Abstract

We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlén equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7mK RMS noise over a 67m path length using a 120s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. P. Birch and M. J. Downs, “The results of a comparison between calculated and measured values of the refractive index of air,” J. Phys. E 21, 694–695 (1988).
    [CrossRef]
  2. G. Bonsch and E. Potulski, “Measurement of the refractive index of air and comparison with modified Edlén’s formulae,” Metrologia 35, 133–139 (1998).
    [CrossRef]
  3. B. Edlen, “The refractive index of air,” Metrologia 2, 71–80(1966).
    [CrossRef]
  4. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35, 1566–1573 (1996).
    [CrossRef] [PubMed]
  5. A. Lassila, “Updated performance and uncertainty budget of MIKES’ line scale interferometer,” in Proceedings of 4th EUSPEN International Conference (EUSPEN, 2004). pp. 258–259.
  6. A. Lassila, M. Kari, H. Koivula, U. Koivula, J. Kortstrom, E. Leinonen, J. Manninen, J. Manssila, T. Mansten, T. Merilainen, J. Muttilainen, J. Nissila, R. Nyblom, K. Riski, J. Sarilo, and H. Isotalo, “Design and performance of an advanced metrology building for MIKES,” Measurement 44, 399–425 (2011).
    [CrossRef]
  7. V. Korpelainen and A. Lassila, “Acoustic method for determination of the effective temperature and refractive index of air in accurate length interferometry,” Opt. Eng. 43, 2400–2409(2004).
    [CrossRef]
  8. A. Y. Chang, M. D. DiRosa, D. F. Davidson, and R. K. Hanson, “Rapid tuning cw laser technique for measurements of gas velocity, temperature, pressure, density, and mass flux using NO,” Appl. Opt. 30, 3011–3022 (1991).
    [CrossRef] [PubMed]
  9. M. P. Arroyo and R. K. Hanson, “Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt. 32, 6104–6116 (1993).
    [CrossRef] [PubMed]
  10. D. S. Baer, R. K. Hanson, M. E. Newfield, and N. K. J. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
    [CrossRef] [PubMed]
  11. J. Silver and D. J. Kane, “Diode laser measurements of concentration and temperature in microgravity combustion,” Meas. Sci. Technol. 10, 845–852 (1999).
    [CrossRef]
  12. J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Large-modulation-depth 2f spectroscopy with diode lasers for rapid temperature and species measurements in gases with blended and broadened spectra,” Appl. Opt. 43, 6500–6509 (2004).
    [CrossRef] [PubMed]
  13. X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B 81, 711–722 (2005).
    [CrossRef]
  14. J. Shao, L. Lathdavong, P. Kluczynski, S. Lundqvist, and O. Axner, “Methodology for temperature measurements in water vapor using wavelength-modulation tunable diode laser absorption spectrometry in the telecom C-band,” Appl. Phys. B 97, 727–748 (2009).
    [CrossRef]
  15. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
    [CrossRef]
  16. V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28, 423–430(2000).
    [CrossRef]
  17. S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, “Diode-laser absorption sensor for line-of-sight gas temperature distributions,” Appl. Opt. 40, 4404–4415 (2001).
    [CrossRef]
  18. H. Teichert, T. Fernholz, and V. Ebert, “Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers,” Appl. Opt. 42, 2043–2051 (2003).
    [CrossRef] [PubMed]
  19. T. Hieta and M. Merimaa, “Spectroscopic measurement of air temperature,” Int. J. Thermophys. 31, 1710–1718 (2010).
    [CrossRef]
  20. V. Spagnolo, L. Dong, A. A. Kosterev, D. Thomazy, J. H. Doty III, and F. K. Tittel, “Modulation cancellation method for measurements of small temperature differences in a gas,” Opt. Lett. 36, 460–462 (2011).
    [CrossRef] [PubMed]
  21. F. Pollinger, T. Hieta, M. Vainio, N. R. Doloca, A. Abou-Zeid, K. Meiners-Hagen, and M. Merimaa, “Effective humidity in length measurements: comparison of three approaches,” Meas. Sci. Technol. (to be published).
  22. Further information on HITRAN available from www.hitran.com.
  23. D. J. Robichaud, J. T. Hodges, P. Maslowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the O2A-band,” J. Mol. Spectrosc. 251, 27–37 (2008).
    [CrossRef]
  24. D. J. Robichaud, J. T. Hodges, L. R. Brown, D. Lisak, P. Maslowski, L. Y. Yeung, M. Okumura, and C. E. Miller, “Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy,” J. Mol. Spectrosc. 248, 1–13 (2008).
    [CrossRef]
  25. L. R. Brown and C. Plymate, “Experimental line parameters of the oxygen A band at 760 nm,” J. Mol. Spectrosc. 199, 166–179 (2000).
    [CrossRef] [PubMed]
  26. Y. Liu, J. Lin, G. Huang, Y. Guo, and C. Duan, “Simple empirical analytical approximation to the Voigt profile,” J. Opt. Soc. Am. B 18, 666–672 (2001).
    [CrossRef]
  27. Q. V. Nguyen, R. W. Dibble, and T. Day, “High-resolution oxygen absorption spectrum obtained with an external-cavity continuously tunable diode laser,” Opt. Lett. 19, 2134–2136(1994).
    [CrossRef] [PubMed]
  28. V. G. Avetisov and P. Kauranen, “High-resolution absorption measurements by use of two-tone frequency-modulation spectroscopy with diode lasers,” Appl. Opt. 36, 4043–4054(1997).
    [CrossRef] [PubMed]
  29. P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B 72, 127–135 (2001).
    [CrossRef]
  30. L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218–1223(1961).
    [CrossRef]
  31. P. L. Varghese and R. K. Hanson, “Collisional narrowing effects on spectral line shapes measured at high resolution,” Appl. Opt. 23, 2376–2385 (1984).
    [CrossRef] [PubMed]

