Abstract

Multiple-beam Fizeau fringes are formed across a liquid silvered wedge when it is illuminated by a collimated beam of monochromatic light. Inserting the fiber into the liquid silvered wedge causes the fringes to shift across the fiber region with respect to the fringes at the liquid region. Fringe shift is a function in the geometry of the different regions of the fiber and the refractive index profile of the fiber. In this paper, theoretical models for the fringe shift across double-clad fibers (DCFs) with rectangular, elliptical, circular, and D-shaped inner cladding are developed. An algorithm to reconstruct the linear and nonlinear terms of the refractive index profile of the DCF is outlined. Numerical examples are provided and discussed.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (19)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (47)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription