Abstract

Differential absorption lidar (DIAL) is a unique technique for profiling water vapor from the ground up to the lower stratosphere. For accurate measurements, the DIAL laser transmitter has to meet stringent requirements. These include high average power (up to 10W) and high single-shot pulse energy, a spectral purity >99.9%, a frequency instability <60MHzrms, and narrow spectral bandwidth (single-mode, <160MHz). We describe extensive modeling efforts to optimize the resonator design of a Ti:sapphire ring laser in these respects. The simulations were made for the wavelength range of 820nm, which is optimum for ground-based observations, and for both stable and unstable resonator configurations. The simulator consists of four modules: (1) a thermal module for determining the thermal lensing of the Brewster-cut Ti:sapphire crystal collinear pumped from both ends with a high-power, frequency-doubled Nd:YAG laser; (2) a module for calculating the in-cavity beam propagations for stable and unstable resonators; (3) a performance module for simulating the pumping efficiency and the laser pulse energy; and (4) a spectral module for simulating injection seeding and the spectral properties of the laser radiation including spectral impurity. Both a stable and an unstable Ti:sapphire laser resonator were designed for delivering an average power of 10W at a pulse repetition frequency of 250Hz with a pulse length of approximately 40ns, satisfying all spectral requirements. Although the unstable resonator design is more complex to align and has a higher lasing threshold, it yields similar efficiency and higher spectral purity at higher overall mode volume, which is promising for long-term routine operations.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. V. Browell, T. D. Wilkerson, and T. J. Mcilrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 3474–3483 (1979).
    [CrossRef] [PubMed]
  2. J. Bösenberg, “Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998).
    [CrossRef]
  3. V. Wulfmeyer and J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
    [CrossRef]
  4. A. Behrendt, V. Wulfmeyer, P. Di Girolamo, C. Kiemle, H.-S. Bauer, T. Schaberl, D. Summa, D. N. Whiteman, B. B. Demoz, E. V. Browell, S. Ismail, R. Ferrare, S. Kooi, G. Ehret, and J. Wang, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part I: airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes,” J. Atmos. Ocean. Technol. 24, 3–21 (2007).
    [CrossRef]
  5. A. Behrendt, V. Wulfmeyer, C. Kiemle, G. Ehret, C. Flamant, T. Schaberl, H.-S. Bauer, S. Kooi, S. Ismail, R. Ferrare, E. V. Browell, and D. N. Whiteman, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part II: airborne-to-airborne systems,” J. Atmos. Ocean. Technol. 24, 22–39 (2007).
    [CrossRef]
  6. R. Bhawar, P. Di Girolamo, D. Summa, C. Flamant, D. Althausen, A. Behrendt, C. Kiemle, P. Bosser, M. Cacciani, C. Champollion, T. Di Iorio, R. Engelmann, C. Herold, S. Pal, A. Riede, M. Wirth, and V. Wulfmeyer, “The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: airborne-to-ground-based and airborne-to-airborne lidar systems,” Q. J. R. Meteorol. Soc. 137, 325–348 (2011).
    [CrossRef]
  7. S. Ismail, and E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
    [CrossRef] [PubMed]
  8. V. Wulfmeyer, H. Bauer, P. Di Girolamo, and C. Serio,”Comparison of active and passive remote sensing from space: an analysis based on the simulated performance of IASI and space borne differential absorption lidar,” Remote Sens. Environ. 95, 211–230 (2005).
    [CrossRef]
  9. A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, and T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41, 7657–7666 (2002).
    [CrossRef]
  10. D. N. Whiteman, B. Demoz, P. Di Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, D. Sabatino, G. Schwemmer, B. Gentry, R.-F. Lin, A. Behrendt, V. Wulfmeyer, E. Browell, R. Ferrare, S. Ismail, and J. Wang, “Raman water vapor lidar measurements during the international H2O project. II. Case studies,” J. Atmos. Ocean. Technol. 23, 170–183 (2006).
    [CrossRef]
  11. D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801(2010).
    [CrossRef]
  12. V. Wulfmeyer, S. Pal, D. D. Turner, and E. Wagner, “Can water vapour Raman lidar resolve profiles of turbulent variables in the convective boundary layer?,” Bound.-Lay. Meteorol. 136, 253–284 (2010).
    [CrossRef]
  13. V. Wulfmeyer and C. Walther, “Future performance of ground-based and airborne water-vapor differential absorption lidar. I. Overview and theory,” Appl. Opt. 40, 5304–5320(2001).
    [CrossRef]
  14. V. Wulfmeyer and C. Walther, “Future performance of ground-based and airborne water-vapor differential absorption lidar. II. Simulations of the precision of a near-infrared, high-power system,” Appl. Opt. 40, 5321–5336 (2001).
    [CrossRef]
  15. A. Behrendt, V. Wulfmeyer, A. Riede, G. Wagner, S. Pal, H. Bauer, M. Radlach, and F. Späth, “3-dimensional observations of atmospheric humidity with a scanning differential absorption lidar,” Proc. SPIE 7475, 74750L (2009).
    [CrossRef]
  16. P. Ingmann and A. Hélière, “WALES—WAter vapour Lidar Experiment in Space—Report for assessment,” ESA SP-1257(2), (European Space Agency, 2001).
  17. P. Langen and Mission Experts Division, “WALES—WAter vapour Lidar Experiment in Space—Report for Mission Selection,” ESA SP-1279(3), (European Space Agency, 2004).
  18. P. Langen and Mission Experts Division, “WALES—WAter vapour Lidar Experiment in Space—Technical and Programmatic Annex,” Annex to ESA SP-1279(3), (European Space Agency, 2004).
  19. P. Di Girolamo, A. Behrendt, C. Kiemle, V. Wulfmeyer, H. Bauer, D. Summa, A. Dörnbrack, and G. Ehret, “Simulation of satellite water vapour lidar measurements: performance assessment under real atmospheric conditions,” Remote Sens. Environ. 112, 1552–1568 (2008).
    [CrossRef]
  20. V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 3804–3824 (1998).
    [CrossRef]
  21. J. L. Machol, T. Ayers, K. T. Schwenz, K. W. Koenig, R. M. Hardesty, C. J. Senff, M. A. Krainak, J. B. Abshire, H. E. Bravo, and S. P. Sandberg, “Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor,” Appl. Opt. 43, 3110–3121 (2004).
    [CrossRef] [PubMed]
  22. K. Ertel, H. Linné, and J. Bösenberg, “Injection-seeded pulsed Ti:sapphire laser with novel stabilization scheme and capability of dual-wavelength operation,” Appl. Opt. 44, 5120–5126(2005).
    [CrossRef] [PubMed]
  23. H. Vogelmann and T. Trickl, “Wide-range sounding of free-tropospheric water vapor with a differential-absorption lidar (DIAL) at a high-altitude station,” Appl. Opt. 47, 2116–2132 (2008).
    [CrossRef] [PubMed]
  24. LASE Project, “http://asd-www.larc.nasa.gov/lase/ASDlase.html,” (2007).
  25. D. Bruneau, P. Quaglia, C. Flament, M. Meissonnier, and J. Pelon, “Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description,” Appl. Opt. 40, 3450–3461 (2001).
    [CrossRef]
  26. M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B 96, 201–213 (2009).
    [CrossRef]
  27. V. Wulfmeyer, “Investigation of turbulent processes in the lower troposphere with water vapor DIAL and radar-RASS,” J. Atmos. Sci. 56, 1055–1076 (1999).
    [CrossRef]
  28. V. Wulfmeyer, “Investigations of humidity skewness and variance profiles in the convective boundary layer and comparison of the latter with large eddy simulation results,” J. Atmos. Sci. 56, 1077–1087 (1999).
    [CrossRef]
  29. H. V. Murphey, R. M. Wakimoto, C. Flamant, and D. E. Kingsmill, “Dryline on 19 June 2002 during IHOP. Part I: airborne Doppler and LEANDRE II analyses of the thin line structure and convection initiation,” Mon. Weather Rev. 134, 406–430 (2006).
    [CrossRef]
  30. R. M. Wakimoto, H. V. Murphey, E. V. Browell, and S. Ismail, “The “triple point” on 24 May 2020 during IHOP. Part I: airborne Doppler and LASE analyses of the frontal boundaries and convection initiation,” Mon. Weather Rev. 134, 231–250(2006).
    [CrossRef]
  31. J. S. Grabon, K. J. Davis, C. Kiemle, and G. Ehret, “Airborne lidar observations of the transition zone between the convective boundary layer and free atmosphere during the international H2O project (IHOP) in 2002,” Bound.-Lay. Meteorol. 134, 61–83 (2010).
    [CrossRef]
  32. C. Kiemle, M. Wirth, A. Fix, S. Rahm, U. Corsmeier, and P. DiGirolamo, “Latent heat flux measurements over complex terrain by airborne water vapour and wind lidars,” Q. J. R. Meteorol. Soc. 137, 190–203 (2011).
    [CrossRef]
  33. A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137, 81–100 (2011).
    [CrossRef]
  34. A. Behrendt, V. Wulfmeyer, G. Wagner, A. Riede, and F. Späth are preparing a manuscript to be called “Measurements with the University of Hohenheim water vapor DIAL during COPS.”
  35. U. Corsmeier, N. Kalthoff, C. Barthlott, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS-IOP 9c,” Q. J. R. Meteorol. Soc. 137, 137–155 (2011).
    [CrossRef]
  36. V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
    [CrossRef]
  37. R. A. Ferrare, E. V. Browell, S. Ismail, S. A. Kooi, L. H. Brasseur, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, G. S. Diskin, J. E. M. Goldsmith, B. M. Lesht, J. R. Podolske, G. W. Sachse, F. J. Schmidlin, D. D. Turner, D. N. Whiteman, D. Tobin, L. M. Miloshevich, H. E. Revercomb, B. B. Demoz, and P. Di Girolamo, “Characterization of upper-troposphere water vapor measurements during AFWEX using LASE,” J. Atmos. Ocean. Technol. 21, 1790–1808 (2004).
    [CrossRef]
  38. E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
    [CrossRef]
  39. D. Bruneau, H. Cazeneuve, C. Loth, and J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937(1991).
    [CrossRef] [PubMed]
  40. D. Bruneau, T. Arnaud des Lions, P. Quaglia, and J. Pelon, “Injection-seeded pulsed alexandrite laser for differential absorption lidar application,” Appl. Opt. 33, 3941–3950(1994).
    [CrossRef] [PubMed]
  41. D. Bruneau, P. Quaglia, C. Flament, and J. Pelon, “Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. II. First results,” Appl. Opt. 40, 3462–3475 (2001).
    [CrossRef]
  42. V. Wulfmeyer, J. Bösenberg, S. Lehmann, C. Senff, and S. Schmitz, “Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar,” Opt. Lett. 20, 638–640 (1995).
    [CrossRef] [PubMed]
  43. V. Wulfmeyer and J. Bösenberg, “Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar,” Opt. Lett. 21, 1150–1152 (1996).
    [CrossRef] [PubMed]
  44. G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, and G. Ehret, “Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy,” Appl. Phys. B 75, 165–172 (2002).
    [CrossRef]
  45. J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water-vapor DIAL measurements: design, setup and performance,” Appl. Phys. B 102, 917–935 (2011).
    [CrossRef]
  46. A. Fix, G. Ehret, J. Löhring, D. Hoffmann, and M. Alpers, “Water vapor differential absorption lidar measurements using a diode-pumped all-solid-state laser at 935 nm,” Appl. Phys. B 102, 905–915 (2011).
    [CrossRef]
  47. A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL),” J. Atmos. Ocean. Technol. 26, 733–745 (2009).
    [CrossRef]
  48. M. D. Obland, K. S. Repasky, A. R. Nehrir, J. L. Carlsten, and J. A. Shaw, “Development of a widely tunable amplified diode laser differential absorption lidar for profiling atmospheric water vapor,” J. Appl. Remote Sens. 4, 1–24 (2010).
    [CrossRef]
  49. A. Dinovitser, M. W. Hamilton, and R. A. Vincent, “Stabilized master laser system for differential absorption lidar,” Appl. Opt. 49, 3274–3281 (2010).
    [CrossRef] [PubMed]
  50. G. Wagner, V. Wulfmeyer, and A. Behrendt are preparing a manuscript to be called “The transmitter of a 3D-scanning DIAL system. System description and transmitter performance.”
  51. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).
  52. S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935 nm,” Opt. Commun. 275, 170–172 (2007).
    [CrossRef]
  53. F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943 nm and crystal growth,” Appl. Phys. B 89, 305–310 (2007).
    [CrossRef]
  54. Z. Lin, X. Wang, F. Kallmeyer, H. J. Eichler, and C. Gao, “Single frequency operation of a tunable injection-seeded Nd:GSAG Q-switched laser around 942 nm,” Opt. Express 18, 6131–6136 (2010).
    [CrossRef] [PubMed]
  55. A. Petrova-Mayor, and V. Wulfmeyer, “Development of an eye-safe solid-state tunable laser transmitter in the 1.4–1.5 μm wavelength region based on Cr4+:YAG crystal for lidar applications,” Appl. Opt. 47, 1522–1534 (2008).
    [CrossRef] [PubMed]
  56. M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, “Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system,” Appl. Opt. 44, 582–590 (2005).
    [CrossRef] [PubMed]
  57. W. Koechner, “Thermo-optic effects and heat removal,” in Solid-State Laser Engineering, T.Tamir and A.L.Schawlow, eds. (Springer-Verlag1999), Chap. 7.
  58. N. Hodgson and H. Weber, “Resonators with variable internal lenses,” in Optical Sciences: Laser Resonators and Beam Propagation, 2nd ed., W.T.Rhodes, ed. (Springer, 2005), Vol.  108, Chap. 13.
  59. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986).
    [CrossRef]
  60. G. A. Rines, H. H. Zenzie, and P. F. Moulton, “Recent advantages in Ti:Al2O3 unstable resonator lasers,” in Advanced Solid State Lasers, G.Dube and L.Chase, eds. Vol.  10 of OSA Proceedings Series (Optical Society of America, 1991), paper TL3.
  61. F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Uteza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandre, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 599123 (2005).
    [CrossRef]
  62. L. G. DeShazer, J. M. Eggleston, and K. W. Kangas, “Saturation of green absorption in titanium-doped sapphire laser crystals,” Opt. Lett. 13, 363–365 (1988).
    [CrossRef] [PubMed]
  63. L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
    [CrossRef]
  64. R. Weber, B. Neuenschwander, M. MacDonald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34, 1046–1053 (1998).
    [CrossRef]
  65. H. J. Eichler, A. Haase, R. Menzel, and A. Siemoneit, “Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier,” J. Phys. D 26, 1884–1891 (1993).
    [CrossRef]
  66. S. Ito, H. Nagaoka, T. Miura, H. Kobayashi, A. Endo, and K. Torizuka, “Measurement of thermal lensing in a power amplifier of a terawatt Ti:sapphire laser,” Appl. Phys. B 74, 343–347 (2002).
    [CrossRef]
  67. V. Ramanathan, J. Lee, S. Xu, X. Wang, L. Williams, W. Malphurs, and D. H. Reitze, “Analysis of thermal aberrations in a high average power single-stage Ti:sapphire regenerative chirped pulse amplifier: simulation and experiment,” Rev. Sci. Instrum. 77, 103103 (2006).
    [CrossRef]
  68. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
    [CrossRef]
  69. G. Wagner, M. Shiler, and V. Wulfmeyer, “Simulations of thermal lensing of a Ti:sapphire crystal end-pumped with high average power,” Opt. Express 13, 8045–8055 (2005).
    [CrossRef] [PubMed]
  70. H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).
  71. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966).
    [CrossRef] [PubMed]
  72. J. P. Lörtscher and J. Steffen, “Dynamic stable resonators: a design procedure,” Opt. Quantum Electron. 7, 505–514 (1975).
    [CrossRef]
  73. H. P. Kortz, R. Iffländer, and H. Weber, “Stability and beam divergence of multimode lasers with internal variable lenses,” Appl. Opt. 20, 4124–4134 (1981).
    [CrossRef] [PubMed]
  74. V. Magni, “Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability,” Appl. Opt. 25, 107–117 (1986).
    [CrossRef] [PubMed]
  75. D. MetcalfP. de Giovanni, J. Zachorowski, and M. Leduc, “Laser resonators containing self-focusing elements,” Appl. Opt. 26, 4508–4517 (1987).
    [CrossRef] [PubMed]
  76. Y. A. Anan’ev, N. A. Sventsitskaya, and V. E. Sherstobitov, “Properties of a laser with an unstable resonator,” Sov. Phys. JETP 28, 69–74 (1969).
  77. R. J. Freiberg, P. P. Chenausky, and C. J. Buczek, “Asymmetric unstable traveling-wave resonators,” IEEE J. Quantum Electron. 10, 279–289 (1974).
    [CrossRef]
  78. M. Morin, “Graded reflectivity mirror unstable laser resonators,” Opt. Quantum Electron. 29, 819–866 (1997).
    [CrossRef]
  79. Applied Optics Research (AOR), “GLAD: General Laser Analysis and Design program,” Version 5.0.5, www.aor.com.
  80. G. N. Lawrence, “Optical modeling,” in Applied Optics and Optical Engineering XI, R.R.Shannon and J.C.Wyant, eds. (Academic, 1992), Chap. 3.
  81. P. Albers, E. Stark, and G. Huber, “Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,” J. Opt. Soc. Am. B 3, 134–139 (1986).
    [CrossRef]
  82. W. R. Rapoport and C. P. Khattak, “Titanium sapphire laser characteristics,” Appl. Opt. 27, 2677–2684 (1988).
    [CrossRef] [PubMed]
  83. W. Koechner, “Q-switching,” in Solid-State Laser Engineering, T.Tamir, and A.L.Schawlow, eds. (Springer-Verlag, 1999), Chap. 8.
  84. J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
    [CrossRef]
  85. D. B. Coyle, D. V. Guerra, and R. B. Kay, “An interactive numerical model of diode-pumped, Q-switched/cavity-dumped lasers,” J. Phys. D 28, 452–462 (1995).
    [CrossRef]
  86. J. M. Eggleston, L. G. DeShazer, and K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti:sapphire oscillators,” IEEE J. Quantum Electron. 24, 1009–1015(1988).
    [CrossRef]
  87. R. C. Powell, G. E. Venikouas, L. Xi, J. L. Tyminski, and M. R. Kokta, “Thermal effects on the optical spectra of Al2O3:Ti3+,” J. Chem. Phys. 84, 662–665 (1986).
    [CrossRef]
  88. S. DeSilvestri, P. Laporta, V. Magni, O. Svelto, and B. Majocchi, “Unstable laser resonators with super-Gaussian mirrors,” Opt. Lett. 13, 201–203 (1988).
    [CrossRef]
  89. S. DeSilvestri, P. Laporta, V. Magni, and O. Svelto, “Solid-state laser unstable resonators with tapered reflectivity mirrors: the super-Gaussian approach,” IEEE J. Quantum Electron. 24, 1172–1177 (1988).
    [CrossRef]
  90. N. Hodgson and H. Weber, “Unstable resonators,” in Optical Sciences: Laser Resonators and Beam Propagation, 2nd ed., W.T.Rhodes, ed. (Springer, 2005), Vol.  108, Chap. 7.
  91. A. E. Siegman, “Derivation of the cavity rate equation—spontaneous emission: the “extra photon,” in Lasers, A.Kelly, ed. (University Science, 1986), Chap. 13.2.
  92. S. Ismail and E. V. Browell, “Recent lidar technology developments and their influence on measurements of tropospheric water vapor,” J. Atmos. Ocean. Technol. 11, 76–84(1994).
    [CrossRef]
  93. Y.S.Touloukian and C.Y.Ho, eds., “Thermal conductivity—nonmetalic solids,” in Thermophysical Properties of Matter (IFI/Plenum, 1972), Vol.  2.
  94. Y.S.Touloukian and C.Y.Ho, eds., “Specific heat—nonmetalic solids,” in Thermophysical Properties of Matter (IFI/Plenum, 1972), Vol.  5.