2011 (2)

A. Lassila, M. Kari, H. Koivula, U. Koivula, J. Kortstrom, E. Leinonen, J. Manninen, J. Manssila, T. Mansten, T. Merilainen, J. Muttilainen, J. Nissila, R. Nyblom, K. Riski, J. Sarilo, and H. Isotalo, “Design and performance of an advanced metrology building for MIKES,” Measurement 44, 399–425 (2011).
[CrossRef]

V. Spagnolo, L. Dong, A. A. Kosterev, D. Thomazy, J. H. Doty III, and F. K. Tittel, “Modulation cancellation method for measurements of small temperature differences in a gas,” Opt. Lett. 36, 460–462 (2011).
[CrossRef] [PubMed]

2010 (1)

T. Hieta and M. Merimaa, “Spectroscopic measurement of air temperature,” Int. J. Thermophys. 31, 1710–1718 (2010).
[CrossRef]

2009 (1)

J. Shao, L. Lathdavong, P. Kluczynski, S. Lundqvist, and O. Axner, “Methodology for temperature measurements in water vapor using wavelength-modulation tunable diode laser absorption spectrometry in the telecom C-band,” Appl. Phys. B 97, 727–748 (2009).
[CrossRef]

2008 (2)

D. J. Robichaud, J. T. Hodges, P. Maslowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the O2A-band,” J. Mol. Spectrosc. 251, 27–37 (2008).
[CrossRef]

D. J. Robichaud, J. T. Hodges, L. R. Brown, D. Lisak, P. Maslowski, L. Y. Yeung, M. Okumura, and C. E. Miller, “Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy,” J. Mol. Spectrosc. 248, 1–13 (2008).
[CrossRef]

2005 (1)

X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B 81, 711–722 (2005).
[CrossRef]

2004 (2)

V. Korpelainen and A. Lassila, “Acoustic method for determination of the effective temperature and refractive index of air in accurate length interferometry,” Opt. Eng. 43, 2400–2409(2004).
[CrossRef]

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Large-modulation-depth 2f spectroscopy with diode lasers for rapid temperature and species measurements in gases with blended and broadened spectra,” Appl. Opt. 43, 6500–6509 (2004).
[CrossRef] [PubMed]

2003 (1)

2001 (3)

2000 (2)

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28, 423–430(2000).
[CrossRef]

L. R. Brown and C. Plymate, “Experimental line parameters of the oxygen A band at 760 nm,” J. Mol. Spectrosc. 199, 166–179 (2000).
[CrossRef] [PubMed]

1999 (1)

J. Silver and D. J. Kane, “Diode laser measurements of concentration and temperature in microgravity combustion,” Meas. Sci. Technol. 10, 845–852 (1999).
[CrossRef]

1998 (2)

G. Bonsch and E. Potulski, “Measurement of the refractive index of air and comparison with modified Edlén’s formulae,” Metrologia 35, 133–139 (1998).
[CrossRef]

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

1997 (1)

1996 (1)

1994 (2)

1993 (1)

1991 (1)

1988 (1)

K. P. Birch and M. J. Downs, “The results of a comparison between calculated and measured values of the refractive index of air,” J. Phys. E 21, 694–695 (1988).
[CrossRef]

1984 (1)

1966 (1)

B. Edlen, “The refractive index of air,” Metrologia 2, 71–80(1966).
[CrossRef]

1961 (1)

L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218–1223(1961).
[CrossRef]

Abou-Zeid, A.

