPLAPW study of the structural, electronic, and optical properties of Ga2O3: Monoclinic and hexagonal phases,” J. Alloys Compd. 488, 148–156 (2009).
[CrossRef]

X. Ming, F. Lu, H. Liu, M. Chen, and L. Wang, “Formation and characterization of ZnO:Tm+ optical waveguides fabricated by Tm+ and O+ ion implantation,” J. Phys. D 42, 165303 (2009).
[CrossRef]

D. Zhang, Q. Yang, P. Hua, H. Liu, Y. Cui, L. Sun, Y. Xu, and E. Pun, “Sellmeier equation for doubly Er/Mg-doped congruent LiNbO3 crystals,” J. Opt. Soc. Am. B 26, 620–626 (2009).
[CrossRef]

2008 (1)

E. G. Víllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, and K. Aoki, “Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping,” Appl. Phys. Lett. 92, 202120 (2008).
[CrossRef]

2007 (1)

E. G. Víllora, K. Shimamura, K. Aoki, T. Ujiie, and K. Kitamura, “Epitaxial relationship between wurtzite GaN and β-Ga2O3,” Appl. Phys. Lett. 90, 234102 (2007).
[CrossRef]

2006 (1)

H. He, R. Orlando, M. A. Blanco, R. Pandey, E. Amzallag, I. Baraille, and M. Rérat, “First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases,” Phys. Rev. B 74195123 (2006).
[CrossRef]

2004 (2)

2002 (1)

M. Rebien, W. Herion, M. Hong, J. P. Mannaerts, and M. Fleischer, “Optical properties of gallium oxide thin films,” Appl. Phys. Lett. 81, 250–252 (2002).
[CrossRef]

2001 (1)

I. G. Kim, S. Takekawa, Y. Furukawa, M. Lee, and K. Kitamura, “Growth of LixTa1−xO3 single crystals and their optical properties,” J. Cryst. Growth 229, 243–247 (2001).
[CrossRef]

2000 (1)

Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, “Czochralski grown Ga2O3 crystals,” J. Cryst. Growth 220, 510–514 (2000).
[CrossRef]

1995 (1)

M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinidis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zydzik, “Ga2O3 films for electronic and optoelectronic applications,” J. Appl. Phys. 77, 686–693 (1995).
[CrossRef]

1984 (1)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

1983 (1)

Amzallag, E.

H. He, R. Orlando, M. A. Blanco, R. Pandey, E. Amzallag, I. Baraille, and M. Rérat, “First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases,” Phys. Rev. B 74195123 (2006).
[CrossRef]

Aoki, K.

E. G. Víllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, and K. Aoki, “Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping,” Appl. Phys. Lett. 92, 202120 (2008).
[CrossRef]

E. G. Víllora, K. Shimamura, K. Aoki, T. Ujiie, and K. Kitamura, “Epitaxial relationship between wurtzite GaN and β-Ga2O3,” Appl. Phys. Lett. 90, 234102 (2007).
[CrossRef]

E. G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, “Large-size β-Ga2O3 single crystals and wafers,” J. Cryst. Growth 270, 420–426 (2004).
[CrossRef]

Awal, I.

Baltache, H.

F. Litimein, D. Rached, R. Khenata, and H. Baltache, “FPLAPW study of the structural, electronic, and optical properties of Ga2O3: Monoclinic and hexagonal phases,” J. Alloys Compd. 488, 148–156 (2009).
[CrossRef]

Baraille, I.

H. He, R. Orlando, M. A. Blanco, R. Pandey, E. Amzallag, I. Baraille, and M. Rérat, “First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases,” Phys. Rev. B 74195123 (2006).
[CrossRef]

Blanco, M. A.

H. He, R. Orlando, M. A. Blanco, R. Pandey, E. Amzallag, I. Baraille, and M. Rérat, “First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases,” Phys. Rev. B 74195123 (2006).
[CrossRef]

Chen, M.

X. Ming, F. Lu, H. Liu, M. Chen, and L. Wang, “Formation and characterization of ZnO:Tm+ optical waveguides fabricated by Tm+ and O+ ion implantation,” J. Phys. D 42, 165303 (2009).
[CrossRef]

Chu, S. N. G.

M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinidis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zydzik, “Ga2O3 films for electronic and optoelectronic applications,” J. Appl. Phys. 77, 686–693 (1995).
[CrossRef]

Cui, Y.

Deb, S. K.