2011 (7)

R. Bhawar, P. Di Girolamo, D. Summa, C. Flamant, D. Althausen, A. Behrendt, C. Kiemle, P. Bosser, M. Cacciani, C. Champollion, T. Di Iorio, R. Engelmann, C. Herold, S. Pal, A. Riede, M. Wirth, and V. Wulfmeyer, “The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: airborne-to-ground-based and airborne-to-airborne lidar systems,” Q. J. R. Meteorol. Soc. 137, 325–348 (2011).
[CrossRef]

C. Kiemle, M. Wirth, A. Fix, S. Rahm, U. Corsmeier, and P. DiGirolamo, “Latent heat flux measurements over complex terrain by airborne water vapour and wind lidars,” Q. J. R. Meteorol. Soc. 137, 190–203 (2011).
[CrossRef]

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137, 81–100 (2011).
[CrossRef]

U. Corsmeier, N. Kalthoff, C. Barthlott, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS-IOP 9c,” Q. J. R. Meteorol. Soc. 137, 137–155 (2011).
[CrossRef]

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water-vapor DIAL measurements: design, setup and performance,” Appl. Phys. B 102, 917–935 (2011).
[CrossRef]

A. Fix, G. Ehret, J. Löhring, D. Hoffmann, and M. Alpers, “Water vapor differential absorption lidar measurements using a diode-pumped all-solid-state laser at 935 nm,” Appl. Phys. B 102, 905–915 (2011).
[CrossRef]

2010 (6)

J. S. Grabon, K. J. Davis, C. Kiemle, and G. Ehret, “Airborne lidar observations of the transition zone between the convective boundary layer and free atmosphere during the international H2O project (IHOP) in 2002,” Bound.-Lay. Meteorol. 134, 61–83 (2010).
[CrossRef]

M. D. Obland, K. S. Repasky, A. R. Nehrir, J. L. Carlsten, and J. A. Shaw, “Development of a widely tunable amplified diode laser differential absorption lidar for profiling atmospheric water vapor,” J. Appl. Remote Sens. 4, 1–24 (2010).
[CrossRef]

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801(2010).
[CrossRef]

V. Wulfmeyer, S. Pal, D. D. Turner, and E. Wagner, “Can water vapour Raman lidar resolve profiles of turbulent variables in the convective boundary layer?,” Bound.-Lay. Meteorol. 136, 253–284 (2010).
[CrossRef]

Z. Lin, X. Wang, F. Kallmeyer, H. J. Eichler, and C. Gao, “Single frequency operation of a tunable injection-seeded Nd:GSAG Q-switched laser around 942 nm,” Opt. Express 18, 6131–6136 (2010).
[CrossRef] [PubMed]

A. Dinovitser, M. W. Hamilton, and R. A. Vincent, “Stabilized master laser system for differential absorption lidar,” Appl. Opt. 49, 3274–3281 (2010).
[CrossRef] [PubMed]

2009 (3)

A. Behrendt, V. Wulfmeyer, A. Riede, G. Wagner, S. Pal, H. Bauer, M. Radlach, and F. Späth, “3-dimensional observations of atmospheric humidity with a scanning differential absorption lidar,” Proc. SPIE 7475, 74750L (2009).
[CrossRef]

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B 96, 201–213 (2009).
[CrossRef]

A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL),” J. Atmos. Ocean. Technol. 26, 733–745 (2009).
[CrossRef]

2008 (3)

2007 (4)

A. Behrendt, V. Wulfmeyer, P. Di Girolamo, C. Kiemle, H.-S. Bauer, T. Schaberl, D. Summa, D. N. Whiteman, B. B. Demoz, E. V. Browell, S. Ismail, R. Ferrare, S. Kooi, G. Ehret, and J. Wang, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part I: airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes,” J. Atmos. Ocean. Technol. 24, 3–21 (2007).
[CrossRef]

A. Behrendt, V. Wulfmeyer, C. Kiemle, G. Ehret, C. Flamant, T. Schaberl, H.-S. Bauer, S. Kooi, S. Ismail, R. Ferrare, E. V. Browell, and D. N. Whiteman, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part II: airborne-to-airborne systems,” J. Atmos. Ocean. Technol. 24, 22–39 (2007).
[CrossRef]

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935 nm,” Opt. Commun. 275, 170–172 (2007).
[CrossRef]

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943 nm and crystal growth,” Appl. Phys. B 89, 305–310 (2007).
[CrossRef]

2006 (4)

D. N. Whiteman, B. Demoz, P. Di Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, D. Sabatino, G. Schwemmer, B. Gentry, R.-F. Lin, A. Behrendt, V. Wulfmeyer, E. Browell, R. Ferrare, S. Ismail, and J. Wang, “Raman water vapor lidar measurements during the international H2O project. II. Case studies,” J. Atmos. Ocean. Technol. 23, 170–183 (2006).
[CrossRef]

V. Ramanathan, J. Lee, S. Xu, X. Wang, L. Williams, W. Malphurs, and D. H. Reitze, “Analysis of thermal aberrations in a high average power single-stage Ti:sapphire regenerative chirped pulse amplifier: simulation and experiment,” Rev. Sci. Instrum. 77, 103103 (2006).
[CrossRef]

H. V. Murphey, R. M. Wakimoto, C. Flamant, and D. E. Kingsmill, “Dryline on 19 June 2002 during IHOP. Part I: airborne Doppler and LEANDRE II analyses of the thin line structure and convection initiation,” Mon. Weather Rev. 134, 406–430 (2006).
[CrossRef]