F. Pollinger, T. Hieta, M. Vainio, N. R. Doloca, A. Abou-Zeid, K. Meiners-Hagen, and M. Merimaa, “Effective humidity in length measurements: comparison of three approaches,” Meas. Sci. Technol. (to be published).

Allen, M. G.

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

Arroyo, M. P.

Avetisov, V. G.

Axner, O.

J. Shao, L. Lathdavong, P. Kluczynski, S. Lundqvist, and O. Axner, “Methodology for temperature measurements in water vapor using wavelength-modulation tunable diode laser absorption spectrometry in the telecom C-band,” Appl. Phys. B 97, 727–748 (2009).
[CrossRef]

Baer, D. S.

Birch, K. P.

K. P. Birch and M. J. Downs, “The results of a comparison between calculated and measured values of the refractive index of air,” J. Phys. E 21, 694–695 (1988).
[CrossRef]

Bonsch, G.

G. Bonsch and E. Potulski, “Measurement of the refractive index of air and comparison with modified Edlén’s formulae,” Metrologia 35, 133–139 (1998).
[CrossRef]

Brown, L. R.

D. J. Robichaud, J. T. Hodges, P. Maslowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the O2A-band,” J. Mol. Spectrosc. 251, 27–37 (2008).
[CrossRef]

D. J. Robichaud, J. T. Hodges, L. R. Brown, D. Lisak, P. Maslowski, L. Y. Yeung, M. Okumura, and C. E. Miller, “Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy,” J. Mol. Spectrosc. 248, 1–13 (2008).
[CrossRef]

L. R. Brown and C. Plymate, “Experimental line parameters of the oxygen A band at 760 nm,” J. Mol. Spectrosc. 199, 166–179 (2000).
[CrossRef] [PubMed]

Chang, A. Y.

Ciddor, P. E.

Davidson, D. F.

Day, T.

Dibble, R. W.

DiRosa, M. D.

Doloca, N. R.

F. Pollinger, T. Hieta, M. Vainio, N. R. Doloca, A. Abou-Zeid, K. Meiners-Hagen, and M. Merimaa, “Effective humidity in length measurements: comparison of three approaches,” Meas. Sci. Technol. (to be published).

Dong, L.

Doty, J. H.

Downs, M. J.

K. P. Birch and M. J. Downs, “The results of a comparison between calculated and measured values of the refractive index of air,” J. Phys. E 21, 694–695 (1988).
[CrossRef]

Duan, C.

Ebert, V.

H. Teichert, T. Fernholz, and V. Ebert, “Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers,” Appl. Opt. 42, 2043–2051 (2003).
[CrossRef] [PubMed]

P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B 72, 127–135 (2001).
[CrossRef]

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28, 423–430(2000).
[CrossRef]

Edlen, B.

B. Edlen, “The refractive index of air,” Metrologia 2, 71–80(1966).
[CrossRef]

Fernholz, T.

H. Teichert, T. Fernholz, and V. Ebert, “Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers,” Appl. Opt. 42, 2043–2051 (2003).
[CrossRef] [PubMed]

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28, 423–430(2000).
[CrossRef]

Galatry, L.

L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218–1223(1961).
[CrossRef]

Giesemann, C.

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28, 423–430(2000).
[CrossRef]

Gopaul, N. K. J. M.

Guo, Y.

Hanson, R. K.

X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B 81, 711–722 (2005).
[CrossRef]

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Large-modulation-depth 2f spectroscopy with diode lasers for rapid temperature and species measurements in gases with blended and broadened spectra,” Appl. Opt. 43, 6500–6509 (2004).
[CrossRef] [PubMed]

S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, “Diode-laser absorption sensor for line-of-sight gas temperature distributions,” Appl. Opt. 40, 4404–4415 (2001).
[CrossRef]

D. S. Baer, R. K. Hanson, M. E. Newfield, and N. K. J. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
[CrossRef] [PubMed]

M. P. Arroyo and R. K. Hanson, “Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt. 32, 6104–6116 (1993).
[CrossRef] [PubMed]

A. Y. Chang, M. D. DiRosa, D. F. Davidson, and R. K. Hanson, “Rapid tuning cw laser technique for measurements of gas velocity, temperature, pressure, density, and mass flux using NO,” Appl. Opt. 30, 3011–3022 (1991).
[CrossRef] [PubMed]

P. L. Varghese and R. K. Hanson, “Collisional narrowing effects on spectral line shapes measured at high resolution,” Appl. Opt. 23, 2376–2385 (1984).
[CrossRef] [PubMed]

Hieta, T.

