Abstract

A new fabrication method of apodized diffractive optical elements is proposed. It relies on using high energy beam sensitive glass as a halftone mask for variable diffraction efficiency phase masks generation in a resist layer. The presented technology is especially effective in mass production. Although fabrication of an amplitude mask is required, it is then repeatedly used in a single shot projection photolithography, which is much simpler and less laborious than the direct variable-dose pattern writing. Three prototypes of apodized phase masks were manufactured and characterized. The main advantages as well as limitations of the proposed technology are discussed.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Château, D. Phalippou, and P. Chavel, “A method for splitting a Gaussian laser beam into two coherent uniform beams,” Opt. Commun. 88, 33–36 (1992).
    [CrossRef]
  2. S. Y. Popov and A. T. Friberg, “Apodization of generalized axicons to produce uniform axial line images,” Pure Appl. Opt. 7, 537–548 (1998).
    [CrossRef]
  3. Z. Jaroszewicz, A. T. Friberg, and S. Y. Popov, “Kinoform apodisation,” J. Mod. Opt. 47, 939–946 (2000).
    [CrossRef]
  4. L. E. Erickson, H. G. Champion, J. Albert, K. O. Hill, B. Malo, S. Thériault, F. Bilodeau, and D. C. Johnson, “Fabrication of a variable diffraction efficiency phase mask by multiple dose ion implantation,” J. Vac. Sci. Technol. B 13, 2940–2943 (1995).
    [CrossRef]
  5. J. Albert, K. O. Hill, B. Malo, S. Thériault, F. Bilodeau, D. C. Johnson, and L. E. Erickson, “Apodisation of the spectral response of fibre Bragg gratings using phase mask with variable diffraction efficiency,” Electron. Lett. 31, 222–223 (1995).
    [CrossRef]
  6. A. Kowalik, Z. Jaroszewicz, A. Kołodziejczyk, and T. Osuch, “DOEs with variable diffraction efficiency obtained with the help of HEBS glasses,” in Proceedings of EOS Topical Meeting on Diffractive Optics (EOS, 2007), pp. 86–87.
  7. A. Kowalik, Z. Jaroszewicz, A. Kołodziejczyk, and T. Osuch, “Apodised linear axicons,” Proc. SPIE 7141, 714125-1 (2008).
    [CrossRef]
  8. M. Kuittinen and J. Turunen, “Mask misalignment in photolithographic fabrication of resonance-domain diffractive elements,” Opt. Commun. 142, 14–18 (1997).
    [CrossRef]
  9. A. Kowalik, K. Góra, Z. Jaroszewicz, and A. Kołodziejczyk, “Multi-step electron beam technology for the fabrication of high performance diffractive optical elements,” Microelectron. Eng. 77, 347–357 (2005).
    [CrossRef]
  10. “HEBS-glass photomask blanks,” Product Information 94–88, Canyon Materials, San Diego, California, USA.
  11. W. Däschner, H. Stein, P. Long, C. Wu, and S. H. Lee, “Diffractive optics and micro optics fabricated by high energy beam sensitive (HEBS) glass gray-level mask,” J. Vac. Sci. Technol. B 14, 3730–3733 (1996).
    [CrossRef]
  12. W. Däschner, P. Long, R. Stein, C. Wu, and S. H. Lee, “Cost-effective mass production of monolithic diffractive optical elements by the use of a single optical exposure with a gray-level mask on high-energy beam-sensitive glass,” Appl. Opt. 36, 4675–4680 (1997).
    [CrossRef] [PubMed]
  13. http://www.canyonmaterials.com.
  14. T. Osuch and Z. Jaroszewicz, “Apodized diffractive optical elements for fiber Bragg gratings fabrication,” in Proceedings of EOS Topical Meeting on Diffractive Optics (EOS, 2005), pp. 149–150.
  15. H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal stability of gratings in PMMA and CYTOP polymer fibers,” Opt. Commun. 204, 151–156 (2002).
    [CrossRef]
  16. K. Kalli, H. L. Dobb, D. J. Webb, K. Carroll, C. Themistos, M. Komodromos, G.-D. Peng, Q. Fang, and I. W. Boyd, “Development of an electrically tunable Bragg grating filter in polymer optical fibre operating at 1.55 μm,” Meas. Sci. Technol. 18, 3155–3164 (2007).
    [CrossRef]
  17. T. Osuch and Z. Jaroszewicz, “Numerical analysis of apodized fiber Bragg grating formation using phase mask with variable diffraction efficiency,” Opt. Commun. 284, 567–572(2011).
    [CrossRef]