R. M. Wakimoto, H. V. Murphey, E. V. Browell, and S. Ismail, “The “triple point” on 24 May 2020 during IHOP. Part I: airborne Doppler and LASE analyses of the frontal boundaries and convection initiation,” Mon. Weather Rev. 134, 231–250(2006).
[CrossRef]

2005 (5)

V. Wulfmeyer, H. Bauer, P. Di Girolamo, and C. Serio,”Comparison of active and passive remote sensing from space: an analysis based on the simulated performance of IASI and space borne differential absorption lidar,” Remote Sens. Environ. 95, 211–230 (2005).
[CrossRef]

F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Uteza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandre, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 599123 (2005).
[CrossRef]

M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, “Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system,” Appl. Opt. 44, 582–590 (2005).
[CrossRef] [PubMed]

K. Ertel, H. Linné, and J. Bösenberg, “Injection-seeded pulsed Ti:sapphire laser with novel stabilization scheme and capability of dual-wavelength operation,” Appl. Opt. 44, 5120–5126(2005).
[CrossRef] [PubMed]

G. Wagner, M. Shiler, and V. Wulfmeyer, “Simulations of thermal lensing of a Ti:sapphire crystal end-pumped with high average power,” Opt. Express 13, 8045–8055 (2005).
[CrossRef] [PubMed]

2004 (2)

J. L. Machol, T. Ayers, K. T. Schwenz, K. W. Koenig, R. M. Hardesty, C. J. Senff, M. A. Krainak, J. B. Abshire, H. E. Bravo, and S. P. Sandberg, “Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor,” Appl. Opt. 43, 3110–3121 (2004).
[CrossRef] [PubMed]

R. A. Ferrare, E. V. Browell, S. Ismail, S. A. Kooi, L. H. Brasseur, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, G. S. Diskin, J. E. M. Goldsmith, B. M. Lesht, J. R. Podolske, G. W. Sachse, F. J. Schmidlin, D. D. Turner, D. N. Whiteman, D. Tobin, L. M. Miloshevich, H. E. Revercomb, B. B. Demoz, and P. Di Girolamo, “Characterization of upper-troposphere water vapor measurements during AFWEX using LASE,” J. Atmos. Ocean. Technol. 21, 1790–1808 (2004).
[CrossRef]

2002 (3)

G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, and G. Ehret, “Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy,” Appl. Phys. B 75, 165–172 (2002).
[CrossRef]

S. Ito, H. Nagaoka, T. Miura, H. Kobayashi, A. Endo, and K. Torizuka, “Measurement of thermal lensing in a power amplifier of a terawatt Ti:sapphire laser,” Appl. Phys. B 74, 343–347 (2002).
[CrossRef]

A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, and T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41, 7657–7666 (2002).
[CrossRef]

2001 (4)

1999 (2)

V. Wulfmeyer, “Investigation of turbulent processes in the lower troposphere with water vapor DIAL and radar-RASS,” J. Atmos. Sci. 56, 1055–1076 (1999).
[CrossRef]

V. Wulfmeyer, “Investigations of humidity skewness and variance profiles in the convective boundary layer and comparison of the latter with large eddy simulation results,” J. Atmos. Sci. 56, 1077–1087 (1999).
[CrossRef]

1998 (5)

1997 (1)

M. Morin, “Graded reflectivity mirror unstable laser resonators,” Opt. Quantum Electron. 29, 819–866 (1997).
[CrossRef]

1996 (1)

1995 (2)

1994 (2)

S. Ismail and E. V. Browell, “Recent lidar technology developments and their influence on measurements of tropospheric water vapor,” J. Atmos. Ocean. Technol. 11, 76–84(1994).
[CrossRef]

D. Bruneau, T. Arnaud des Lions, P. Quaglia, and J. Pelon, “Injection-seeded pulsed alexandrite laser for differential absorption lidar application,” Appl. Opt. 33, 3941–3950(1994).
[CrossRef] [PubMed]

1993 (1)

H. J. Eichler, A. Haase, R. Menzel, and A. Siemoneit, “Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier,” J. Phys. D 26, 1884–1891 (1993).
[CrossRef]

1991 (1)

1990 (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

1989 (2)

1988 (5)

J. M. Eggleston, L. G. DeShazer, and K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti:sapphire oscillators,” IEEE J. Quantum Electron. 24, 1009–1015(1988).
[CrossRef]

S. DeSilvestri, P. Laporta, V. Magni, and O. Svelto, “Solid-state laser unstable resonators with tapered reflectivity mirrors: the super-Gaussian approach,” IEEE J. Quantum Electron. 24, 1172–1177 (1988).
[CrossRef]

S. DeSilvestri, P. Laporta, V. Magni, O. Svelto, and B. Majocchi, “Unstable laser resonators with super-Gaussian mirrors,” Opt. Lett. 13, 201–203 (1988).
[CrossRef]

L. G. DeShazer, J. M. Eggleston, and K. W. Kangas, “Saturation of green absorption in titanium-doped sapphire laser crystals,” Opt. Lett. 13, 363–365 (1988).
[CrossRef] [PubMed]

W. R. Rapoport and C. P. Khattak, “Titanium sapphire laser characteristics,” Appl. Opt. 27, 2677–2684 (1988).
[CrossRef] [PubMed]

1987 (1)

1986 (4)

1981 (1)

1979 (1)

1975 (1)

J. P. Lörtscher and J. Steffen, “Dynamic stable resonators: a design procedure,” Opt. Quantum Electron. 7, 505–514 (1975).
[CrossRef]

1974 (1)

R. J. Freiberg, P. P. Chenausky, and C. J. Buczek, “Asymmetric unstable traveling-wave resonators,” IEEE J. Quantum Electron. 10, 279–289 (1974).
[CrossRef]

1969 (1)

Y. A. Anan’ev, N. A. Sventsitskaya, and V. E. Sherstobitov, “Properties of a laser with an unstable resonator,” Sov. Phys. JETP 28, 69–74 (1969).

1966 (1)

1965 (1)

H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).

1963 (1)

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

Abshire, J. B.

Adam, M.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801(2010).
[CrossRef]

Albers, P.

Alpers, M.

J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water-vapor DIAL measurements: design, setup and performance,” Appl. Phys. B 102, 917–935 (2011).
[CrossRef]

A. Fix, G. Ehret, J. Löhring, D. Hoffmann, and M. Alpers, “Water vapor differential absorption lidar measurements using a diode-pumped all-solid-state laser at 935 nm,” Appl. Phys. B 102, 905–915 (2011).
[CrossRef]

Althausen, D.

R. Bhawar, P. Di Girolamo, D. Summa, C. Flamant, D. Althausen, A. Behrendt, C. Kiemle, P. Bosser, M. Cacciani, C. Champollion, T. Di Iorio, R. Engelmann, C. Herold, S. Pal, A. Riede, M. Wirth, and V. Wulfmeyer, “The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: airborne-to-ground-based and airborne-to-airborne lidar systems,” Q. J. R. Meteorol. Soc. 137, 325–348 (2011).
[CrossRef]

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Amra, C.

F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Uteza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandre, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 599123 (2005).
[CrossRef]

Anan’ev, Y. A.

Y. A. Anan’ev, N. A. Sventsitskaya, and V. E. Sherstobitov, “Properties of a laser with an unstable resonator,” Sov. Phys. JETP 28, 69–74 (1969).

Aoshima, F.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137, 81–100 (2011).
[CrossRef]

Apagaus, M.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Arnaud des Lions, T.

Assion, A.

G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, and G. Ehret, “Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy,” Appl. Phys. B 75, 165–172 (2002).
[CrossRef]

Ayers, T.

Barrick, J. D. W.

R. A. Ferrare, E. V. Browell, S. Ismail, S. A. Kooi, L. H. Brasseur, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, G. S. Diskin, J. E. M. Goldsmith, B. M. Lesht, J. R. Podolske, G. W. Sachse, F. J. Schmidlin, D. D. Turner, D. N. Whiteman, D. Tobin, L. M. Miloshevich, H. E. Revercomb, B. B. Demoz, and P. Di Girolamo, “Characterization of upper-troposphere water vapor measurements during AFWEX using LASE,” J. Atmos. Ocean. Technol. 21, 1790–1808 (2004).
[CrossRef]

Barthlott, C.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

U. Corsmeier, N. Kalthoff, C. Barthlott, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS-IOP 9c,” Q. J. R. Meteorol. Soc. 137, 137–155 (2011).
[CrossRef]

Bauer, H.

A. Behrendt, V. Wulfmeyer, A. Riede, G. Wagner, S. Pal, H. Bauer, M. Radlach, and F. Späth, “3-dimensional observations of atmospheric humidity with a scanning differential absorption lidar,” Proc. SPIE 7475, 74750L (2009).
[CrossRef]

P. Di Girolamo, A. Behrendt, C. Kiemle, V. Wulfmeyer, H. Bauer, D. Summa, A. Dörnbrack, and G. Ehret, “Simulation of satellite water vapour lidar measurements: performance assessment under real atmospheric conditions,” Remote Sens. Environ. 112, 1552–1568 (2008).
[CrossRef]

V. Wulfmeyer, H. Bauer, P. Di Girolamo, and C. Serio,”Comparison of active and passive remote sensing from space: an analysis based on the simulated performance of IASI and space borne differential absorption lidar,” Remote Sens. Environ. 95, 211–230 (2005).
[CrossRef]

Bauer, H.-S.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

A. Behrendt, V. Wulfmeyer, P. Di Girolamo, C. Kiemle, H.-S. Bauer, T. Schaberl, D. Summa, D. N. Whiteman, B. B. Demoz, E. V. Browell, S. Ismail, R. Ferrare, S. Kooi, G. Ehret, and J. Wang, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part I: airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes,” J. Atmos. Ocean. Technol. 24, 3–21 (2007).
[CrossRef]

A. Behrendt, V. Wulfmeyer, C. Kiemle, G. Ehret, C. Flamant, T. Schaberl, H.-S. Bauer, S. Kooi, S. Ismail, R. Ferrare, E. V. Browell, and D. N. Whiteman, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part II: airborne-to-airborne systems,” J. Atmos. Ocean. Technol. 24, 22–39 (2007).
[CrossRef]

Baumgart, R.

Behrendt, A.

R. Bhawar, P. Di Girolamo, D. Summa, C. Flamant, D. Althausen, A. Behrendt, C. Kiemle, P. Bosser, M. Cacciani, C. Champollion, T. Di Iorio, R. Engelmann, C. Herold, S. Pal, A. Riede, M. Wirth, and V. Wulfmeyer, “The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: airborne-to-ground-based and airborne-to-airborne lidar systems,” Q. J. R. Meteorol. Soc. 137, 325–348 (2011).
[CrossRef]

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

U. Corsmeier, N. Kalthoff, C. Barthlott, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS-IOP 9c,” Q. J. R. Meteorol. Soc. 137, 137–155 (2011).
[CrossRef]

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137, 81–100 (2011).
[CrossRef]

A. Behrendt, V. Wulfmeyer, A. Riede, G. Wagner, S. Pal, H. Bauer, M. Radlach, and F. Späth, “3-dimensional observations of atmospheric humidity with a scanning differential absorption lidar,” Proc. SPIE 7475, 74750L (2009).
[CrossRef]

P. Di Girolamo, A. Behrendt, C. Kiemle, V. Wulfmeyer, H. Bauer, D. Summa, A. Dörnbrack, and G. Ehret, “Simulation of satellite water vapour lidar measurements: performance assessment under real atmospheric conditions,” Remote Sens. Environ. 112, 1552–1568 (2008).
[CrossRef]

A. Behrendt, V. Wulfmeyer, C. Kiemle, G. Ehret, C. Flamant, T. Schaberl, H.-S. Bauer, S. Kooi, S. Ismail, R. Ferrare, E. V. Browell, and D. N. Whiteman, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part II: airborne-to-airborne systems,” J. Atmos. Ocean. Technol. 24, 22–39 (2007).
[CrossRef]

A. Behrendt, V. Wulfmeyer, P. Di Girolamo, C. Kiemle, H.-S. Bauer, T. Schaberl, D. Summa, D. N. Whiteman, B. B. Demoz, E. V. Browell, S. Ismail, R. Ferrare, S. Kooi, G. Ehret, and J. Wang, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part I: airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes,” J. Atmos. Ocean. Technol. 24, 3–21 (2007).
[CrossRef]

D. N. Whiteman, B. Demoz, P. Di Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, D. Sabatino, G. Schwemmer, B. Gentry, R.-F. Lin, A. Behrendt, V. Wulfmeyer, E. Browell, R. Ferrare, S. Ismail, and J. Wang, “Raman water vapor lidar measurements during the international H2O project. II. Case studies,” J. Atmos. Ocean. Technol. 23, 170–183 (2006).
[CrossRef]

A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, and T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41, 7657–7666 (2002).
[CrossRef]

G. Wagner, V. Wulfmeyer, and A. Behrendt are preparing a manuscript to be called “The transmitter of a 3D-scanning DIAL system. System description and transmitter performance.”