T. Hieta and M. Merimaa, “Spectroscopic measurement of air temperature,” Int. J. Thermophys. 31, 1710–1718 (2010).
[CrossRef]

F. Pollinger, T. Hieta, M. Vainio, N. R. Doloca, A. Abou-Zeid, K. Meiners-Hagen, and M. Merimaa, “Effective humidity in length measurements: comparison of three approaches,” Meas. Sci. Technol. (to be published).

Hodges, J. T.

D. J. Robichaud, J. T. Hodges, P. Maslowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the O2A-band,” J. Mol. Spectrosc. 251, 27–37 (2008).
[CrossRef]

D. J. Robichaud, J. T. Hodges, L. R. Brown, D. Lisak, P. Maslowski, L. Y. Yeung, M. Okumura, and C. E. Miller, “Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy,” J. Mol. Spectrosc. 248, 1–13 (2008).
[CrossRef]

Huang, G.

Isotalo, H.

A. Lassila, M. Kari, H. Koivula, U. Koivula, J. Kortstrom, E. Leinonen, J. Manninen, J. Manssila, T. Mansten, T. Merilainen, J. Muttilainen, J. Nissila, R. Nyblom, K. Riski, J. Sarilo, and H. Isotalo, “Design and performance of an advanced metrology building for MIKES,” Measurement 44, 399–425 (2011).
[CrossRef]

Jaritz, H.

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28, 423–430(2000).
[CrossRef]

Jeffries, J. B.

Kane, D. J.

J. Silver and D. J. Kane, “Diode laser measurements of concentration and temperature in microgravity combustion,” Meas. Sci. Technol. 10, 845–852 (1999).
[CrossRef]

Kari, M.

A. Lassila, M. Kari, H. Koivula, U. Koivula, J. Kortstrom, E. Leinonen, J. Manninen, J. Manssila, T. Mansten, T. Merilainen, J. Muttilainen, J. Nissila, R. Nyblom, K. Riski, J. Sarilo, and H. Isotalo, “Design and performance of an advanced metrology building for MIKES,” Measurement 44, 399–425 (2011).
[CrossRef]

Kauranen, P.

Kluczynski, P.

J. Shao, L. Lathdavong, P. Kluczynski, S. Lundqvist, and O. Axner, “Methodology for temperature measurements in water vapor using wavelength-modulation tunable diode laser absorption spectrometry in the telecom C-band,” Appl. Phys. B 97, 727–748 (2009).
[CrossRef]

Koivula, H.

A. Lassila, M. Kari, H. Koivula, U. Koivula, J. Kortstrom, E. Leinonen, J. Manninen, J. Manssila, T. Mansten, T. Merilainen, J. Muttilainen, J. Nissila, R. Nyblom, K. Riski, J. Sarilo, and H. Isotalo, “Design and performance of an advanced metrology building for MIKES,” Measurement 44, 399–425 (2011).
[CrossRef]

Koivula, U.

A. Lassila, M. Kari, H. Koivula, U. Koivula, J. Kortstrom, E. Leinonen, J. Manninen, J. Manssila, T. Mansten, T. Merilainen, J. Muttilainen, J. Nissila, R. Nyblom, K. Riski, J. Sarilo, and H. Isotalo, “Design and performance of an advanced metrology building for MIKES,” Measurement 44, 399–425 (2011).
[CrossRef]

Korpelainen, V.

V. Korpelainen and A. Lassila, “Acoustic method for determination of the effective temperature and refractive index of air in accurate length interferometry,” Opt. Eng. 43, 2400–2409(2004).
[CrossRef]

Kortstrom, J.

A. Lassila, M. Kari, H. Koivula, U. Koivula, J. Kortstrom, E. Leinonen, J. Manninen, J. Manssila, T. Mansten, T. Merilainen, J. Muttilainen, J. Nissila, R. Nyblom, K. Riski, J. Sarilo, and H. Isotalo, “Design and performance of an advanced metrology building for MIKES,” Measurement 44, 399–425 (2011).
[CrossRef]

Kosterev, A. A.

Lassila, A.

A. Lassila, M. Kari, H. Koivula, U. Koivula, J. Kortstrom, E. Leinonen, J. Manninen, J. Manssila, T. Mansten, T. Merilainen, J. Muttilainen, J. Nissila, R. Nyblom, K. Riski, J. Sarilo, and H. Isotalo, “Design and performance of an advanced metrology building for MIKES,” Measurement 44, 399–425 (2011).
[CrossRef]

V. Korpelainen and A. Lassila, “Acoustic method for determination of the effective temperature and refractive index of air in accurate length interferometry,” Opt. Eng. 43, 2400–2409(2004).
[CrossRef]

A. Lassila, “Updated performance and uncertainty budget of MIKES’ line scale interferometer,” in Proceedings of 4th EUSPEN International Conference (EUSPEN, 2004). pp. 258–259.