2011 (1)

T. Osuch and Z. Jaroszewicz, “Numerical analysis of apodized fiber Bragg grating formation using phase mask with variable diffraction efficiency,” Opt. Commun. 284, 567–572(2011).
[CrossRef]

2008 (1)

A. Kowalik, Z. Jaroszewicz, A. Kołodziejczyk, and T. Osuch, “Apodised linear axicons,” Proc. SPIE 7141, 714125-1 (2008).
[CrossRef]

2007 (1)

K. Kalli, H. L. Dobb, D. J. Webb, K. Carroll, C. Themistos, M. Komodromos, G.-D. Peng, Q. Fang, and I. W. Boyd, “Development of an electrically tunable Bragg grating filter in polymer optical fibre operating at 1.55 μm,” Meas. Sci. Technol. 18, 3155–3164 (2007).
[CrossRef]

2005 (1)

A. Kowalik, K. Góra, Z. Jaroszewicz, and A. Kołodziejczyk, “Multi-step electron beam technology for the fabrication of high performance diffractive optical elements,” Microelectron. Eng. 77, 347–357 (2005).
[CrossRef]

2002 (1)

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal stability of gratings in PMMA and CYTOP polymer fibers,” Opt. Commun. 204, 151–156 (2002).
[CrossRef]

2000 (1)

Z. Jaroszewicz, A. T. Friberg, and S. Y. Popov, “Kinoform apodisation,” J. Mod. Opt. 47, 939–946 (2000).
[CrossRef]

1998 (1)

S. Y. Popov and A. T. Friberg, “Apodization of generalized axicons to produce uniform axial line images,” Pure Appl. Opt. 7, 537–548 (1998).
[CrossRef]

1997 (2)

1996 (1)

W. Däschner, H. Stein, P. Long, C. Wu, and S. H. Lee, “Diffractive optics and micro optics fabricated by high energy beam sensitive (HEBS) glass gray-level mask,” J. Vac. Sci. Technol. B 14, 3730–3733 (1996).
[CrossRef]

1995 (2)

L. E. Erickson, H. G. Champion, J. Albert, K. O. Hill, B. Malo, S. Thériault, F. Bilodeau, and D. C. Johnson, “Fabrication of a variable diffraction efficiency phase mask by multiple dose ion implantation,” J. Vac. Sci. Technol. B 13, 2940–2943 (1995).
[CrossRef]

J. Albert, K. O. Hill, B. Malo, S. Thériault, F. Bilodeau, D. C. Johnson, and L. E. Erickson, “Apodisation of the spectral response of fibre Bragg gratings using phase mask with variable diffraction efficiency,” Electron. Lett. 31, 222–223 (1995).
[CrossRef]

1992 (1)

N. Château, D. Phalippou, and P. Chavel, “A method for splitting a Gaussian laser beam into two coherent uniform beams,” Opt. Commun. 88, 33–36 (1992).
[CrossRef]

Albert, J.

L. E. Erickson, H. G. Champion, J. Albert, K. O. Hill, B. Malo, S. Thériault, F. Bilodeau, and D. C. Johnson, “Fabrication of a variable diffraction efficiency phase mask by multiple dose ion implantation,” J. Vac. Sci. Technol. B 13, 2940–2943 (1995).
[CrossRef]

J. Albert, K. O. Hill, B. Malo, S. Thériault, F. Bilodeau, D. C. Johnson, and L. E. Erickson, “Apodisation of the spectral response of fibre Bragg gratings using phase mask with variable diffraction efficiency,” Electron. Lett. 31, 222–223 (1995).
[CrossRef]

Bilodeau, F.

J. Albert, K. O. Hill, B. Malo, S. Thériault, F. Bilodeau, D. C. Johnson, and L. E. Erickson, “Apodisation of the spectral response of fibre Bragg gratings using phase mask with variable diffraction efficiency,” Electron. Lett. 31, 222–223 (1995).
[CrossRef]

L. E. Erickson, H. G. Champion, J. Albert, K. O. Hill, B. Malo, S. Thériault, F. Bilodeau, and D. C. Johnson, “Fabrication of a variable diffraction efficiency phase mask by multiple dose ion implantation,” J. Vac. Sci. Technol. B 13, 2940–2943 (1995).
[CrossRef]

Boyd, I. W.