A. Behrendt, V. Wulfmeyer, G. Wagner, A. Riede, and F. Späth are preparing a manuscript to be called “Measurements with the University of Hohenheim water vapor DIAL during COPS.”

Bender, M.

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137, 81–100 (2011).
[CrossRef]

Bennett, L.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Bhawar, R.

R. Bhawar, P. Di Girolamo, D. Summa, C. Flamant, D. Althausen, A. Behrendt, C. Kiemle, P. Bosser, M. Cacciani, C. Champollion, T. Di Iorio, R. Engelmann, C. Herold, S. Pal, A. Riede, M. Wirth, and V. Wulfmeyer, “The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: airborne-to-ground-based and airborne-to-airborne lidar systems,” Q. J. R. Meteorol. Soc. 137, 325–348 (2011).
[CrossRef]

Blyth, A.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137, 81–100 (2011).
[CrossRef]

Bösenberg, J.

Bosser, P.

R. Bhawar, P. Di Girolamo, D. Summa, C. Flamant, D. Althausen, A. Behrendt, C. Kiemle, P. Bosser, M. Cacciani, C. Champollion, T. Di Iorio, R. Engelmann, C. Herold, S. Pal, A. Riede, M. Wirth, and V. Wulfmeyer, “The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: airborne-to-ground-based and airborne-to-airborne lidar systems,” Q. J. R. Meteorol. Soc. 137, 325–348 (2011).
[CrossRef]

Brackett, V. G.

R. A. Ferrare, E. V. Browell, S. Ismail, S. A. Kooi, L. H. Brasseur, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, G. S. Diskin, J. E. M. Goldsmith, B. M. Lesht, J. R. Podolske, G. W. Sachse, F. J. Schmidlin, D. D. Turner, D. N. Whiteman, D. Tobin, L. M. Miloshevich, H. E. Revercomb, B. B. Demoz, and P. Di Girolamo, “Characterization of upper-troposphere water vapor measurements during AFWEX using LASE,” J. Atmos. Ocean. Technol. 21, 1790–1808 (2004).
[CrossRef]

Brandau, C.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Brasseur, L. H.

R. A. Ferrare, E. V. Browell, S. Ismail, S. A. Kooi, L. H. Brasseur, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, G. S. Diskin, J. E. M. Goldsmith, B. M. Lesht, J. R. Podolske, G. W. Sachse, F. J. Schmidlin, D. D. Turner, D. N. Whiteman, D. Tobin, L. M. Miloshevich, H. E. Revercomb, B. B. Demoz, and P. Di Girolamo, “Characterization of upper-troposphere water vapor measurements during AFWEX using LASE,” J. Atmos. Ocean. Technol. 21, 1790–1808 (2004).
[CrossRef]

Bravo, H. E.

Browell, E.

D. N. Whiteman, B. Demoz, P. Di Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, D. Sabatino, G. Schwemmer, B. Gentry, R.-F. Lin, A. Behrendt, V. Wulfmeyer, E. Browell, R. Ferrare, S. Ismail, and J. Wang, “Raman water vapor lidar measurements during the international H2O project. II. Case studies,” J. Atmos. Ocean. Technol. 23, 170–183 (2006).
[CrossRef]

Browell, E. V.

A. Behrendt, V. Wulfmeyer, C. Kiemle, G. Ehret, C. Flamant, T. Schaberl, H.-S. Bauer, S. Kooi, S. Ismail, R. Ferrare, E. V. Browell, and D. N. Whiteman, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part II: airborne-to-airborne systems,” J. Atmos. Ocean. Technol. 24, 22–39 (2007).
[CrossRef]

A. Behrendt, V. Wulfmeyer, P. Di Girolamo, C. Kiemle, H.-S. Bauer, T. Schaberl, D. Summa, D. N. Whiteman, B. B. Demoz, E. V. Browell, S. Ismail, R. Ferrare, S. Kooi, G. Ehret, and J. Wang, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part I: airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes,” J. Atmos. Ocean. Technol. 24, 3–21 (2007).
[CrossRef]

R. M. Wakimoto, H. V. Murphey, E. V. Browell, and S. Ismail, “The “triple point” on 24 May 2020 during IHOP. Part I: airborne Doppler and LASE analyses of the frontal boundaries and convection initiation,” Mon. Weather Rev. 134, 231–250(2006).
[CrossRef]

R. A. Ferrare, E. V. Browell, S. Ismail, S. A. Kooi, L. H. Brasseur, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, G. S. Diskin, J. E. M. Goldsmith, B. M. Lesht, J. R. Podolske, G. W. Sachse, F. J. Schmidlin, D. D. Turner, D. N. Whiteman, D. Tobin, L. M. Miloshevich, H. E. Revercomb, B. B. Demoz, and P. Di Girolamo, “Characterization of upper-troposphere water vapor measurements during AFWEX using LASE,” J. Atmos. Ocean. Technol. 21, 1790–1808 (2004).
[CrossRef]

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
[CrossRef]

S. Ismail and E. V. Browell, “Recent lidar technology developments and their influence on measurements of tropospheric water vapor,” J. Atmos. Ocean. Technol. 11, 76–84(1994).
[CrossRef]

S. Ismail, and E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
[CrossRef] [PubMed]

E. V. Browell, T. D. Wilkerson, and T. J. Mcilrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 3474–3483 (1979).
[CrossRef] [PubMed]

Bruneau, D.

Buczek, C. J.

R. J. Freiberg, P. P. Chenausky, and C. J. Buczek, “Asymmetric unstable traveling-wave resonators,” IEEE J. Quantum Electron. 10, 279–289 (1974).
[CrossRef]

Cacciani, M.

R. Bhawar, P. Di Girolamo, D. Summa, C. Flamant, D. Althausen, A. Behrendt, C. Kiemle, P. Bosser, M. Cacciani, C. Champollion, T. Di Iorio, R. Engelmann, C. Herold, S. Pal, A. Riede, M. Wirth, and V. Wulfmeyer, “The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: airborne-to-ground-based and airborne-to-airborne lidar systems,” Q. J. R. Meteorol. Soc. 137, 325–348 (2011).
[CrossRef]

Cadirola, M.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801(2010).
[CrossRef]

Canova, F.

F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Uteza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandre, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 599123 (2005).
[CrossRef]

Carlsten, J. L.

M. D. Obland, K. S. Repasky, A. R. Nehrir, J. L. Carlsten, and J. A. Shaw, “Development of a widely tunable amplified diode laser differential absorption lidar for profiling atmospheric water vapor,” J. Appl. Remote Sens. 4, 1–24 (2010).
[CrossRef]

A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL),” J. Atmos. Ocean. Technol. 26, 733–745 (2009).
[CrossRef]

Cazeneuve, H.

Chambaret, J.-P.

F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Uteza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandre, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 599123 (2005).
[CrossRef]

Champollion, C.

R. Bhawar, P. Di Girolamo, D. Summa, C. Flamant, D. Althausen, A. Behrendt, C. Kiemle, P. Bosser, M. Cacciani, C. Champollion, T. Di Iorio, R. Engelmann, C. Herold, S. Pal, A. Riede, M. Wirth, and V. Wulfmeyer, “The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: airborne-to-ground-based and airborne-to-airborne lidar systems,” Q. J. R. Meteorol. Soc. 137, 325–348 (2011).
[CrossRef]

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Chenausky, P. P.

R. J. Freiberg, P. P. Chenausky, and C. J. Buczek, “Asymmetric unstable traveling-wave resonators,” IEEE J. Quantum Electron. 10, 279–289 (1974).
[CrossRef]

Clayton, M. B.

R. A. Ferrare, E. V. Browell, S. Ismail, S. A. Kooi, L. H. Brasseur, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, G. S. Diskin, J. E. M. Goldsmith, B. M. Lesht, J. R. Podolske, G. W. Sachse, F. J. Schmidlin, D. D. Turner, D. N. Whiteman, D. Tobin, L. M. Miloshevich, H. E. Revercomb, B. B. Demoz, and P. Di Girolamo, “Characterization of upper-troposphere water vapor measurements during AFWEX using LASE,” J. Atmos. Ocean. Technol. 21, 1790–1808 (2004).
[CrossRef]

Comer, J.

D. N. Whiteman, B. Demoz, P. Di Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, D. Sabatino, G. Schwemmer, B. Gentry, R.-F. Lin, A. Behrendt, V. Wulfmeyer, E. Browell, R. Ferrare, S. Ismail, and J. Wang, “Raman water vapor lidar measurements during the international H2O project. II. Case studies,” J. Atmos. Ocean. Technol. 23, 170–183 (2006).
[CrossRef]

Commandre, M.

F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Uteza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandre, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 599123 (2005).
[CrossRef]

Connell, R.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801(2010).
[CrossRef]

Corsmeier, U.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

U. Corsmeier, N. Kalthoff, C. Barthlott, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS-IOP 9c,” Q. J. R. Meteorol. Soc. 137, 137–155 (2011).
[CrossRef]

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137, 81–100 (2011).
[CrossRef]

C. Kiemle, M. Wirth, A. Fix, S. Rahm, U. Corsmeier, and P. DiGirolamo, “Latent heat flux measurements over complex terrain by airborne water vapour and wind lidars,” Q. J. R. Meteorol. Soc. 137, 190–203 (2011).
[CrossRef]

Coyle, D. B.

D. B. Coyle, D. V. Guerra, and R. B. Kay, “An interactive numerical model of diode-pumped, Q-switched/cavity-dumped lasers,” J. Phys. D 28, 452–462 (1995).
[CrossRef]

Craig, G. C.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Crewell, S.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Cuesta, J.

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137, 81–100 (2011).
[CrossRef]

Czeranowsky, C.

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935 nm,” Opt. Commun. 275, 170–172 (2007).
[CrossRef]

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943 nm and crystal growth,” Appl. Phys. B 89, 305–310 (2007).
[CrossRef]

Davis, K. J.

J. S. Grabon, K. J. Davis, C. Kiemle, and G. Ehret, “Airborne lidar observations of the transition zone between the convective boundary layer and free atmosphere during the international H2O project (IHOP) in 2002,” Bound.-Lay. Meteorol. 134, 61–83 (2010).
[CrossRef]

de Giovanni, P.

Degnan, J. J.

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[CrossRef]

Delaporte, P.

F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Uteza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandre, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 599123 (2005).
[CrossRef]

Demoz, B.

D. N. Whiteman, B. Demoz, P. Di Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, D. Sabatino, G. Schwemmer, B. Gentry, R.-F. Lin, A. Behrendt, V. Wulfmeyer, E. Browell, R. Ferrare, S. Ismail, and J. Wang, “Raman water vapor lidar measurements during the international H2O project. II. Case studies,” J. Atmos. Ocean. Technol. 23, 170–183 (2006).
[CrossRef]

Demoz, B. B.

A. Behrendt, V. Wulfmeyer, P. Di Girolamo, C. Kiemle, H.-S. Bauer, T. Schaberl, D. Summa, D. N. Whiteman, B. B. Demoz, E. V. Browell, S. Ismail, R. Ferrare, S. Kooi, G. Ehret, and J. Wang, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part I: airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes,” J. Atmos. Ocean. Technol. 24, 3–21 (2007).
[CrossRef]

R. A. Ferrare, E. V. Browell, S. Ismail, S. A. Kooi, L. H. Brasseur, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, G. S. Diskin, J. E. M. Goldsmith, B. M. Lesht, J. R. Podolske, G. W. Sachse, F. J. Schmidlin, D. D. Turner, D. N. Whiteman, D. Tobin, L. M. Miloshevich, H. E. Revercomb, B. B. Demoz, and P. Di Girolamo, “Characterization of upper-troposphere water vapor measurements during AFWEX using LASE,” J. Atmos. Ocean. Technol. 21, 1790–1808 (2004).
[CrossRef]

DeShazer, L. G.

J. M. Eggleston, L. G. DeShazer, and K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti:sapphire oscillators,” IEEE J. Quantum Electron. 24, 1009–1015(1988).
[CrossRef]

L. G. DeShazer, J. M. Eggleston, and K. W. Kangas, “Saturation of green absorption in titanium-doped sapphire laser crystals,” Opt. Lett. 13, 363–365 (1988).
[CrossRef] [PubMed]

DeSilvestri, S.