Lathdavong, L.

J. Shao, L. Lathdavong, P. Kluczynski, S. Lundqvist, and O. Axner, “Methodology for temperature measurements in water vapor using wavelength-modulation tunable diode laser absorption spectrometry in the telecom C-band,” Appl. Phys. B 97, 727–748 (2009).
[CrossRef]

Leinonen, E.

A. Lassila, M. Kari, H. Koivula, U. Koivula, J. Kortstrom, E. Leinonen, J. Manninen, J. Manssila, T. Mansten, T. Merilainen, J. Muttilainen, J. Nissila, R. Nyblom, K. Riski, J. Sarilo, and H. Isotalo, “Design and performance of an advanced metrology building for MIKES,” Measurement 44, 399–425 (2011).
[CrossRef]

Lin, J.

Lisak, D.

D. J. Robichaud, J. T. Hodges, L. R. Brown, D. Lisak, P. Maslowski, L. Y. Yeung, M. Okumura, and C. E. Miller, “Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy,” J. Mol. Spectrosc. 248, 1–13 (2008).
[CrossRef]

Liu, J. T. C.

Liu, Y.

Lundqvist, S.

J. Shao, L. Lathdavong, P. Kluczynski, S. Lundqvist, and O. Axner, “Methodology for temperature measurements in water vapor using wavelength-modulation tunable diode laser absorption spectrometry in the telecom C-band,” Appl. Phys. B 97, 727–748 (2009).
[CrossRef]

Manninen, J.

A. Lassila, M. Kari, H. Koivula, U. Koivula, J. Kortstrom, E. Leinonen, J. Manninen, J. Manssila, T. Mansten, T. Merilainen, J. Muttilainen, J. Nissila, R. Nyblom, K. Riski, J. Sarilo, and H. Isotalo, “Design and performance of an advanced metrology building for MIKES,” Measurement 44, 399–425 (2011).
[CrossRef]

Manssila, J.

A. Lassila, M. Kari, H. Koivula, U. Koivula, J. Kortstrom, E. Leinonen, J. Manninen, J. Manssila, T. Mansten, T. Merilainen, J. Muttilainen, J. Nissila, R. Nyblom, K. Riski, J. Sarilo, and H. Isotalo, “Design and performance of an advanced metrology building for MIKES,” Measurement 44, 399–425 (2011).
[CrossRef]

Mansten, T.

A. Lassila, M. Kari, H. Koivula, U. Koivula, J. Kortstrom, E. Leinonen, J. Manninen, J. Manssila, T. Mansten, T. Merilainen, J. Muttilainen, J. Nissila, R. Nyblom, K. Riski, J. Sarilo, and H. Isotalo, “Design and performance of an advanced metrology building for MIKES,” Measurement 44, 399–425 (2011).
[CrossRef]

Maslowski, P.

D. J. Robichaud, J. T. Hodges, L. R. Brown, D. Lisak, P. Maslowski, L. Y. Yeung, M. Okumura, and C. E. Miller, “Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy,” J. Mol. Spectrosc. 248, 1–13 (2008).
[CrossRef]

D. J. Robichaud, J. T. Hodges, P. Maslowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the O2A-band,” J. Mol. Spectrosc. 251, 27–37 (2008).
[CrossRef]

Meiners-Hagen, K.

F. Pollinger, T. Hieta, M. Vainio, N. R. Doloca, A. Abou-Zeid, K. Meiners-Hagen, and M. Merimaa, “Effective humidity in length measurements: comparison of three approaches,” Meas. Sci. Technol. (to be published).

Merilainen, T.

A. Lassila, M. Kari, H. Koivula, U. Koivula, J. Kortstrom, E. Leinonen, J. Manninen, J. Manssila, T. Mansten, T. Merilainen, J. Muttilainen, J. Nissila, R. Nyblom, K. Riski, J. Sarilo, and H. Isotalo, “Design and performance of an advanced metrology building for MIKES,” Measurement 44, 399–425 (2011).
[CrossRef]

Merimaa, M.

T. Hieta and M. Merimaa, “Spectroscopic measurement of air temperature,” Int. J. Thermophys. 31, 1710–1718 (2010).
[CrossRef]

F. Pollinger, T. Hieta, M. Vainio, N. R. Doloca, A. Abou-Zeid, K. Meiners-Hagen, and M. Merimaa, “Effective humidity in length measurements: comparison of three approaches,” Meas. Sci. Technol. (to be published).

Miller, C. E.