K. Kalli, H. L. Dobb, D. J. Webb, K. Carroll, C. Themistos, M. Komodromos, G.-D. Peng, Q. Fang, and I. W. Boyd, “Development of an electrically tunable Bragg grating filter in polymer optical fibre operating at 1.55 μm,” Meas. Sci. Technol. 18, 3155–3164 (2007).
[CrossRef]

Carroll, K.

K. Kalli, H. L. Dobb, D. J. Webb, K. Carroll, C. Themistos, M. Komodromos, G.-D. Peng, Q. Fang, and I. W. Boyd, “Development of an electrically tunable Bragg grating filter in polymer optical fibre operating at 1.55 μm,” Meas. Sci. Technol. 18, 3155–3164 (2007).
[CrossRef]

Champion, H. G.

L. E. Erickson, H. G. Champion, J. Albert, K. O. Hill, B. Malo, S. Thériault, F. Bilodeau, and D. C. Johnson, “Fabrication of a variable diffraction efficiency phase mask by multiple dose ion implantation,” J. Vac. Sci. Technol. B 13, 2940–2943 (1995).
[CrossRef]

Château, N.

N. Château, D. Phalippou, and P. Chavel, “A method for splitting a Gaussian laser beam into two coherent uniform beams,” Opt. Commun. 88, 33–36 (1992).
[CrossRef]

Chavel, P.

N. Château, D. Phalippou, and P. Chavel, “A method for splitting a Gaussian laser beam into two coherent uniform beams,” Opt. Commun. 88, 33–36 (1992).
[CrossRef]

Chu, P. L.

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal stability of gratings in PMMA and CYTOP polymer fibers,” Opt. Commun. 204, 151–156 (2002).
[CrossRef]

Däschner, W.

W. Däschner, P. Long, R. Stein, C. Wu, and S. H. Lee, “Cost-effective mass production of monolithic diffractive optical elements by the use of a single optical exposure with a gray-level mask on high-energy beam-sensitive glass,” Appl. Opt. 36, 4675–4680 (1997).
[CrossRef] [PubMed]

W. Däschner, H. Stein, P. Long, C. Wu, and S. H. Lee, “Diffractive optics and micro optics fabricated by high energy beam sensitive (HEBS) glass gray-level mask,” J. Vac. Sci. Technol. B 14, 3730–3733 (1996).
[CrossRef]

Dobb, H. L.

K. Kalli, H. L. Dobb, D. J. Webb, K. Carroll, C. Themistos, M. Komodromos, G.-D. Peng, Q. Fang, and I. W. Boyd, “Development of an electrically tunable Bragg grating filter in polymer optical fibre operating at 1.55 μm,” Meas. Sci. Technol. 18, 3155–3164 (2007).
[CrossRef]

Erickson, L. E.

L. E. Erickson, H. G. Champion, J. Albert, K. O. Hill, B. Malo, S. Thériault, F. Bilodeau, and D. C. Johnson, “Fabrication of a variable diffraction efficiency phase mask by multiple dose ion implantation,” J. Vac. Sci. Technol. B 13, 2940–2943 (1995).
[CrossRef]

J. Albert, K. O. Hill, B. Malo, S. Thériault, F. Bilodeau, D. C. Johnson, and L. E. Erickson, “Apodisation of the spectral response of fibre Bragg gratings using phase mask with variable diffraction efficiency,” Electron. Lett. 31, 222–223 (1995).
[CrossRef]

Fang, Q.

K. Kalli, H. L. Dobb, D. J. Webb, K. Carroll, C. Themistos, M. Komodromos, G.-D. Peng, Q. Fang, and I. W. Boyd, “Development of an electrically tunable Bragg grating filter in polymer optical fibre operating at 1.55 μm,” Meas. Sci. Technol. 18, 3155–3164 (2007).
[CrossRef]

Friberg, A. T.

Z. Jaroszewicz, A. T. Friberg, and S. Y. Popov, “Kinoform apodisation,” J. Mod. Opt. 47, 939–946 (2000).
[CrossRef]

S. Y. Popov and A. T. Friberg, “Apodization of generalized axicons to produce uniform axial line images,” Pure Appl. Opt. 7, 537–548 (1998).
[CrossRef]

Góra, K.