A. K. Sinha, A. Sagdeo, P. Gupta, A. Kumar, M. N. Singh, R. K. Gupta, S. R. Kane, and S. K. Deb, “Commissioning of angle dispersive x-ray diffraction beamline on Indus-2,” 55th DAE Solid State Physics Symposium, 2010, Manipal, India, 26–30 December 2010, paper D48..

Edwards, G. J.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Fleischer, M.

M. Rebien, W. Herion, M. Hong, J. P. Mannaerts, and M. Fleischer, “Optical properties of gallium oxide thin films,” Appl. Phys. Lett. 81, 250–252 (2002).
[CrossRef]

Fukuda, T.

Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, “Czochralski grown Ga2O3 crystals,” J. Cryst. Growth 220, 510–514 (2000).
[CrossRef]

Furukawa, Y.

I. G. Kim, S. Takekawa, Y. Furukawa, M. Lee, and K. Kitamura, “Growth of LixTa1−xO3 single crystals and their optical properties,” J. Cryst. Growth 229, 243–247 (2001).
[CrossRef]

García, J. A.

E. Nogales, B. Méndez, J. Piqueras, and J. A. García, “Europium doped gallium oxide nanostructures for room temperature luminescent photonic devices,” Nanotechnology 20, 115201 (2009).
[CrossRef] [PubMed]

Gupta, P.

A. K. Sinha, A. Sagdeo, P. Gupta, A. Kumar, M. N. Singh, R. K. Gupta, S. R. Kane, and S. K. Deb, “Commissioning of angle dispersive x-ray diffraction beamline on Indus-2,” 55th DAE Solid State Physics Symposium, 2010, Manipal, India, 26–30 December 2010, paper D48..

Gupta, R. K.

A. K. Sinha, A. Sagdeo, P. Gupta, A. Kumar, M. N. Singh, R. K. Gupta, S. R. Kane, and S. K. Deb, “Commissioning of angle dispersive x-ray diffraction beamline on Indus-2,” 55th DAE Solid State Physics Symposium, 2010, Manipal, India, 26–30 December 2010, paper D48..

He, H.

H. He, R. Orlando, M. A. Blanco, R. Pandey, E. Amzallag, I. Baraille, and M. Rérat, “First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases,” Phys. Rev. B 74195123 (2006).
[CrossRef]

Herion, W.

M. Rebien, W. Herion, M. Hong, J. P. Mannaerts, and M. Fleischer, “Optical properties of gallium oxide thin films,” Appl. Phys. Lett. 81, 250–252 (2002).
[CrossRef]

Hobson, W. S.

M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinidis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zydzik, “Ga2O3 films for electronic and optoelectronic applications,” J. Appl. Phys. 77, 686–693 (1995).
[CrossRef]

Hong, M.

M. Rebien, W. Herion, M. Hong, J. P. Mannaerts, and M. Fleischer, “Optical properties of gallium oxide thin films,” Appl. Phys. Lett. 81, 250–252 (2002).
[CrossRef]

M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinidis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zydzik, “Ga2O3 films for electronic and optoelectronic applications,” J. Appl. Phys. 77, 686–693 (1995).
[CrossRef]

Hua, P.

Huang, C. H.

Huang, L. X.

Ichinose, N.

E. G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, “Large-size β-Ga2O3 single crystals and wafers,” J. Cryst. Growth 270, 420–426 (2004).
[CrossRef]

Ikenoue, J.

Kane, S. R.

A. K. Sinha, A. Sagdeo, P. Gupta, A. Kumar, M. N. Singh, R. K. Gupta, S. R. Kane, and S. K. Deb, “Commissioning of angle dispersive x-ray diffraction beamline on Indus-2,” 55th DAE Solid State Physics Symposium, 2010, Manipal, India, 26–30 December 2010, paper D48..

Khenata, R.

F. Litimein, D. Rached, R. Khenata, and H. Baltache, “FPLAPW study of the structural, electronic, and optical properties of Ga2O3: Monoclinic and hexagonal phases,” J. Alloys Compd. 488, 148–156 (2009).
[CrossRef]

Kim, I. G.

I. G. Kim, S. Takekawa, Y. Furukawa, M. Lee, and K. Kitamura, “Growth of LixTa1−xO3 single crystals and their optical properties,” J. Cryst. Growth 229, 243–247 (2001).
[CrossRef]

Kitamura, K.