D. J. Robichaud, J. T. Hodges, P. Maslowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the O2A-band,” J. Mol. Spectrosc. 251, 27–37 (2008).
[CrossRef]

D. J. Robichaud, J. T. Hodges, L. R. Brown, D. Lisak, P. Maslowski, L. Y. Yeung, M. Okumura, and C. E. Miller, “Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy,” J. Mol. Spectrosc. 248, 1–13 (2008).
[CrossRef]

Muttilainen, J.

A. Lassila, M. Kari, H. Koivula, U. Koivula, J. Kortstrom, E. Leinonen, J. Manninen, J. Manssila, T. Mansten, T. Merilainen, J. Muttilainen, J. Nissila, R. Nyblom, K. Riski, J. Sarilo, and H. Isotalo, “Design and performance of an advanced metrology building for MIKES,” Measurement 44, 399–425 (2011).
[CrossRef]

Newfield, M. E.

Nguyen, Q. V.

Nissila, J.

A. Lassila, M. Kari, H. Koivula, U. Koivula, J. Kortstrom, E. Leinonen, J. Manninen, J. Manssila, T. Mansten, T. Merilainen, J. Muttilainen, J. Nissila, R. Nyblom, K. Riski, J. Sarilo, and H. Isotalo, “Design and performance of an advanced metrology building for MIKES,” Measurement 44, 399–425 (2011).
[CrossRef]

Nyblom, R.

A. Lassila, M. Kari, H. Koivula, U. Koivula, J. Kortstrom, E. Leinonen, J. Manninen, J. Manssila, T. Mansten, T. Merilainen, J. Muttilainen, J. Nissila, R. Nyblom, K. Riski, J. Sarilo, and H. Isotalo, “Design and performance of an advanced metrology building for MIKES,” Measurement 44, 399–425 (2011).
[CrossRef]

Okumura, M.

D. J. Robichaud, J. T. Hodges, L. R. Brown, D. Lisak, P. Maslowski, L. Y. Yeung, M. Okumura, and C. E. Miller, “Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy,” J. Mol. Spectrosc. 248, 1–13 (2008).
[CrossRef]

D. J. Robichaud, J. T. Hodges, P. Maslowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the O2A-band,” J. Mol. Spectrosc. 251, 27–37 (2008).
[CrossRef]

Pitz, H.

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28, 423–430(2000).
[CrossRef]

Plymate, C.

L. R. Brown and C. Plymate, “Experimental line parameters of the oxygen A band at 760 nm,” J. Mol. Spectrosc. 199, 166–179 (2000).
[CrossRef] [PubMed]

Pollinger, F.

F. Pollinger, T. Hieta, M. Vainio, N. R. Doloca, A. Abou-Zeid, K. Meiners-Hagen, and M. Merimaa, “Effective humidity in length measurements: comparison of three approaches,” Meas. Sci. Technol. (to be published).

Potulski, E.

G. Bonsch and E. Potulski, “Measurement of the refractive index of air and comparison with modified Edlén’s formulae,” Metrologia 35, 133–139 (1998).
[CrossRef]

Riski, K.

A. Lassila, M. Kari, H. Koivula, U. Koivula, J. Kortstrom, E. Leinonen, J. Manninen, J. Manssila, T. Mansten, T. Merilainen, J. Muttilainen, J. Nissila, R. Nyblom, K. Riski, J. Sarilo, and H. Isotalo, “Design and performance of an advanced metrology building for MIKES,” Measurement 44, 399–425 (2011).
[CrossRef]

Robichaud, D. J.

D. J. Robichaud, J. T. Hodges, P. Maslowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the O2A-band,” J. Mol. Spectrosc. 251, 27–37 (2008).
[CrossRef]

D. J. Robichaud, J. T. Hodges, L. R. Brown, D. Lisak, P. Maslowski, L. Y. Yeung, M. Okumura, and C. E. Miller, “Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy,” J. Mol. Spectrosc. 248, 1–13 (2008).
[CrossRef]

Sanders, S. T.

Sarilo, J.

A. Lassila, M. Kari, H. Koivula, U. Koivula, J. Kortstrom, E. Leinonen, J. Manninen, J. Manssila, T. Mansten, T. Merilainen, J. Muttilainen, J. Nissila, R. Nyblom, K. Riski, J. Sarilo, and H. Isotalo, “Design and performance of an advanced metrology building for MIKES,” Measurement 44, 399–425 (2011).
[CrossRef]

Shao, J.

J. Shao, L. Lathdavong, P. Kluczynski, S. Lundqvist, and O. Axner, “Methodology for temperature measurements in water vapor using wavelength-modulation tunable diode laser absorption spectrometry in the telecom C-band,” Appl. Phys. B 97, 727–748 (2009).
[CrossRef]

Silver, J.