S. DeSilvestri, P. Laporta, V. Magni, O. Svelto, and B. Majocchi, “Unstable laser resonators with super-Gaussian mirrors,” Opt. Lett. 13, 201–203 (1988).
[CrossRef]

S. DeSilvestri, P. Laporta, V. Magni, and O. Svelto, “Solid-state laser unstable resonators with tapered reflectivity mirrors: the super-Gaussian approach,” IEEE J. Quantum Electron. 24, 1172–1177 (1988).
[CrossRef]

Di Girolamo, P.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

U. Corsmeier, N. Kalthoff, C. Barthlott, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS-IOP 9c,” Q. J. R. Meteorol. Soc. 137, 137–155 (2011).
[CrossRef]

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137, 81–100 (2011).
[CrossRef]

R. Bhawar, P. Di Girolamo, D. Summa, C. Flamant, D. Althausen, A. Behrendt, C. Kiemle, P. Bosser, M. Cacciani, C. Champollion, T. Di Iorio, R. Engelmann, C. Herold, S. Pal, A. Riede, M. Wirth, and V. Wulfmeyer, “The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: airborne-to-ground-based and airborne-to-airborne lidar systems,” Q. J. R. Meteorol. Soc. 137, 325–348 (2011).
[CrossRef]

P. Di Girolamo, A. Behrendt, C. Kiemle, V. Wulfmeyer, H. Bauer, D. Summa, A. Dörnbrack, and G. Ehret, “Simulation of satellite water vapour lidar measurements: performance assessment under real atmospheric conditions,” Remote Sens. Environ. 112, 1552–1568 (2008).
[CrossRef]

A. Behrendt, V. Wulfmeyer, P. Di Girolamo, C. Kiemle, H.-S. Bauer, T. Schaberl, D. Summa, D. N. Whiteman, B. B. Demoz, E. V. Browell, S. Ismail, R. Ferrare, S. Kooi, G. Ehret, and J. Wang, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part I: airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes,” J. Atmos. Ocean. Technol. 24, 3–21 (2007).
[CrossRef]

D. N. Whiteman, B. Demoz, P. Di Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, D. Sabatino, G. Schwemmer, B. Gentry, R.-F. Lin, A. Behrendt, V. Wulfmeyer, E. Browell, R. Ferrare, S. Ismail, and J. Wang, “Raman water vapor lidar measurements during the international H2O project. II. Case studies,” J. Atmos. Ocean. Technol. 23, 170–183 (2006).
[CrossRef]

V. Wulfmeyer, H. Bauer, P. Di Girolamo, and C. Serio,”Comparison of active and passive remote sensing from space: an analysis based on the simulated performance of IASI and space borne differential absorption lidar,” Remote Sens. Environ. 95, 211–230 (2005).
[CrossRef]

R. A. Ferrare, E. V. Browell, S. Ismail, S. A. Kooi, L. H. Brasseur, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, G. S. Diskin, J. E. M. Goldsmith, B. M. Lesht, J. R. Podolske, G. W. Sachse, F. J. Schmidlin, D. D. Turner, D. N. Whiteman, D. Tobin, L. M. Miloshevich, H. E. Revercomb, B. B. Demoz, and P. Di Girolamo, “Characterization of upper-troposphere water vapor measurements during AFWEX using LASE,” J. Atmos. Ocean. Technol. 21, 1790–1808 (2004).
[CrossRef]

Di Iorio, T.

R. Bhawar, P. Di Girolamo, D. Summa, C. Flamant, D. Althausen, A. Behrendt, C. Kiemle, P. Bosser, M. Cacciani, C. Champollion, T. Di Iorio, R. Engelmann, C. Herold, S. Pal, A. Riede, M. Wirth, and V. Wulfmeyer, “The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: airborne-to-ground-based and airborne-to-airborne lidar systems,” Q. J. R. Meteorol. Soc. 137, 325–348 (2011).
[CrossRef]

Dick, G.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137, 81–100 (2011).
[CrossRef]

DiGirolamo, P.

C. Kiemle, M. Wirth, A. Fix, S. Rahm, U. Corsmeier, and P. DiGirolamo, “Latent heat flux measurements over complex terrain by airborne water vapour and wind lidars,” Q. J. R. Meteorol. Soc. 137, 190–203 (2011).
[CrossRef]

Dinovitser, A.

Diskin, G. S.

R. A. Ferrare, E. V. Browell, S. Ismail, S. A. Kooi, L. H. Brasseur, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, G. S. Diskin, J. E. M. Goldsmith, B. M. Lesht, J. R. Podolske, G. W. Sachse, F. J. Schmidlin, D. D. Turner, D. N. Whiteman, D. Tobin, L. M. Miloshevich, H. E. Revercomb, B. B. Demoz, and P. Di Girolamo, “Characterization of upper-troposphere water vapor measurements during AFWEX using LASE,” J. Atmos. Ocean. Technol. 21, 1790–1808 (2004).
[CrossRef]

Dörnbrack, A.

P. Di Girolamo, A. Behrendt, C. Kiemle, V. Wulfmeyer, H. Bauer, D. Summa, A. Dörnbrack, and G. Ehret, “Simulation of satellite water vapour lidar measurements: performance assessment under real atmospheric conditions,” Remote Sens. Environ. 112, 1552–1568 (2008).
[CrossRef]

Dorninger, M.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137, 81–100 (2011).
[CrossRef]

U. Corsmeier, N. Kalthoff, C. Barthlott, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS-IOP 9c,” Q. J. R. Meteorol. Soc. 137, 137–155 (2011).
[CrossRef]

Dufournet, Y.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Dziedzina, M.

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943 nm and crystal growth,” Appl. Phys. B 89, 305–310 (2007).
[CrossRef]

Eggleston, J. M.

J. M. Eggleston, L. G. DeShazer, and K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti:sapphire oscillators,” IEEE J. Quantum Electron. 24, 1009–1015(1988).
[CrossRef]

L. G. DeShazer, J. M. Eggleston, and K. W. Kangas, “Saturation of green absorption in titanium-doped sapphire laser crystals,” Opt. Lett. 13, 363–365 (1988).
[CrossRef] [PubMed]

Ehret, G.

A. Fix, G. Ehret, J. Löhring, D. Hoffmann, and M. Alpers, “Water vapor differential absorption lidar measurements using a diode-pumped all-solid-state laser at 935 nm,” Appl. Phys. B 102, 905–915 (2011).
[CrossRef]

J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water-vapor DIAL measurements: design, setup and performance,” Appl. Phys. B 102, 917–935 (2011).
[CrossRef]

J. S. Grabon, K. J. Davis, C. Kiemle, and G. Ehret, “Airborne lidar observations of the transition zone between the convective boundary layer and free atmosphere during the international H2O project (IHOP) in 2002,” Bound.-Lay. Meteorol. 134, 61–83 (2010).
[CrossRef]

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B 96, 201–213 (2009).
[CrossRef]

P. Di Girolamo, A. Behrendt, C. Kiemle, V. Wulfmeyer, H. Bauer, D. Summa, A. Dörnbrack, and G. Ehret, “Simulation of satellite water vapour lidar measurements: performance assessment under real atmospheric conditions,” Remote Sens. Environ. 112, 1552–1568 (2008).
[CrossRef]

A. Behrendt, V. Wulfmeyer, P. Di Girolamo, C. Kiemle, H.-S. Bauer, T. Schaberl, D. Summa, D. N. Whiteman, B. B. Demoz, E. V. Browell, S. Ismail, R. Ferrare, S. Kooi, G. Ehret, and J. Wang, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part I: airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes,” J. Atmos. Ocean. Technol. 24, 3–21 (2007).
[CrossRef]

A. Behrendt, V. Wulfmeyer, C. Kiemle, G. Ehret, C. Flamant, T. Schaberl, H.-S. Bauer, S. Kooi, S. Ismail, R. Ferrare, E. V. Browell, and D. N. Whiteman, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part II: airborne-to-airborne systems,” J. Atmos. Ocean. Technol. 24, 22–39 (2007).
[CrossRef]

G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, and G. Ehret, “Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy,” Appl. Phys. B 75, 165–172 (2002).
[CrossRef]

Eichler, H. J.

Z. Lin, X. Wang, F. Kallmeyer, H. J. Eichler, and C. Gao, “Single frequency operation of a tunable injection-seeded Nd:GSAG Q-switched laser around 942 nm,” Opt. Express 18, 6131–6136 (2010).
[CrossRef] [PubMed]

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943 nm and crystal growth,” Appl. Phys. B 89, 305–310 (2007).
[CrossRef]

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935 nm,” Opt. Commun. 275, 170–172 (2007).
[CrossRef]

H. J. Eichler, A. Haase, R. Menzel, and A. Siemoneit, “Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier,” J. Phys. D 26, 1884–1891 (1993).
[CrossRef]

Eigenmann, R.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Endo, A.

S. Ito, H. Nagaoka, T. Miura, H. Kobayashi, A. Endo, and K. Torizuka, “Measurement of thermal lensing in a power amplifier of a terawatt Ti:sapphire laser,” Appl. Phys. B 74, 343–347 (2002).
[CrossRef]

Engelmann, R.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

R. Bhawar, P. Di Girolamo, D. Summa, C. Flamant, D. Althausen, A. Behrendt, C. Kiemle, P. Bosser, M. Cacciani, C. Champollion, T. Di Iorio, R. Engelmann, C. Herold, S. Pal, A. Riede, M. Wirth, and V. Wulfmeyer, “The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: airborne-to-ground-based and airborne-to-airborne lidar systems,” Q. J. R. Meteorol. Soc. 137, 325–348 (2011).
[CrossRef]

Ertel, K.

Evans, K.

D. N. Whiteman, B. Demoz, P. Di Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, D. Sabatino, G. Schwemmer, B. Gentry, R.-F. Lin, A. Behrendt, V. Wulfmeyer, E. Browell, R. Ferrare, S. Ismail, and J. Wang, “Raman water vapor lidar measurements during the international H2O project. II. Case studies,” J. Atmos. Ocean. Technol. 23, 170–183 (2006).
[CrossRef]

Ferrare, R.

A. Behrendt, V. Wulfmeyer, C. Kiemle, G. Ehret, C. Flamant, T. Schaberl, H.-S. Bauer, S. Kooi, S. Ismail, R. Ferrare, E. V. Browell, and D. N. Whiteman, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part II: airborne-to-airborne systems,” J. Atmos. Ocean. Technol. 24, 22–39 (2007).
[CrossRef]

A. Behrendt, V. Wulfmeyer, P. Di Girolamo, C. Kiemle, H.-S. Bauer, T. Schaberl, D. Summa, D. N. Whiteman, B. B. Demoz, E. V. Browell, S. Ismail, R. Ferrare, S. Kooi, G. Ehret, and J. Wang, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part I: airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes,” J. Atmos. Ocean. Technol. 24, 3–21 (2007).
[CrossRef]

D. N. Whiteman, B. Demoz, P. Di Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, D. Sabatino, G. Schwemmer, B. Gentry, R.-F. Lin, A. Behrendt, V. Wulfmeyer, E. Browell, R. Ferrare, S. Ismail, and J. Wang, “Raman water vapor lidar measurements during the international H2O project. II. Case studies,” J. Atmos. Ocean. Technol. 23, 170–183 (2006).
[CrossRef]

Ferrare, R. A.

R. A. Ferrare, E. V. Browell, S. Ismail, S. A. Kooi, L. H. Brasseur, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, G. S. Diskin, J. E. M. Goldsmith, B. M. Lesht, J. R. Podolske, G. W. Sachse, F. J. Schmidlin, D. D. Turner, D. N. Whiteman, D. Tobin, L. M. Miloshevich, H. E. Revercomb, B. B. Demoz, and P. Di Girolamo, “Characterization of upper-troposphere water vapor measurements during AFWEX using LASE,” J. Atmos. Ocean. Technol. 21, 1790–1808 (2004).
[CrossRef]

Fields, R. A.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

Fincher, C. L.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

Fix, A.

C. Kiemle, M. Wirth, A. Fix, S. Rahm, U. Corsmeier, and P. DiGirolamo, “Latent heat flux measurements over complex terrain by airborne water vapour and wind lidars,” Q. J. R. Meteorol. Soc. 137, 190–203 (2011).
[CrossRef]

A. Fix, G. Ehret, J. Löhring, D. Hoffmann, and M. Alpers, “Water vapor differential absorption lidar measurements using a diode-pumped all-solid-state laser at 935 nm,” Appl. Phys. B 102, 905–915 (2011).
[CrossRef]

J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water-vapor DIAL measurements: design, setup and performance,” Appl. Phys. B 102, 917–935 (2011).
[CrossRef]

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B 96, 201–213 (2009).
[CrossRef]

G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, and G. Ehret, “Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy,” Appl. Phys. B 75, 165–172 (2002).
[CrossRef]

Flamant, C.