A. Kowalik, K. Góra, Z. Jaroszewicz, and A. Kołodziejczyk, “Multi-step electron beam technology for the fabrication of high performance diffractive optical elements,” Microelectron. Eng. 77, 347–357 (2005).
[CrossRef]

Hill, K. O.

L. E. Erickson, H. G. Champion, J. Albert, K. O. Hill, B. Malo, S. Thériault, F. Bilodeau, and D. C. Johnson, “Fabrication of a variable diffraction efficiency phase mask by multiple dose ion implantation,” J. Vac. Sci. Technol. B 13, 2940–2943 (1995).
[CrossRef]

J. Albert, K. O. Hill, B. Malo, S. Thériault, F. Bilodeau, D. C. Johnson, and L. E. Erickson, “Apodisation of the spectral response of fibre Bragg gratings using phase mask with variable diffraction efficiency,” Electron. Lett. 31, 222–223 (1995).
[CrossRef]

Jaroszewicz, Z.

T. Osuch and Z. Jaroszewicz, “Numerical analysis of apodized fiber Bragg grating formation using phase mask with variable diffraction efficiency,” Opt. Commun. 284, 567–572(2011).
[CrossRef]

A. Kowalik, Z. Jaroszewicz, A. Kołodziejczyk, and T. Osuch, “Apodised linear axicons,” Proc. SPIE 7141, 714125-1 (2008).
[CrossRef]

A. Kowalik, K. Góra, Z. Jaroszewicz, and A. Kołodziejczyk, “Multi-step electron beam technology for the fabrication of high performance diffractive optical elements,” Microelectron. Eng. 77, 347–357 (2005).
[CrossRef]

Z. Jaroszewicz, A. T. Friberg, and S. Y. Popov, “Kinoform apodisation,” J. Mod. Opt. 47, 939–946 (2000).
[CrossRef]

A. Kowalik, Z. Jaroszewicz, A. Kołodziejczyk, and T. Osuch, “DOEs with variable diffraction efficiency obtained with the help of HEBS glasses,” in Proceedings of EOS Topical Meeting on Diffractive Optics (EOS, 2007), pp. 86–87.

T. Osuch and Z. Jaroszewicz, “Apodized diffractive optical elements for fiber Bragg gratings fabrication,” in Proceedings of EOS Topical Meeting on Diffractive Optics (EOS, 2005), pp. 149–150.

Johnson, D. C.

J. Albert, K. O. Hill, B. Malo, S. Thériault, F. Bilodeau, D. C. Johnson, and L. E. Erickson, “Apodisation of the spectral response of fibre Bragg gratings using phase mask with variable diffraction efficiency,” Electron. Lett. 31, 222–223 (1995).
[CrossRef]

L. E. Erickson, H. G. Champion, J. Albert, K. O. Hill, B. Malo, S. Thériault, F. Bilodeau, and D. C. Johnson, “Fabrication of a variable diffraction efficiency phase mask by multiple dose ion implantation,” J. Vac. Sci. Technol. B 13, 2940–2943 (1995).
[CrossRef]

Kalli, K.

K. Kalli, H. L. Dobb, D. J. Webb, K. Carroll, C. Themistos, M. Komodromos, G.-D. Peng, Q. Fang, and I. W. Boyd, “Development of an electrically tunable Bragg grating filter in polymer optical fibre operating at 1.55 μm,” Meas. Sci. Technol. 18, 3155–3164 (2007).
[CrossRef]

Kolodziejczyk, A.

A. Kowalik, Z. Jaroszewicz, A. Kołodziejczyk, and T. Osuch, “Apodised linear axicons,” Proc. SPIE 7141, 714125-1 (2008).
[CrossRef]

A. Kowalik, K. Góra, Z. Jaroszewicz, and A. Kołodziejczyk, “Multi-step electron beam technology for the fabrication of high performance diffractive optical elements,” Microelectron. Eng. 77, 347–357 (2005).
[CrossRef]

A. Kowalik, Z. Jaroszewicz, A. Kołodziejczyk, and T. Osuch, “DOEs with variable diffraction efficiency obtained with the help of HEBS glasses,” in Proceedings of EOS Topical Meeting on Diffractive Optics (EOS, 2007), pp. 86–87.

Komodromos, M.