E. G. Víllora, K. Shimamura, K. Aoki, T. Ujiie, and K. Kitamura, “Epitaxial relationship between wurtzite GaN and β-Ga2O3,” Appl. Phys. Lett. 90, 234102 (2007).
[CrossRef]

I. G. Kim, S. Takekawa, Y. Furukawa, M. Lee, and K. Kitamura, “Growth of LixTa1−xO3 single crystals and their optical properties,” J. Cryst. Growth 229, 243–247 (2001).
[CrossRef]

Klimm, D.

Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, “Czochralski grown Ga2O3 crystals,” J. Cryst. Growth 220, 510–514 (2000).
[CrossRef]

Konstadinidis, K.

M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinidis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zydzik, “Ga2O3 films for electronic and optoelectronic applications,” J. Appl. Phys. 77, 686–693 (1995).
[CrossRef]

Kumar, A.

A. K. Sinha, A. Sagdeo, P. Gupta, A. Kumar, M. N. Singh, R. K. Gupta, S. R. Kane, and S. K. Deb, “Commissioning of angle dispersive x-ray diffraction beamline on Indus-2,” 55th DAE Solid State Physics Symposium, 2010, Manipal, India, 26–30 December 2010, paper D48..

Lawrence, M.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Lee, M.

I. G. Kim, S. Takekawa, Y. Furukawa, M. Lee, and K. Kitamura, “Growth of LixTa1−xO3 single crystals and their optical properties,” J. Cryst. Growth 229, 243–247 (2001).
[CrossRef]

Li, M. K.

L. L. Liu, M. K. Li, D. Q. Yu, J. Zhang, H. Zhang, C. Qian, and Z. Yang, “Fabrication and characteristics of N-doped β-Ga2O3 nanowires,” Appl. Phys. A: Mater. Sci. Proc. 98, 831–835(2010).
[CrossRef]

Litimein, F.

F. Litimein, D. Rached, R. Khenata, and H. Baltache, “FPLAPW study of the structural, electronic, and optical properties of Ga2O3: Monoclinic and hexagonal phases,” J. Alloys Compd. 488, 148–156 (2009).
[CrossRef]

Liu, H.

X. Ming, F. Lu, H. Liu, M. Chen, and L. Wang, “Formation and characterization of ZnO:Tm+ optical waveguides fabricated by Tm+ and O+ ion implantation,” J. Phys. D 42, 165303 (2009).
[CrossRef]

D. Zhang, Q. Yang, P. Hua, H. Liu, Y. Cui, L. Sun, Y. Xu, and E. Pun, “Sellmeier equation for doubly Er/Mg-doped congruent LiNbO3 crystals,” J. Opt. Soc. Am. B 26, 620–626 (2009).
[CrossRef]

Liu, L. L.

L. L. Liu, M. K. Li, D. Q. Yu, J. Zhang, H. Zhang, C. Qian, and Z. Yang, “Fabrication and characteristics of N-doped β-Ga2O3 nanowires,” Appl. Phys. A: Mater. Sci. Proc. 98, 831–835(2010).
[CrossRef]

Liu, W.

Lu, F.

X. Ming, F. Lu, H. Liu, M. Chen, and L. Wang, “Formation and characterization of ZnO:Tm+ optical waveguides fabricated by Tm+ and O+ ion implantation,” J. Phys. D 42, 165303 (2009).
[CrossRef]

Mannaerts, J. P.

M. Rebien, W. Herion, M. Hong, J. P. Mannaerts, and M. Fleischer, “Optical properties of gallium oxide thin films,” Appl. Phys. Lett. 81, 250–252 (2002).
[CrossRef]

M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinidis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zydzik, “Ga2O3 films for electronic and optoelectronic applications,” J. Appl. Phys. 77, 686–693 (1995).
[CrossRef]

Méndez, B.

E. Nogales, B. Méndez, J. Piqueras, and J. A. García, “Europium doped gallium oxide nanostructures for room temperature luminescent photonic devices,” Nanotechnology 20, 115201 (2009).
[CrossRef] [PubMed]

Meng, X. L.

Ming, X.

X. Ming, F. Lu, H. Liu, M. Chen, and L. Wang, “Formation and characterization of ZnO:Tm+ optical waveguides fabricated by Tm+ and O+ ion implantation,” J. Phys. D 42, 165303 (2009).
[CrossRef]

Moriya, N.

M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinidis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zydzik, “Ga2O3 films for electronic and optoelectronic applications,” J. Appl. Phys. 77, 686–693 (1995).
[CrossRef]

Nogales, E.

E. Nogales, B. Méndez, J. Piqueras, and J. A. García, “Europium doped gallium oxide nanostructures for room temperature luminescent photonic devices,” Nanotechnology 20, 115201 (2009).
[CrossRef] [PubMed]

Onodera, H.

Orlando, R.

H. He, R. Orlando, M. A. Blanco, R. Pandey, E. Amzallag, I. Baraille, and M. Rérat, “First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases,” Phys. Rev. B 74195123 (2006).
[CrossRef]

Pandey, R.

H. He, R. Orlando, M. A. Blanco, R. Pandey, E. Amzallag, I. Baraille, and M. Rérat, “First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases,” Phys. Rev. B 74195123 (2006).
[CrossRef]

Passlack, M.

M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinidis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zydzik, “Ga2O3 films for electronic and optoelectronic applications,” J. Appl. Phys. 77, 686–693 (1995).
[CrossRef]

Piqueras, J.

E. Nogales, B. Méndez, J. Piqueras, and J. A. García, “Europium doped gallium oxide nanostructures for room temperature luminescent photonic devices,” Nanotechnology 20, 115201 (2009).
[CrossRef] [PubMed]

Pun, E.

Qian, C.

L. L. Liu, M. K. Li, D. Q. Yu, J. Zhang, H. Zhang, C. Qian, and Z. Yang, “Fabrication and characteristics of N-doped β-Ga2O3 nanowires,” Appl. Phys. A: Mater. Sci. Proc. 98, 831–835(2010).
[CrossRef]

Qin, J. J.

Rached, D.

F. Litimein, D. Rached, R. Khenata, and H. Baltache, “FPLAPW study of the structural, electronic, and optical properties of Ga2O3: Monoclinic and hexagonal phases,” J. Alloys Compd. 488, 148–156 (2009).
[CrossRef]

Rebien, M.

M. Rebien, W. Herion, M. Hong, J. P. Mannaerts, and M. Fleischer, “Optical properties of gallium oxide thin films,” Appl. Phys. Lett. 81, 250–252 (2002).
[CrossRef]

Reiche, P.

Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, “Czochralski grown Ga2O3 crystals,” J. Cryst. Growth 220, 510–514 (2000).
[CrossRef]

Rérat, M.

H. He, R. Orlando, M. A. Blanco, R. Pandey, E. Amzallag, I. Baraille, and M. Rérat, “First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases,” Phys. Rev. B 74195123 (2006).
[CrossRef]

Sagdeo, A.

A. K. Sinha, A. Sagdeo, P. Gupta, A. Kumar, M. N. Singh, R. K. Gupta, S. R. Kane, and S. K. Deb, “Commissioning of angle dispersive x-ray diffraction beamline on Indus-2,” 55th DAE Solid State Physics Symposium, 2010, Manipal, India, 26–30 December 2010, paper D48..

Schnoes, M. L.

M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinidis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zydzik, “Ga2O3 films for electronic and optoelectronic applications,” J. Appl. Phys. 77, 686–693 (1995).
[CrossRef]

Schubert, E. F.

M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinidis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zydzik, “Ga2O3 films for electronic and optoelectronic applications,” J. Appl. Phys. 77, 686–693 (1995).
[CrossRef]

Shen, H. Y.

Shimamura, K.

E. G. Víllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, and K. Aoki, “Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping,” Appl. Phys. Lett. 92, 202120 (2008).
[CrossRef]

E. G. Víllora, K. Shimamura, K. Aoki, T. Ujiie, and K. Kitamura, “Epitaxial relationship between wurtzite GaN and β-Ga2O3,” Appl. Phys. Lett. 90, 234102 (2007).
[CrossRef]

E. G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, “Large-size β-Ga2O3 single crystals and wafers,” J. Cryst. Growth 270, 420–426 (2004).
[CrossRef]

Singh, M. N.

A. K. Sinha, A. Sagdeo, P. Gupta, A. Kumar, M. N. Singh, R. K. Gupta, S. R. Kane, and S. K. Deb, “Commissioning of angle dispersive x-ray diffraction beamline on Indus-2,” 55th DAE Solid State Physics Symposium, 2010, Manipal, India, 26–30 December 2010, paper D48..

Sinha, A. K.