R. Bhawar, P. Di Girolamo, D. Summa, C. Flamant, D. Althausen, A. Behrendt, C. Kiemle, P. Bosser, M. Cacciani, C. Champollion, T. Di Iorio, R. Engelmann, C. Herold, S. Pal, A. Riede, M. Wirth, and V. Wulfmeyer, “The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: airborne-to-ground-based and airborne-to-airborne lidar systems,” Q. J. R. Meteorol. Soc. 137, 325–348 (2011).
[CrossRef]

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137, 81–100 (2011).
[CrossRef]

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

A. Behrendt, V. Wulfmeyer, C. Kiemle, G. Ehret, C. Flamant, T. Schaberl, H.-S. Bauer, S. Kooi, S. Ismail, R. Ferrare, E. V. Browell, and D. N. Whiteman, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part II: airborne-to-airborne systems,” J. Atmos. Ocean. Technol. 24, 22–39 (2007).
[CrossRef]

H. V. Murphey, R. M. Wakimoto, C. Flamant, and D. E. Kingsmill, “Dryline on 19 June 2002 during IHOP. Part I: airborne Doppler and LEANDRE II analyses of the thin line structure and convection initiation,” Mon. Weather Rev. 134, 406–430 (2006).
[CrossRef]

Flament, C.

Foken, T.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Forno, R.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801(2010).
[CrossRef]

Frantz, L. M.

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

Freiberg, R. J.

R. J. Freiberg, P. P. Chenausky, and C. J. Buczek, “Asymmetric unstable traveling-wave resonators,” IEEE J. Quantum Electron. 10, 279–289 (1974).
[CrossRef]

Gao, C.

Gentry, B.

D. N. Whiteman, B. Demoz, P. Di Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, D. Sabatino, G. Schwemmer, B. Gentry, R.-F. Lin, A. Behrendt, V. Wulfmeyer, E. Browell, R. Ferrare, S. Ismail, and J. Wang, “Raman water vapor lidar measurements during the international H2O project. II. Case studies,” J. Atmos. Ocean. Technol. 23, 170–183 (2006).
[CrossRef]

Goldsmith, J. E. M.

R. A. Ferrare, E. V. Browell, S. Ismail, S. A. Kooi, L. H. Brasseur, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, G. S. Diskin, J. E. M. Goldsmith, B. M. Lesht, J. R. Podolske, G. W. Sachse, F. J. Schmidlin, D. D. Turner, D. N. Whiteman, D. Tobin, L. M. Miloshevich, H. E. Revercomb, B. B. Demoz, and P. Di Girolamo, “Characterization of upper-troposphere water vapor measurements during AFWEX using LASE,” J. Atmos. Ocean. Technol. 21, 1790–1808 (2004).
[CrossRef]

Gorgas, T.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137, 81–100 (2011).
[CrossRef]

Grabon, J. S.

J. S. Grabon, K. J. Davis, C. Kiemle, and G. Ehret, “Airborne lidar observations of the transition zone between the convective boundary layer and free atmosphere during the international H2O project (IHOP) in 2002,” Bound.-Lay. Meteorol. 134, 61–83 (2010).
[CrossRef]

Grant, W. B.

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
[CrossRef]

Grzeschik, M.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Guerra, D. V.

D. B. Coyle, D. V. Guerra, and R. B. Kay, “An interactive numerical model of diode-pumped, Q-switched/cavity-dumped lasers,” J. Phys. D 28, 452–462 (1995).
[CrossRef]

Haase, A.

H. J. Eichler, A. Haase, R. Menzel, and A. Siemoneit, “Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier,” J. Phys. D 26, 1884–1891 (1993).
[CrossRef]

Hagen, M.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Hamilton, M. W.

Handwerker, J.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

U. Corsmeier, N. Kalthoff, C. Barthlott, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS-IOP 9c,” Q. J. R. Meteorol. Soc. 137, 137–155 (2011).
[CrossRef]

Hardesty, R. M.

Hauck, C.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Hélière, A.

P. Ingmann and A. Hélière, “WALES—WAter vapour Lidar Experiment in Space—Report for assessment,” ESA SP-1257(2), (European Space Agency, 2001).

Herold, C.

R. Bhawar, P. Di Girolamo, D. Summa, C. Flamant, D. Althausen, A. Behrendt, C. Kiemle, P. Bosser, M. Cacciani, C. Champollion, T. Di Iorio, R. Engelmann, C. Herold, S. Pal, A. Riede, M. Wirth, and V. Wulfmeyer, “The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: airborne-to-ground-based and airborne-to-airborne lidar systems,” Q. J. R. Meteorol. Soc. 137, 325–348 (2011).
[CrossRef]

Hodgson, N.

N. Hodgson and H. Weber, “Resonators with variable internal lenses,” in Optical Sciences: Laser Resonators and Beam Propagation, 2nd ed., W.T.Rhodes, ed. (Springer, 2005), Vol.  108, Chap. 13.

N. Hodgson and H. Weber, “Unstable resonators,” in Optical Sciences: Laser Resonators and Beam Propagation, 2nd ed., W.T.Rhodes, ed. (Springer, 2005), Vol.  108, Chap. 7.

Hoffmann, D.

A. Fix, G. Ehret, J. Löhring, D. Hoffmann, and M. Alpers, “Water vapor differential absorption lidar measurements using a diode-pumped all-solid-state laser at 935 nm,” Appl. Phys. B 102, 905–915 (2011).
[CrossRef]

J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water-vapor DIAL measurements: design, setup and performance,” Appl. Phys. B 102, 917–935 (2011).
[CrossRef]

Höller, H.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Huang, Y.

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137, 81–100 (2011).
[CrossRef]

Huber, G.

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943 nm and crystal growth,” Appl. Phys. B 89, 305–310 (2007).
[CrossRef]

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935 nm,” Opt. Commun. 275, 170–172 (2007).
[CrossRef]

P. Albers, E. Stark, and G. Huber, “Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,” J. Opt. Soc. Am. B 3, 134–139 (1986).
[CrossRef]

Iffländer, R.

Ileri, B.

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935 nm,” Opt. Commun. 275, 170–172 (2007).
[CrossRef]

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943 nm and crystal growth,” Appl. Phys. B 89, 305–310 (2007).
[CrossRef]

Ingmann, P.

P. Ingmann and A. Hélière, “WALES—WAter vapour Lidar Experiment in Space—Report for assessment,” ESA SP-1257(2), (European Space Agency, 2001).

Innocenzi, M. E.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

Ismail, S.

A. Behrendt, V. Wulfmeyer, C. Kiemle, G. Ehret, C. Flamant, T. Schaberl, H.-S. Bauer, S. Kooi, S. Ismail, R. Ferrare, E. V. Browell, and D. N. Whiteman, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part II: airborne-to-airborne systems,” J. Atmos. Ocean. Technol. 24, 22–39 (2007).
[CrossRef]

A. Behrendt, V. Wulfmeyer, P. Di Girolamo, C. Kiemle, H.-S. Bauer, T. Schaberl, D. Summa, D. N. Whiteman, B. B. Demoz, E. V. Browell, S. Ismail, R. Ferrare, S. Kooi, G. Ehret, and J. Wang, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part I: airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes,” J. Atmos. Ocean. Technol. 24, 3–21 (2007).
[CrossRef]

D. N. Whiteman, B. Demoz, P. Di Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, D. Sabatino, G. Schwemmer, B. Gentry, R.-F. Lin, A. Behrendt, V. Wulfmeyer, E. Browell, R. Ferrare, S. Ismail, and J. Wang, “Raman water vapor lidar measurements during the international H2O project. II. Case studies,” J. Atmos. Ocean. Technol. 23, 170–183 (2006).
[CrossRef]

R. M. Wakimoto, H. V. Murphey, E. V. Browell, and S. Ismail, “The “triple point” on 24 May 2020 during IHOP. Part I: airborne Doppler and LASE analyses of the frontal boundaries and convection initiation,” Mon. Weather Rev. 134, 231–250(2006).
[CrossRef]

R. A. Ferrare, E. V. Browell, S. Ismail, S. A. Kooi, L. H. Brasseur, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, G. S. Diskin, J. E. M. Goldsmith, B. M. Lesht, J. R. Podolske, G. W. Sachse, F. J. Schmidlin, D. D. Turner, D. N. Whiteman, D. Tobin, L. M. Miloshevich, H. E. Revercomb, B. B. Demoz, and P. Di Girolamo, “Characterization of upper-troposphere water vapor measurements during AFWEX using LASE,” J. Atmos. Ocean. Technol. 21, 1790–1808 (2004).
[CrossRef]

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
[CrossRef]

S. Ismail and E. V. Browell, “Recent lidar technology developments and their influence on measurements of tropospheric water vapor,” J. Atmos. Ocean. Technol. 11, 76–84(1994).
[CrossRef]

S. Ismail, and E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
[CrossRef] [PubMed]

Itina, T.

F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Uteza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandre, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 599123 (2005).
[CrossRef]

Ito, S.

S. Ito, H. Nagaoka, T. Miura, H. Kobayashi, A. Endo, and K. Torizuka, “Measurement of thermal lensing in a power amplifier of a terawatt Ti:sapphire laser,” Appl. Phys. B 74, 343–347 (2002).
[CrossRef]

Junkermann, W.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Kallmeyer, F.

Z. Lin, X. Wang, F. Kallmeyer, H. J. Eichler, and C. Gao, “Single frequency operation of a tunable injection-seeded Nd:GSAG Q-switched laser around 942 nm,” Opt. Express 18, 6131–6136 (2010).
[CrossRef] [PubMed]

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943 nm and crystal growth,” Appl. Phys. B 89, 305–310 (2007).
[CrossRef]

Kalthoff, N.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137, 81–100 (2011).
[CrossRef]

U. Corsmeier, N. Kalthoff, C. Barthlott, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS-IOP 9c,” Q. J. R. Meteorol. Soc. 137, 137–155 (2011).
[CrossRef]

Kangas, K. W.

J. M. Eggleston, L. G. DeShazer, and K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti:sapphire oscillators,” IEEE J. Quantum Electron. 24, 1009–1015(1988).
[CrossRef]

L. G. DeShazer, J. M. Eggleston, and K. W. Kangas, “Saturation of green absorption in titanium-doped sapphire laser crystals,” Opt. Lett. 13, 363–365 (1988).
[CrossRef] [PubMed]

Kappe, P.

Kay, R. B.

D. B. Coyle, D. V. Guerra, and R. B. Kay, “An interactive numerical model of diode-pumped, Q-switched/cavity-dumped lasers,” J. Phys. D 28, 452–462 (1995).
[CrossRef]

Khattak, C. P.

Khodayar, S.

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137, 81–100 (2011).
[CrossRef]

Kiemle, C.

C. Kiemle, M. Wirth, A. Fix, S. Rahm, U. Corsmeier, and P. DiGirolamo, “Latent heat flux measurements over complex terrain by airborne water vapour and wind lidars,” Q. J. R. Meteorol. Soc. 137, 190–203 (2011).
[CrossRef]

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

R. Bhawar, P. Di Girolamo, D. Summa, C. Flamant, D. Althausen, A. Behrendt, C. Kiemle, P. Bosser, M. Cacciani, C. Champollion, T. Di Iorio, R. Engelmann, C. Herold, S. Pal, A. Riede, M. Wirth, and V. Wulfmeyer, “The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: airborne-to-ground-based and airborne-to-airborne lidar systems,” Q. J. R. Meteorol. Soc. 137, 325–348 (2011).
[CrossRef]

J. S. Grabon, K. J. Davis, C. Kiemle, and G. Ehret, “Airborne lidar observations of the transition zone between the convective boundary layer and free atmosphere during the international H2O project (IHOP) in 2002,” Bound.-Lay. Meteorol. 134, 61–83 (2010).
[CrossRef]

P. Di Girolamo, A. Behrendt, C. Kiemle, V. Wulfmeyer, H. Bauer, D. Summa, A. Dörnbrack, and G. Ehret, “Simulation of satellite water vapour lidar measurements: performance assessment under real atmospheric conditions,” Remote Sens. Environ. 112, 1552–1568 (2008).
[CrossRef]

A. Behrendt, V. Wulfmeyer, P. Di Girolamo, C. Kiemle, H.-S. Bauer, T. Schaberl, D. Summa, D. N. Whiteman, B. B. Demoz, E. V. Browell, S. Ismail, R. Ferrare, S. Kooi, G. Ehret, and J. Wang, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part I: airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes,” J. Atmos. Ocean. Technol. 24, 3–21 (2007).
[CrossRef]

A. Behrendt, V. Wulfmeyer, C. Kiemle, G. Ehret, C. Flamant, T. Schaberl, H.-S. Bauer, S. Kooi, S. Ismail, R. Ferrare, E. V. Browell, and D. N. Whiteman, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part II: airborne-to-airborne systems,” J. Atmos. Ocean. Technol. 24, 22–39 (2007).
[CrossRef]

G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, and G. Ehret, “Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy,” Appl. Phys. B 75, 165–172 (2002).
[CrossRef]

Kingsmill, D. E.

H. V. Murphey, R. M. Wakimoto, C. Flamant, and D. E. Kingsmill, “Dryline on 19 June 2002 during IHOP. Part I: airborne Doppler and LEANDRE II analyses of the thin line structure and convection initiation,” Mon. Weather Rev. 134, 406–430 (2006).
[CrossRef]

Klink, S.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Kobayashi, H.