K. Kalli, H. L. Dobb, D. J. Webb, K. Carroll, C. Themistos, M. Komodromos, G.-D. Peng, Q. Fang, and I. W. Boyd, “Development of an electrically tunable Bragg grating filter in polymer optical fibre operating at 1.55 μm,” Meas. Sci. Technol. 18, 3155–3164 (2007).
[CrossRef]

Kowalik, A.

A. Kowalik, Z. Jaroszewicz, A. Kołodziejczyk, and T. Osuch, “Apodised linear axicons,” Proc. SPIE 7141, 714125-1 (2008).
[CrossRef]

A. Kowalik, K. Góra, Z. Jaroszewicz, and A. Kołodziejczyk, “Multi-step electron beam technology for the fabrication of high performance diffractive optical elements,” Microelectron. Eng. 77, 347–357 (2005).
[CrossRef]

A. Kowalik, Z. Jaroszewicz, A. Kołodziejczyk, and T. Osuch, “DOEs with variable diffraction efficiency obtained with the help of HEBS glasses,” in Proceedings of EOS Topical Meeting on Diffractive Optics (EOS, 2007), pp. 86–87.

Kuittinen, M.

M. Kuittinen and J. Turunen, “Mask misalignment in photolithographic fabrication of resonance-domain diffractive elements,” Opt. Commun. 142, 14–18 (1997).
[CrossRef]

Lee, S. H.

W. Däschner, P. Long, R. Stein, C. Wu, and S. H. Lee, “Cost-effective mass production of monolithic diffractive optical elements by the use of a single optical exposure with a gray-level mask on high-energy beam-sensitive glass,” Appl. Opt. 36, 4675–4680 (1997).
[CrossRef] [PubMed]

W. Däschner, H. Stein, P. Long, C. Wu, and S. H. Lee, “Diffractive optics and micro optics fabricated by high energy beam sensitive (HEBS) glass gray-level mask,” J. Vac. Sci. Technol. B 14, 3730–3733 (1996).
[CrossRef]

Liu, H. Y.

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal stability of gratings in PMMA and CYTOP polymer fibers,” Opt. Commun. 204, 151–156 (2002).
[CrossRef]

Long, P.

W. Däschner, P. Long, R. Stein, C. Wu, and S. H. Lee, “Cost-effective mass production of monolithic diffractive optical elements by the use of a single optical exposure with a gray-level mask on high-energy beam-sensitive glass,” Appl. Opt. 36, 4675–4680 (1997).
[CrossRef] [PubMed]

W. Däschner, H. Stein, P. Long, C. Wu, and S. H. Lee, “Diffractive optics and micro optics fabricated by high energy beam sensitive (HEBS) glass gray-level mask,” J. Vac. Sci. Technol. B 14, 3730–3733 (1996).
[CrossRef]

Malo, B.

J. Albert, K. O. Hill, B. Malo, S. Thériault, F. Bilodeau, D. C. Johnson, and L. E. Erickson, “Apodisation of the spectral response of fibre Bragg gratings using phase mask with variable diffraction efficiency,” Electron. Lett. 31, 222–223 (1995).
[CrossRef]

L. E. Erickson, H. G. Champion, J. Albert, K. O. Hill, B. Malo, S. Thériault, F. Bilodeau, and D. C. Johnson, “Fabrication of a variable diffraction efficiency phase mask by multiple dose ion implantation,” J. Vac. Sci. Technol. B 13, 2940–2943 (1995).
[CrossRef]

Osuch, T.

T. Osuch and Z. Jaroszewicz, “Numerical analysis of apodized fiber Bragg grating formation using phase mask with variable diffraction efficiency,” Opt. Commun. 284, 567–572(2011).
[CrossRef]

A. Kowalik, Z. Jaroszewicz, A. Kołodziejczyk, and T. Osuch, “Apodised linear axicons,” Proc. SPIE 7141, 714125-1 (2008).
[CrossRef]

A. Kowalik, Z. Jaroszewicz, A. Kołodziejczyk, and T. Osuch, “DOEs with variable diffraction efficiency obtained with the help of HEBS glasses,” in Proceedings of EOS Topical Meeting on Diffractive Optics (EOS, 2007), pp. 86–87.

T. Osuch and Z. Jaroszewicz, “Apodized diffractive optical elements for fiber Bragg gratings fabrication,” in Proceedings of EOS Topical Meeting on Diffractive Optics (EOS, 2005), pp. 149–150.