J. Silver and D. J. Kane, “Diode laser measurements of concentration and temperature in microgravity combustion,” Meas. Sci. Technol. 10, 845–852 (1999).
[CrossRef]

Spagnolo, V.

Teichert, H.

H. Teichert, T. Fernholz, and V. Ebert, “Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers,” Appl. Opt. 42, 2043–2051 (2003).
[CrossRef] [PubMed]

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28, 423–430(2000).
[CrossRef]

Thomazy, D.

Tittel, F. K.

Vainio, M.

F. Pollinger, T. Hieta, M. Vainio, N. R. Doloca, A. Abou-Zeid, K. Meiners-Hagen, and M. Merimaa, “Effective humidity in length measurements: comparison of three approaches,” Meas. Sci. Technol. (to be published).

Varghese, P. L.

Vogel, P.

P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B 72, 127–135 (2001).
[CrossRef]

Wang, J.

Wolfrum, J.

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28, 423–430(2000).
[CrossRef]

Yeung, L. Y.

D. J. Robichaud, J. T. Hodges, L. R. Brown, D. Lisak, P. Maslowski, L. Y. Yeung, M. Okumura, and C. E. Miller, “Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy,” J. Mol. Spectrosc. 248, 1–13 (2008).
[CrossRef]

D. J. Robichaud, J. T. Hodges, P. Maslowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the O2A-band,” J. Mol. Spectrosc. 251, 27–37 (2008).
[CrossRef]

Zhou, X.

X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B 81, 711–722 (2005).
[CrossRef]

Appl. Opt. (8)

P. L. Varghese and R. K. Hanson, “Collisional narrowing effects on spectral line shapes measured at high resolution,” Appl. Opt. 23, 2376–2385 (1984).
[CrossRef] [PubMed]

A. Y. Chang, M. D. DiRosa, D. F. Davidson, and R. K. Hanson, “Rapid tuning cw laser technique for measurements of gas velocity, temperature, pressure, density, and mass flux using NO,” Appl. Opt. 30, 3011–3022 (1991).
[CrossRef] [PubMed]

M. P. Arroyo and R. K. Hanson, “Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt. 32, 6104–6116 (1993).
[CrossRef] [PubMed]

V. G. Avetisov and P. Kauranen, “High-resolution absorption measurements by use of two-tone frequency-modulation spectroscopy with diode lasers,” Appl. Opt. 36, 4043–4054(1997).
[CrossRef] [PubMed]

P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35, 1566–1573 (1996).
[CrossRef] [PubMed]

S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, “Diode-laser absorption sensor for line-of-sight gas temperature distributions,” Appl. Opt. 40, 4404–4415 (2001).
[CrossRef]

H. Teichert, T. Fernholz, and V. Ebert, “Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers,” Appl. Opt. 42, 2043–2051 (2003).
[CrossRef] [PubMed]

J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Large-modulation-depth 2f spectroscopy with diode lasers for rapid temperature and species measurements in gases with blended and broadened spectra,” Appl. Opt. 43, 6500–6509 (2004).
[CrossRef] [PubMed]

Appl. Phys. B (3)

X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B 81, 711–722 (2005).
[CrossRef]

J. Shao, L. Lathdavong, P. Kluczynski, S. Lundqvist, and O. Axner, “Methodology for temperature measurements in water vapor using wavelength-modulation tunable diode laser absorption spectrometry in the telecom C-band,” Appl. Phys. B 97, 727–748 (2009).
[CrossRef]

P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B 72, 127–135 (2001).
[CrossRef]

Int. J. Thermophys. (1)

T. Hieta and M. Merimaa, “Spectroscopic measurement of air temperature,” Int. J. Thermophys. 31, 1710–1718 (2010).
[CrossRef]

J. Mol. Spectrosc. (3)

D. J. Robichaud, J. T. Hodges, P. Maslowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the O2A-band,” J. Mol. Spectrosc. 251, 27–37 (2008).
[CrossRef]

D. J. Robichaud, J. T. Hodges, L. R. Brown, D. Lisak, P. Maslowski, L. Y. Yeung, M. Okumura, and C. E. Miller, “Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy,” J. Mol. Spectrosc. 248, 1–13 (2008).
[CrossRef]

L. R. Brown and C. Plymate, “Experimental line parameters of the oxygen A band at 760 nm,” J. Mol. Spectrosc. 199, 166–179 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. E (1)

K. P. Birch and M. J. Downs, “The results of a comparison between calculated and measured values of the refractive index of air,” J. Phys. E 21, 694–695 (1988).
[CrossRef]

Meas. Sci. Technol. (2)

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

J. Silver and D. J. Kane, “Diode laser measurements of concentration and temperature in microgravity combustion,” Meas. Sci. Technol. 10, 845–852 (1999).
[CrossRef]