S. Ito, H. Nagaoka, T. Miura, H. Kobayashi, A. Endo, and K. Torizuka, “Measurement of thermal lensing in a power amplifier of a terawatt Ti:sapphire laser,” Appl. Phys. B 74, 343–347 (2002).
[CrossRef]

Koechner, W.

W. Koechner, “Q-switching,” in Solid-State Laser Engineering, T.Tamir, and A.L.Schawlow, eds. (Springer-Verlag, 1999), Chap. 8.

W. Koechner, “Thermo-optic effects and heat removal,” in Solid-State Laser Engineering, T.Tamir and A.L.Schawlow, eds. (Springer-Verlag1999), Chap. 7.

Koenig, K. W.

Kogelnik, H.

H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966).
[CrossRef] [PubMed]

H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).

Kokta, M. R.

R. C. Powell, G. E. Venikouas, L. Xi, J. L. Tyminski, and M. R. Kokta, “Thermal effects on the optical spectra of Al2O3:Ti3+,” J. Chem. Phys. 84, 662–665 (1986).
[CrossRef]

König, M.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Kooi, S.

A. Behrendt, V. Wulfmeyer, C. Kiemle, G. Ehret, C. Flamant, T. Schaberl, H.-S. Bauer, S. Kooi, S. Ismail, R. Ferrare, E. V. Browell, and D. N. Whiteman, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part II: airborne-to-airborne systems,” J. Atmos. Ocean. Technol. 24, 22–39 (2007).
[CrossRef]

A. Behrendt, V. Wulfmeyer, P. Di Girolamo, C. Kiemle, H.-S. Bauer, T. Schaberl, D. Summa, D. N. Whiteman, B. B. Demoz, E. V. Browell, S. Ismail, R. Ferrare, S. Kooi, G. Ehret, and J. Wang, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part I: airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes,” J. Atmos. Ocean. Technol. 24, 3–21 (2007).
[CrossRef]

Kooi, S. A.

R. A. Ferrare, E. V. Browell, S. Ismail, S. A. Kooi, L. H. Brasseur, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, G. S. Diskin, J. E. M. Goldsmith, B. M. Lesht, J. R. Podolske, G. W. Sachse, F. J. Schmidlin, D. D. Turner, D. N. Whiteman, D. Tobin, L. M. Miloshevich, H. E. Revercomb, B. B. Demoz, and P. Di Girolamo, “Characterization of upper-troposphere water vapor measurements during AFWEX using LASE,” J. Atmos. Ocean. Technol. 21, 1790–1808 (2004).
[CrossRef]

Kortz, H. P.

Kottmeier, C.

U. Corsmeier, N. Kalthoff, C. Barthlott, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS-IOP 9c,” Q. J. R. Meteorol. Soc. 137, 137–155 (2011).
[CrossRef]

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Krainak, M. A.

Krauss, L.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Langen, P.

P. Langen and Mission Experts Division, “WALES—WAter vapour Lidar Experiment in Space—Report for Mission Selection,” ESA SP-1279(3), (European Space Agency, 2004).

P. Langen and Mission Experts Division, “WALES—WAter vapour Lidar Experiment in Space—Technical and Programmatic Annex,” Annex to ESA SP-1279(3), (European Space Agency, 2004).

Laporta, P.

S. DeSilvestri, P. Laporta, V. Magni, O. Svelto, and B. Majocchi, “Unstable laser resonators with super-Gaussian mirrors,” Opt. Lett. 13, 201–203 (1988).
[CrossRef]

S. DeSilvestri, P. Laporta, V. Magni, and O. Svelto, “Solid-state laser unstable resonators with tapered reflectivity mirrors: the super-Gaussian approach,” IEEE J. Quantum Electron. 24, 1172–1177 (1988).
[CrossRef]

Lawrence, G. N.

G. N. Lawrence, “Optical modeling,” in Applied Optics and Optical Engineering XI, R.R.Shannon and J.C.Wyant, eds. (Academic, 1992), Chap. 3.

Leblanc, T.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801(2010).
[CrossRef]

Leduc, M.

Lee, J.

V. Ramanathan, J. Lee, S. Xu, X. Wang, L. Williams, W. Malphurs, and D. H. Reitze, “Analysis of thermal aberrations in a high average power single-stage Ti:sapphire regenerative chirped pulse amplifier: simulation and experiment,” Rev. Sci. Instrum. 77, 103103 (2006).
[CrossRef]

Lehmann, S.

Lesht, B. M.

R. A. Ferrare, E. V. Browell, S. Ismail, S. A. Kooi, L. H. Brasseur, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, G. S. Diskin, J. E. M. Goldsmith, B. M. Lesht, J. R. Podolske, G. W. Sachse, F. J. Schmidlin, D. D. Turner, D. N. Whiteman, D. Tobin, L. M. Miloshevich, H. E. Revercomb, B. B. Demoz, and P. Di Girolamo, “Characterization of upper-troposphere water vapor measurements during AFWEX using LASE,” J. Atmos. Ocean. Technol. 21, 1790–1808 (2004).
[CrossRef]

Li, T.

Lin, R.-F.

D. N. Whiteman, B. Demoz, P. Di Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, D. Sabatino, G. Schwemmer, B. Gentry, R.-F. Lin, A. Behrendt, V. Wulfmeyer, E. Browell, R. Ferrare, S. Ismail, and J. Wang, “Raman water vapor lidar measurements during the international H2O project. II. Case studies,” J. Atmos. Ocean. Technol. 23, 170–183 (2006).
[CrossRef]

Lin, Z.

Linné, H.

Löhring, J.

J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water-vapor DIAL measurements: design, setup and performance,” Appl. Phys. B 102, 917–935 (2011).
[CrossRef]

A. Fix, G. Ehret, J. Löhring, D. Hoffmann, and M. Alpers, “Water vapor differential absorption lidar measurements using a diode-pumped all-solid-state laser at 935 nm,” Appl. Phys. B 102, 905–915 (2011).
[CrossRef]

Long, C. N.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Lörtscher, J. P.

J. P. Lörtscher and J. Steffen, “Dynamic stable resonators: a design procedure,” Opt. Quantum Electron. 7, 505–514 (1975).
[CrossRef]

Loth, C.

MacDonald, M.

R. Weber, B. Neuenschwander, M. MacDonald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34, 1046–1053 (1998).
[CrossRef]

Machol, J. L.

Madonna, F.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Magni, V.

Mahlke, H.

U. Corsmeier, N. Kalthoff, C. Barthlott, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS-IOP 9c,” Q. J. R. Meteorol. Soc. 137, 137–155 (2011).
[CrossRef]

Mahnke, P.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B 96, 201–213 (2009).
[CrossRef]

Majocchi, B.

Malphurs, W.

V. Ramanathan, J. Lee, S. Xu, X. Wang, L. Williams, W. Malphurs, and D. H. Reitze, “Analysis of thermal aberrations in a high average power single-stage Ti:sapphire regenerative chirped pulse amplifier: simulation and experiment,” Rev. Sci. Instrum. 77, 103103 (2006).
[CrossRef]

Mannstein, H.

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137, 81–100 (2011).
[CrossRef]

McDermid, S.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801(2010).
[CrossRef]

Mcilrath, T. J.

McIntire, G.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801(2010).
[CrossRef]

Meissner, A.

J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water-vapor DIAL measurements: design, setup and performance,” Appl. Phys. B 102, 917–935 (2011).
[CrossRef]

Meissonnier, M.

Menzel, R.

Metcalf, D.

Mielke, B.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801(2010).
[CrossRef]

Miloshevich, L. M.

R. A. Ferrare, E. V. Browell, S. Ismail, S. A. Kooi, L. H. Brasseur, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, G. S. Diskin, J. E. M. Goldsmith, B. M. Lesht, J. R. Podolske, G. W. Sachse, F. J. Schmidlin, D. D. Turner, D. N. Whiteman, D. Tobin, L. M. Miloshevich, H. E. Revercomb, B. B. Demoz, and P. Di Girolamo, “Characterization of upper-troposphere water vapor measurements during AFWEX using LASE,” J. Atmos. Ocean. Technol. 21, 1790–1808 (2004).
[CrossRef]

Miura, T.

S. Ito, H. Nagaoka, T. Miura, H. Kobayashi, A. Endo, and K. Torizuka, “Measurement of thermal lensing in a power amplifier of a terawatt Ti:sapphire laser,” Appl. Phys. B 74, 343–347 (2002).
[CrossRef]

Mobbs, S.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Mobbs, S. D.

U. Corsmeier, N. Kalthoff, C. Barthlott, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS-IOP 9c,” Q. J. R. Meteorol. Soc. 137, 137–155 (2011).
[CrossRef]

Morin, M.

M. Morin, “Graded reflectivity mirror unstable laser resonators,” Opt. Quantum Electron. 29, 819–866 (1997).
[CrossRef]

Moulton, P. F.

P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986).
[CrossRef]

G. A. Rines, H. H. Zenzie, and P. F. Moulton, “Recent advantages in Ti:Al2O3 unstable resonator lasers,” in Advanced Solid State Lasers, G.Dube and L.Chase, eds. Vol.  10 of OSA Proceedings Series (Optical Society of America, 1991), paper TL3.

Mourou, G.

F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Uteza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandre, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 599123 (2005).
[CrossRef]

Murphey, H. V.

H. V. Murphey, R. M. Wakimoto, C. Flamant, and D. E. Kingsmill, “Dryline on 19 June 2002 during IHOP. Part I: airborne Doppler and LEANDRE II analyses of the thin line structure and convection initiation,” Mon. Weather Rev. 134, 406–430 (2006).
[CrossRef]

R. M. Wakimoto, H. V. Murphey, E. V. Browell, and S. Ismail, “The “triple point” on 24 May 2020 during IHOP. Part I: airborne Doppler and LASE analyses of the frontal boundaries and convection initiation,” Mon. Weather Rev. 134, 231–250(2006).
[CrossRef]

Nagaoka, H.

S. Ito, H. Nagaoka, T. Miura, H. Kobayashi, A. Endo, and K. Torizuka, “Measurement of thermal lensing in a power amplifier of a terawatt Ti:sapphire laser,” Appl. Phys. B 74, 343–347 (2002).
[CrossRef]

Nakamura, T.

Natoli, J.-Y.

F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Uteza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandre, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 599123 (2005).
[CrossRef]

Nehrir, A. R.

M. D. Obland, K. S. Repasky, A. R. Nehrir, J. L. Carlsten, and J. A. Shaw, “Development of a widely tunable amplified diode laser differential absorption lidar for profiling atmospheric water vapor,” J. Appl. Remote Sens. 4, 1–24 (2010).
[CrossRef]

A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL),” J. Atmos. Ocean. Technol. 26, 733–745 (2009).
[CrossRef]

Neininger, B.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Neuenschwander, B.

R. Weber, B. Neuenschwander, M. MacDonald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34, 1046–1053 (1998).
[CrossRef]

Nodvik, J. S.

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

Norton, E. G.

U. Corsmeier, N. Kalthoff, C. Barthlott, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS-IOP 9c,” Q. J. R. Meteorol. Soc. 137, 137–155 (2011).
[CrossRef]

Obland, M. D.

M. D. Obland, K. S. Repasky, A. R. Nehrir, J. L. Carlsten, and J. A. Shaw, “Development of a widely tunable amplified diode laser differential absorption lidar for profiling atmospheric water vapor,” J. Appl. Remote Sens. 4, 1–24 (2010).
[CrossRef]

A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL),” J. Atmos. Ocean. Technol. 26, 733–745 (2009).
[CrossRef]

Onishi, M.

Ostermeyer, M.

Pal, S.

R. Bhawar, P. Di Girolamo, D. Summa, C. Flamant, D. Althausen, A. Behrendt, C. Kiemle, P. Bosser, M. Cacciani, C. Champollion, T. Di Iorio, R. Engelmann, C. Herold, S. Pal, A. Riede, M. Wirth, and V. Wulfmeyer, “The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: airborne-to-ground-based and airborne-to-airborne lidar systems,” Q. J. R. Meteorol. Soc. 137, 325–348 (2011).
[CrossRef]

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137, 81–100 (2011).
[CrossRef]

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

V. Wulfmeyer, S. Pal, D. D. Turner, and E. Wagner, “Can water vapour Raman lidar resolve profiles of turbulent variables in the convective boundary layer?,” Bound.-Lay. Meteorol. 136, 253–284 (2010).
[CrossRef]

A. Behrendt, V. Wulfmeyer, A. Riede, G. Wagner, S. Pal, H. Bauer, M. Radlach, and F. Späth, “3-dimensional observations of atmospheric humidity with a scanning differential absorption lidar,” Proc. SPIE 7475, 74750L (2009).
[CrossRef]

Pelon, J.

Petermann, K.

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943 nm and crystal growth,” Appl. Phys. B 89, 305–310 (2007).
[CrossRef]

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935 nm,” Opt. Commun. 275, 170–172 (2007).
[CrossRef]

Peters, G.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Petrova-Mayor, A.