A. K. Sinha, A. Sagdeo, P. Gupta, A. Kumar, M. N. Singh, R. K. Gupta, S. R. Kane, and S. K. Deb, “Commissioning of angle dispersive x-ray diffraction beamline on Indus-2,” 55th DAE Solid State Physics Symposium, 2010, Manipal, India, 26–30 December 2010, paper D48..

Sun, L.

Takekawa, S.

I. G. Kim, S. Takekawa, Y. Furukawa, M. Lee, and K. Kitamura, “Growth of LixTa1−xO3 single crystals and their optical properties,” J. Cryst. Growth 229, 243–247 (2001).
[CrossRef]

Tomm, Y.

Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, “Czochralski grown Ga2O3 crystals,” J. Cryst. Growth 220, 510–514 (2000).
[CrossRef]

Ujiie, T.

E. G. Víllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, and K. Aoki, “Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping,” Appl. Phys. Lett. 92, 202120 (2008).
[CrossRef]

E. G. Víllora, K. Shimamura, K. Aoki, T. Ujiie, and K. Kitamura, “Epitaxial relationship between wurtzite GaN and β-Ga2O3,” Appl. Phys. Lett. 90, 234102 (2007).
[CrossRef]

Villora, E. G.

E. G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, “Large-size β-Ga2O3 single crystals and wafers,” J. Cryst. Growth 270, 420–426 (2004).
[CrossRef]

Víllora, E. G.

E. G. Víllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, and K. Aoki, “Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping,” Appl. Phys. Lett. 92, 202120 (2008).
[CrossRef]

E. G. Víllora, K. Shimamura, K. Aoki, T. Ujiie, and K. Kitamura, “Epitaxial relationship between wurtzite GaN and β-Ga2O3,” Appl. Phys. Lett. 90, 234102 (2007).
[CrossRef]

Wang, L.

X. Ming, F. Lu, H. Liu, M. Chen, and L. Wang, “Formation and characterization of ZnO:Tm+ optical waveguides fabricated by Tm+ and O+ ion implantation,” J. Phys. D 42, 165303 (2009).
[CrossRef]

Wei, M.

Xu, Y.

Yang, Q.

Yang, Z.

L. L. Liu, M. K. Li, D. Q. Yu, J. Zhang, H. Zhang, C. Qian, and Z. Yang, “Fabrication and characteristics of N-doped β-Ga2O3 nanowires,” Appl. Phys. A: Mater. Sci. Proc. 98, 831–835(2010).
[CrossRef]

Yoshikawa, Y.

E. G. Víllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, and K. Aoki, “Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping,” Appl. Phys. Lett. 92, 202120 (2008).
[CrossRef]

E. G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, “Large-size β-Ga2O3 single crystals and wafers,” J. Cryst. Growth 270, 420–426 (2004).
[CrossRef]

Yu, D. Q.

L. L. Liu, M. K. Li, D. Q. Yu, J. Zhang, H. Zhang, C. Qian, and Z. Yang, “Fabrication and characteristics of N-doped β-Ga2O3 nanowires,” Appl. Phys. A: Mater. Sci. Proc. 98, 831–835(2010).
[CrossRef]

Zhang, D.

Zhang, G.

Zhang, H.

L. L. Liu, M. K. Li, D. Q. Yu, J. Zhang, H. Zhang, C. Qian, and Z. Yang, “Fabrication and characteristics of N-doped β-Ga2O3 nanowires,” Appl. Phys. A: Mater. Sci. Proc. 98, 831–835(2010).
[CrossRef]

Zhang, J.

L. L. Liu, M. K. Li, D. Q. Yu, J. Zhang, H. Zhang, C. Qian, and Z. Yang, “Fabrication and characteristics of N-doped β-Ga2O3 nanowires,” Appl. Phys. A: Mater. Sci. Proc. 98, 831–835(2010).
[CrossRef]

Zhu, L.

Zydzik, G. J.