Measurement (1)

A. Lassila, M. Kari, H. Koivula, U. Koivula, J. Kortstrom, E. Leinonen, J. Manninen, J. Manssila, T. Mansten, T. Merilainen, J. Muttilainen, J. Nissila, R. Nyblom, K. Riski, J. Sarilo, and H. Isotalo, “Design and performance of an advanced metrology building for MIKES,” Measurement 44, 399–425 (2011).
[CrossRef]

Metrologia (2)

G. Bonsch and E. Potulski, “Measurement of the refractive index of air and comparison with modified Edlén’s formulae,” Metrologia 35, 133–139 (1998).
[CrossRef]

B. Edlen, “The refractive index of air,” Metrologia 2, 71–80(1966).
[CrossRef]

Opt. Eng. (1)

V. Korpelainen and A. Lassila, “Acoustic method for determination of the effective temperature and refractive index of air in accurate length interferometry,” Opt. Eng. 43, 2400–2409(2004).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. (1)

L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218–1223(1961).
[CrossRef]

Proc. Combust. Inst. (1)

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28, 423–430(2000).
[CrossRef]

Other (3)

A. Lassila, “Updated performance and uncertainty budget of MIKES’ line scale interferometer,” in Proceedings of 4th EUSPEN International Conference (EUSPEN, 2004). pp. 258–259.

F. Pollinger, T. Hieta, M. Vainio, N. R. Doloca, A. Abou-Zeid, K. Meiners-Hagen, and M. Merimaa, “Effective humidity in length measurements: comparison of three approaches,” Meas. Sci. Technol. (to be published).

Further information on HITRAN available from www.hitran.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic temperature measurement setup using a 67 m path length. Two water spectroscopy lasers are not in use.

Fig. 2
Fig. 2

Oxygen A-band transmission spectrum for a 67 m path in ambient air and the relative change in transmission for the strongest transitions [19]. The transitions used in this work are marked with dashed double arrows and the black dot marks the position of the baseline.

Fig. 3
Fig. 3

Typical oxygen transmission measurement of transition 1 and baseline over a 130 m path measured outdoors including a second-order polynomial fit, which is used to determine the absorption peak.

Fig. 4
Fig. 4

Parameter calibration results of the spectroscopic thermometer measurement (gray) fitted to the ensemble of Pt-100 sensors (black) spaced evenly over the 67 m path length. The temperature variations were done by adjusting the temperature of the incoming air.

Fig. 5
Fig. 5

Top, interferometric length compensated by using Pt-100 sensors (curve 1) and by using the spectroscopic temperature measurement (curve 2). Bottom, average temperatures along the path length with local temperature variations measured by the Pt-100 sensors (curve 3) and by the spectroscopic system (curve 4). For clarity, 5 μm and 500 mK offsets have been added to the spectroscopically compensated displacement (2) and to the spectroscopically determined temperature (4), respectively.

Fig. 6
Fig. 6

Average temperature measured at Nummela baseline over a 130 m path length. Average of Pt-100 sensors is marked by black curve. Gray curve represents the spectroscopically measured temperature.

Tables (3)

Tables Icon

Table 1 Variation in Temperature, Pressure, Relative Humidity, and CO 2 Concentration That Will Result in 10 7 Increase in the Refractive Index of Air Based on the Modified Edlén Formula [1] Using a Wavelength of 633 nm

Tables Icon

Table 2 Parameters for the Oxygen Transitions Used in This Work at Reference Pressure of 1 atm and Temperature of 296 K (n Denotes the Temperature Coefficient of the Temperature-Dependent Linewidth)

Tables Icon

Table 3 Parameters Required for the Presented Spectroscopic Two-Line Thermometry

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 e τ η η ,
τ η η ( ν , T , p ) = u S η η ( T ) f ( ν , ν η η , T , p ) = u k η η ( ν , T , p ) ,
S η η ( T ) = S η η ( T ref ) Q ( T ref ) Q ( T ) exp [ h c E η k ( 1 T 1 T ref ) ] × [ 1 exp ( h c ν η η / k T ) 1 exp ( h c ν η η / k T ref ) ] ,
R = S 1 ( T ) S 2 ( T ) = S 1 ( T ref ) S 2 ( T ref ) exp [ h c Δ E k ( 1 T 1 T ref ) ] = R 0 exp [ h c Δ E k ( 1 T 1 T ref ) ] ,
R ( 1 + α press ( p p ref p ref ) ) = R 0 exp [ h c Δ E k ( 1 T 1 T ref ) ] ,
T ( R , p ) = T ref 1 T ref k h c Δ E ln ( R R 0 ( 1 + α press ( p p ref p ref ) ) ) .

Metrics