Peng, G. D.

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal stability of gratings in PMMA and CYTOP polymer fibers,” Opt. Commun. 204, 151–156 (2002).
[CrossRef]

Peng, G.-D.

K. Kalli, H. L. Dobb, D. J. Webb, K. Carroll, C. Themistos, M. Komodromos, G.-D. Peng, Q. Fang, and I. W. Boyd, “Development of an electrically tunable Bragg grating filter in polymer optical fibre operating at 1.55 μm,” Meas. Sci. Technol. 18, 3155–3164 (2007).
[CrossRef]

Phalippou, D.

N. Château, D. Phalippou, and P. Chavel, “A method for splitting a Gaussian laser beam into two coherent uniform beams,” Opt. Commun. 88, 33–36 (1992).
[CrossRef]

Popov, S. Y.

Z. Jaroszewicz, A. T. Friberg, and S. Y. Popov, “Kinoform apodisation,” J. Mod. Opt. 47, 939–946 (2000).
[CrossRef]

S. Y. Popov and A. T. Friberg, “Apodization of generalized axicons to produce uniform axial line images,” Pure Appl. Opt. 7, 537–548 (1998).
[CrossRef]

Stein, H.

W. Däschner, H. Stein, P. Long, C. Wu, and S. H. Lee, “Diffractive optics and micro optics fabricated by high energy beam sensitive (HEBS) glass gray-level mask,” J. Vac. Sci. Technol. B 14, 3730–3733 (1996).
[CrossRef]

Stein, R.

Themistos, C.

K. Kalli, H. L. Dobb, D. J. Webb, K. Carroll, C. Themistos, M. Komodromos, G.-D. Peng, Q. Fang, and I. W. Boyd, “Development of an electrically tunable Bragg grating filter in polymer optical fibre operating at 1.55 μm,” Meas. Sci. Technol. 18, 3155–3164 (2007).
[CrossRef]

Thériault, S.

L. E. Erickson, H. G. Champion, J. Albert, K. O. Hill, B. Malo, S. Thériault, F. Bilodeau, and D. C. Johnson, “Fabrication of a variable diffraction efficiency phase mask by multiple dose ion implantation,” J. Vac. Sci. Technol. B 13, 2940–2943 (1995).
[CrossRef]

J. Albert, K. O. Hill, B. Malo, S. Thériault, F. Bilodeau, D. C. Johnson, and L. E. Erickson, “Apodisation of the spectral response of fibre Bragg gratings using phase mask with variable diffraction efficiency,” Electron. Lett. 31, 222–223 (1995).
[CrossRef]

Turunen, J.

M. Kuittinen and J. Turunen, “Mask misalignment in photolithographic fabrication of resonance-domain diffractive elements,” Opt. Commun. 142, 14–18 (1997).
[CrossRef]

Webb, D. J.

K. Kalli, H. L. Dobb, D. J. Webb, K. Carroll, C. Themistos, M. Komodromos, G.-D. Peng, Q. Fang, and I. W. Boyd, “Development of an electrically tunable Bragg grating filter in polymer optical fibre operating at 1.55 μm,” Meas. Sci. Technol. 18, 3155–3164 (2007).
[CrossRef]

Wu, C.

W. Däschner, P. Long, R. Stein, C. Wu, and S. H. Lee, “Cost-effective mass production of monolithic diffractive optical elements by the use of a single optical exposure with a gray-level mask on high-energy beam-sensitive glass,” Appl. Opt. 36, 4675–4680 (1997).
[CrossRef] [PubMed]

W. Däschner, H. Stein, P. Long, C. Wu, and S. H. Lee, “Diffractive optics and micro optics fabricated by high energy beam sensitive (HEBS) glass gray-level mask,” J. Vac. Sci. Technol. B 14, 3730–3733 (1996).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

J. Albert, K. O. Hill, B. Malo, S. Thériault, F. Bilodeau, D. C. Johnson, and L. E. Erickson, “Apodisation of the spectral response of fibre Bragg gratings using phase mask with variable diffraction efficiency,” Electron. Lett. 31, 222–223 (1995).
[CrossRef]