M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinidis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zydzik, “Ga2O3 films for electronic and optoelectronic applications,” J. Appl. Phys. 77, 686–693 (1995).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. A: Mater. Sci. Proc. (1)

L. L. Liu, M. K. Li, D. Q. Yu, J. Zhang, H. Zhang, C. Qian, and Z. Yang, “Fabrication and characteristics of N-doped β-Ga2O3 nanowires,” Appl. Phys. A: Mater. Sci. Proc. 98, 831–835(2010).
[CrossRef]

Appl. Phys. Lett. (3)

E. G. Víllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, and K. Aoki, “Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping,” Appl. Phys. Lett. 92, 202120 (2008).
[CrossRef]

M. Rebien, W. Herion, M. Hong, J. P. Mannaerts, and M. Fleischer, “Optical properties of gallium oxide thin films,” Appl. Phys. Lett. 81, 250–252 (2002).
[CrossRef]

E. G. Víllora, K. Shimamura, K. Aoki, T. Ujiie, and K. Kitamura, “Epitaxial relationship between wurtzite GaN and β-Ga2O3,” Appl. Phys. Lett. 90, 234102 (2007).
[CrossRef]

J. Alloys Compd. (1)

F. Litimein, D. Rached, R. Khenata, and H. Baltache, “FPLAPW study of the structural, electronic, and optical properties of Ga2O3: Monoclinic and hexagonal phases,” J. Alloys Compd. 488, 148–156 (2009).
[CrossRef]

J. Appl. Phys. (1)

M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinidis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zydzik, “Ga2O3 films for electronic and optoelectronic applications,” J. Appl. Phys. 77, 686–693 (1995).
[CrossRef]

J. Cryst. Growth (3)

Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, “Czochralski grown Ga2O3 crystals,” J. Cryst. Growth 220, 510–514 (2000).
[CrossRef]

E. G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, “Large-size β-Ga2O3 single crystals and wafers,” J. Cryst. Growth 270, 420–426 (2004).
[CrossRef]

I. G. Kim, S. Takekawa, Y. Furukawa, M. Lee, and K. Kitamura, “Growth of LixTa1−xO3 single crystals and their optical properties,” J. Cryst. Growth 229, 243–247 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

X. Ming, F. Lu, H. Liu, M. Chen, and L. Wang, “Formation and characterization of ZnO:Tm+ optical waveguides fabricated by Tm+ and O+ ion implantation,” J. Phys. D 42, 165303 (2009).
[CrossRef]

Nanotechnology (1)

E. Nogales, B. Méndez, J. Piqueras, and J. A. García, “Europium doped gallium oxide nanostructures for room temperature luminescent photonic devices,” Nanotechnology 20, 115201 (2009).
[CrossRef] [PubMed]

Opt. Quantum Electron. (1)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Phys. Rev. B (1)

H. He, R. Orlando, M. A. Blanco, R. Pandey, E. Amzallag, I. Baraille, and M. Rérat, “First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases,” Phys. Rev. B 74195123 (2006).
[CrossRef]

Other (1)

A. K. Sinha, A. Sagdeo, P. Gupta, A. Kumar, M. N. Singh, R. K. Gupta, S. R. Kane, and S. K. Deb, “Commissioning of angle dispersive x-ray diffraction beamline on Indus-2,” 55th DAE Solid State Physics Symposium, 2010, Manipal, India, 26–30 December 2010, paper D48..

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

As-grown β - Ga 2 O 3 single crystals.

Fig. 2
Fig. 2

θ 2 θ scan of the ( 100 ) plate.

Fig. 3
Fig. 3

Rocking curve of the ( 400 ) peak.

Fig. 4
Fig. 4

(a) Schematic of prism coupling technique. (b) Representative actual raw data of one of the measurements.

Fig. 5
Fig. 5

Fitting Sellmeier’s equation for Ga 2 O 3 at 30 ° C .

Fig. 6
Fig. 6

Temperature-dependent refractive index of β - Ga 2 O 3 along (a)  [ 010 ] and (b)    to   ( 100 ) .

Tables (3)

Tables Icon

Table 1 Refractive Index at 30 ° C

Tables Icon

Table 2 Sellmeier’s Coefficients at Different Temperatures Along [ 010 ] and to   ( 100 )

Tables Icon

Table 3 Temperature Dependence of Refractive Index in the Range of 30 150 ° C

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( λ , T ) = A 0 ( T ) + B 0 ( T ) λ 2 C 0 ( T ) D 0 ( T ) λ 2 .
n ( λ , T ) = n 0 ( λ ) + [ d n ( λ ) d T ] T ,
[ d n ( λ ) d T ] [ 010 ] = ( 13.657 / λ 3 20.102 / λ 2 + 18.729 / λ 5.668 ) × 10 5 ,
[ d n ( λ ) d T ]   to   ( 100 ) = ( 13.749 / λ 3 19.627 / λ 2 18.447 / λ 5.627 ) × 10 5 .

Metrics