J. Mod. Opt. (1)

Z. Jaroszewicz, A. T. Friberg, and S. Y. Popov, “Kinoform apodisation,” J. Mod. Opt. 47, 939–946 (2000).
[CrossRef]

J. Vac. Sci. Technol. B (2)

L. E. Erickson, H. G. Champion, J. Albert, K. O. Hill, B. Malo, S. Thériault, F. Bilodeau, and D. C. Johnson, “Fabrication of a variable diffraction efficiency phase mask by multiple dose ion implantation,” J. Vac. Sci. Technol. B 13, 2940–2943 (1995).
[CrossRef]

W. Däschner, H. Stein, P. Long, C. Wu, and S. H. Lee, “Diffractive optics and micro optics fabricated by high energy beam sensitive (HEBS) glass gray-level mask,” J. Vac. Sci. Technol. B 14, 3730–3733 (1996).
[CrossRef]

Meas. Sci. Technol. (1)

K. Kalli, H. L. Dobb, D. J. Webb, K. Carroll, C. Themistos, M. Komodromos, G.-D. Peng, Q. Fang, and I. W. Boyd, “Development of an electrically tunable Bragg grating filter in polymer optical fibre operating at 1.55 μm,” Meas. Sci. Technol. 18, 3155–3164 (2007).
[CrossRef]

Microelectron. Eng. (1)

A. Kowalik, K. Góra, Z. Jaroszewicz, and A. Kołodziejczyk, “Multi-step electron beam technology for the fabrication of high performance diffractive optical elements,” Microelectron. Eng. 77, 347–357 (2005).
[CrossRef]

Opt. Commun. (4)

T. Osuch and Z. Jaroszewicz, “Numerical analysis of apodized fiber Bragg grating formation using phase mask with variable diffraction efficiency,” Opt. Commun. 284, 567–572(2011).
[CrossRef]

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal stability of gratings in PMMA and CYTOP polymer fibers,” Opt. Commun. 204, 151–156 (2002).
[CrossRef]

N. Château, D. Phalippou, and P. Chavel, “A method for splitting a Gaussian laser beam into two coherent uniform beams,” Opt. Commun. 88, 33–36 (1992).
[CrossRef]

M. Kuittinen and J. Turunen, “Mask misalignment in photolithographic fabrication of resonance-domain diffractive elements,” Opt. Commun. 142, 14–18 (1997).
[CrossRef]

Proc. SPIE (1)

A. Kowalik, Z. Jaroszewicz, A. Kołodziejczyk, and T. Osuch, “Apodised linear axicons,” Proc. SPIE 7141, 714125-1 (2008).
[CrossRef]

Pure Appl. Opt. (1)

S. Y. Popov and A. T. Friberg, “Apodization of generalized axicons to produce uniform axial line images,” Pure Appl. Opt. 7, 537–548 (1998).
[CrossRef]

Other (4)

A. Kowalik, Z. Jaroszewicz, A. Kołodziejczyk, and T. Osuch, “DOEs with variable diffraction efficiency obtained with the help of HEBS glasses,” in Proceedings of EOS Topical Meeting on Diffractive Optics (EOS, 2007), pp. 86–87.

“HEBS-glass photomask blanks,” Product Information 94–88, Canyon Materials, San Diego, California, USA.

http://www.canyonmaterials.com.

T. Osuch and Z. Jaroszewicz, “Apodized diffractive optical elements for fiber Bragg gratings fabrication,” in Proceedings of EOS Topical Meeting on Diffractive Optics (EOS, 2005), pp. 149–150.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Diagram of the apodized DOE fabrication by using the analog technique and HEBS glass.

Fig. 2
Fig. 2

Characteristic of HEBS glass optical density versus e-beam dose.

Fig. 3
Fig. 3

Calibration curve for the obtained phase step heights in function of the optical density of the amplitude mask obtained in the HEBS glass.

Fig. 4
Fig. 4

Halftone mask with 100 μm period realized in HEBS substrate.

Fig. 5
Fig. 5

Apodized phase mask with 10 μm period fabricated in resist layer.

Fig. 6
Fig. 6

Diffraction efficiency of apodized phase mask with 10 μm period.

Fig. 7
Fig. 7

Phase step heights of apodized phase mask with period 10 μm (left side)—theoretical data and AFM measurement results.

Fig. 8
Fig. 8

Phase step heights of 10 μm period phase mask obtained using profilometry.

Fig. 9
Fig. 9

Phase step heights of 2 μm period phase mask obtained using profilometry.

Fig. 10
Fig. 10

Phase step heights of 1.07 μm period phase mask obtained using profilometry.

Metrics