Pigeon, G.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Poberaj, G.

G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, and G. Ehret, “Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy,” Appl. Phys. B 75, 165–172 (2002).
[CrossRef]

Podolske, J. R.

R. A. Ferrare, E. V. Browell, S. Ismail, S. A. Kooi, L. H. Brasseur, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, G. S. Diskin, J. E. M. Goldsmith, B. M. Lesht, J. R. Podolske, G. W. Sachse, F. J. Schmidlin, D. D. Turner, D. N. Whiteman, D. Tobin, L. M. Miloshevich, H. E. Revercomb, B. B. Demoz, and P. Di Girolamo, “Characterization of upper-troposphere water vapor measurements during AFWEX using LASE,” J. Atmos. Ocean. Technol. 21, 1790–1808 (2004).
[CrossRef]

Powell, R. C.

R. C. Powell, G. E. Venikouas, L. Xi, J. L. Tyminski, and M. R. Kokta, “Thermal effects on the optical spectra of Al2O3:Ti3+,” J. Chem. Phys. 84, 662–665 (1986).
[CrossRef]

Quaglia, P.

Rabenhorst, S.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801(2010).
[CrossRef]

Radlach, M.

A. Behrendt, V. Wulfmeyer, A. Riede, G. Wagner, S. Pal, H. Bauer, M. Radlach, and F. Späth, “3-dimensional observations of atmospheric humidity with a scanning differential absorption lidar,” Proc. SPIE 7475, 74750L (2009).
[CrossRef]

Rahm, S.

C. Kiemle, M. Wirth, A. Fix, S. Rahm, U. Corsmeier, and P. DiGirolamo, “Latent heat flux measurements over complex terrain by airborne water vapour and wind lidars,” Q. J. R. Meteorol. Soc. 137, 190–203 (2011).
[CrossRef]

Ramanathan, V.

V. Ramanathan, J. Lee, S. Xu, X. Wang, L. Williams, W. Malphurs, and D. H. Reitze, “Analysis of thermal aberrations in a high average power single-stage Ti:sapphire regenerative chirped pulse amplifier: simulation and experiment,” Rev. Sci. Instrum. 77, 103103 (2006).
[CrossRef]

Rapoport, W. R.

Reitze, D. H.

V. Ramanathan, J. Lee, S. Xu, X. Wang, L. Williams, W. Malphurs, and D. H. Reitze, “Analysis of thermal aberrations in a high average power single-stage Ti:sapphire regenerative chirped pulse amplifier: simulation and experiment,” Rev. Sci. Instrum. 77, 103103 (2006).
[CrossRef]

Repasky, K. S.

M. D. Obland, K. S. Repasky, A. R. Nehrir, J. L. Carlsten, and J. A. Shaw, “Development of a widely tunable amplified diode laser differential absorption lidar for profiling atmospheric water vapor,” J. Appl. Remote Sens. 4, 1–24 (2010).
[CrossRef]

A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL),” J. Atmos. Ocean. Technol. 26, 733–745 (2009).
[CrossRef]

Revercomb, H. E.

R. A. Ferrare, E. V. Browell, S. Ismail, S. A. Kooi, L. H. Brasseur, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, G. S. Diskin, J. E. M. Goldsmith, B. M. Lesht, J. R. Podolske, G. W. Sachse, F. J. Schmidlin, D. D. Turner, D. N. Whiteman, D. Tobin, L. M. Miloshevich, H. E. Revercomb, B. B. Demoz, and P. Di Girolamo, “Characterization of upper-troposphere water vapor measurements during AFWEX using LASE,” J. Atmos. Ocean. Technol. 21, 1790–1808 (2004).
[CrossRef]

Richard, E.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Riede, A.

R. Bhawar, P. Di Girolamo, D. Summa, C. Flamant, D. Althausen, A. Behrendt, C. Kiemle, P. Bosser, M. Cacciani, C. Champollion, T. Di Iorio, R. Engelmann, C. Herold, S. Pal, A. Riede, M. Wirth, and V. Wulfmeyer, “The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: airborne-to-ground-based and airborne-to-airborne lidar systems,” Q. J. R. Meteorol. Soc. 137, 325–348 (2011).
[CrossRef]

A. Behrendt, V. Wulfmeyer, A. Riede, G. Wagner, S. Pal, H. Bauer, M. Radlach, and F. Späth, “3-dimensional observations of atmospheric humidity with a scanning differential absorption lidar,” Proc. SPIE 7475, 74750L (2009).
[CrossRef]

A. Behrendt, V. Wulfmeyer, G. Wagner, A. Riede, and F. Späth are preparing a manuscript to be called “Measurements with the University of Hohenheim water vapor DIAL during COPS.”

Rines, G. A.

G. A. Rines, H. H. Zenzie, and P. F. Moulton, “Recent advantages in Ti:Al2O3 unstable resonator lasers,” in Advanced Solid State Lasers, G.Dube and L.Chase, eds. Vol.  10 of OSA Proceedings Series (Optical Society of America, 1991), paper TL3.

Roos, M. B.

R. Weber, B. Neuenschwander, M. MacDonald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34, 1046–1053 (1998).
[CrossRef]

Rotach, M. W.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Rush, K.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801(2010).
[CrossRef]

Russchenberg, H.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Russo, F.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801(2010).
[CrossRef]

Sabatino, D.

D. N. Whiteman, B. Demoz, P. Di Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, D. Sabatino, G. Schwemmer, B. Gentry, R.-F. Lin, A. Behrendt, V. Wulfmeyer, E. Browell, R. Ferrare, S. Ismail, and J. Wang, “Raman water vapor lidar measurements during the international H2O project. II. Case studies,” J. Atmos. Ocean. Technol. 23, 170–183 (2006).
[CrossRef]

Sachse, G. W.

R. A. Ferrare, E. V. Browell, S. Ismail, S. A. Kooi, L. H. Brasseur, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, G. S. Diskin, J. E. M. Goldsmith, B. M. Lesht, J. R. Podolske, G. W. Sachse, F. J. Schmidlin, D. D. Turner, D. N. Whiteman, D. Tobin, L. M. Miloshevich, H. E. Revercomb, B. B. Demoz, and P. Di Girolamo, “Characterization of upper-troposphere water vapor measurements during AFWEX using LASE,” J. Atmos. Ocean. Technol. 21, 1790–1808 (2004).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).

Sandberg, S. P.

Schaberl, T.

A. Behrendt, V. Wulfmeyer, C. Kiemle, G. Ehret, C. Flamant, T. Schaberl, H.-S. Bauer, S. Kooi, S. Ismail, R. Ferrare, E. V. Browell, and D. N. Whiteman, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part II: airborne-to-airborne systems,” J. Atmos. Ocean. Technol. 24, 22–39 (2007).
[CrossRef]

A. Behrendt, V. Wulfmeyer, P. Di Girolamo, C. Kiemle, H.-S. Bauer, T. Schaberl, D. Summa, D. N. Whiteman, B. B. Demoz, E. V. Browell, S. Ismail, R. Ferrare, S. Kooi, G. Ehret, and J. Wang, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part I: airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes,” J. Atmos. Ocean. Technol. 24, 3–21 (2007).
[CrossRef]

Schmidlin, F. J.

R. A. Ferrare, E. V. Browell, S. Ismail, S. A. Kooi, L. H. Brasseur, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, G. S. Diskin, J. E. M. Goldsmith, B. M. Lesht, J. R. Podolske, G. W. Sachse, F. J. Schmidlin, D. D. Turner, D. N. Whiteman, D. Tobin, L. M. Miloshevich, H. E. Revercomb, B. B. Demoz, and P. Di Girolamo, “Characterization of upper-troposphere water vapor measurements during AFWEX using LASE,” J. Atmos. Ocean. Technol. 21, 1790–1808 (2004).
[CrossRef]

Schmitz, S.

Schrandt, F.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B 96, 201–213 (2009).
[CrossRef]

Schwarzer, H.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B 96, 201–213 (2009).
[CrossRef]

Schwemmer, G.

D. N. Whiteman, B. Demoz, P. Di Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, D. Sabatino, G. Schwemmer, B. Gentry, R.-F. Lin, A. Behrendt, V. Wulfmeyer, E. Browell, R. Ferrare, S. Ismail, and J. Wang, “Raman water vapor lidar measurements during the international H2O project. II. Case studies,” J. Atmos. Ocean. Technol. 23, 170–183 (2006).
[CrossRef]

Schwenz, K. T.

Schwitalla, T.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Senff, C.

Senff, C. J.

Sentis, M.

F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Uteza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandre, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 599123 (2005).
[CrossRef]

Serio, C.

V. Wulfmeyer, H. Bauer, P. Di Girolamo, and C. Serio,”Comparison of active and passive remote sensing from space: an analysis based on the simulated performance of IASI and space borne differential absorption lidar,” Remote Sens. Environ. 95, 211–230 (2005).
[CrossRef]

Shaw, J. A.

M. D. Obland, K. S. Repasky, A. R. Nehrir, J. L. Carlsten, and J. A. Shaw, “Development of a widely tunable amplified diode laser differential absorption lidar for profiling atmospheric water vapor,” J. Appl. Remote Sens. 4, 1–24 (2010).
[CrossRef]

A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL),” J. Atmos. Ocean. Technol. 26, 733–745 (2009).
[CrossRef]

Sherstobitov, V. E.

Y. A. Anan’ev, N. A. Sventsitskaya, and V. E. Sherstobitov, “Properties of a laser with an unstable resonator,” Sov. Phys. JETP 28, 69–74 (1969).

Shiler, M.

Siegman, A. E.

A. E. Siegman, “Derivation of the cavity rate equation—spontaneous emission: the “extra photon,” in Lasers, A.Kelly, ed. (University Science, 1986), Chap. 13.2.

Siemoneit, A.

H. J. Eichler, A. Haase, R. Menzel, and A. Siemoneit, “Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier,” J. Phys. D 26, 1884–1891 (1993).
[CrossRef]

Smith, V.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Späth, F.

A. Behrendt, V. Wulfmeyer, A. Riede, G. Wagner, S. Pal, H. Bauer, M. Radlach, and F. Späth, “3-dimensional observations of atmospheric humidity with a scanning differential absorption lidar,” Proc. SPIE 7475, 74750L (2009).
[CrossRef]

A. Behrendt, V. Wulfmeyer, G. Wagner, A. Riede, and F. Späth are preparing a manuscript to be called “Measurements with the University of Hohenheim water vapor DIAL during COPS.”

Stark, E.

Steffen, J.

J. P. Lörtscher and J. Steffen, “Dynamic stable resonators: a design procedure,” Opt. Quantum Electron. 7, 505–514 (1975).
[CrossRef]

Stein, B.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801(2010).
[CrossRef]

Steinacker, R.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Strohmaier, S. G. P.

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935 nm,” Opt. Commun. 275, 170–172 (2007).
[CrossRef]

Summa, D.

R. Bhawar, P. Di Girolamo, D. Summa, C. Flamant, D. Althausen, A. Behrendt, C. Kiemle, P. Bosser, M. Cacciani, C. Champollion, T. Di Iorio, R. Engelmann, C. Herold, S. Pal, A. Riede, M. Wirth, and V. Wulfmeyer, “The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: airborne-to-ground-based and airborne-to-airborne lidar systems,” Q. J. R. Meteorol. Soc. 137, 325–348 (2011).
[CrossRef]

P. Di Girolamo, A. Behrendt, C. Kiemle, V. Wulfmeyer, H. Bauer, D. Summa, A. Dörnbrack, and G. Ehret, “Simulation of satellite water vapour lidar measurements: performance assessment under real atmospheric conditions,” Remote Sens. Environ. 112, 1552–1568 (2008).
[CrossRef]

A. Behrendt, V. Wulfmeyer, P. Di Girolamo, C. Kiemle, H.-S. Bauer, T. Schaberl, D. Summa, D. N. Whiteman, B. B. Demoz, E. V. Browell, S. Ismail, R. Ferrare, S. Kooi, G. Ehret, and J. Wang, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part I: airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes,” J. Atmos. Ocean. Technol. 24, 3–21 (2007).
[CrossRef]

Svelto, O.

S. DeSilvestri, P. Laporta, V. Magni, and O. Svelto, “Solid-state laser unstable resonators with tapered reflectivity mirrors: the super-Gaussian approach,” IEEE J. Quantum Electron. 24, 1172–1177 (1988).
[CrossRef]

S. DeSilvestri, P. Laporta, V. Magni, O. Svelto, and B. Majocchi, “Unstable laser resonators with super-Gaussian mirrors,” Opt. Lett. 13, 201–203 (1988).
[CrossRef]

Sventsitskaya, N. A.

Y. A. Anan’ev, N. A. Sventsitskaya, and V. E. Sherstobitov, “Properties of a laser with an unstable resonator,” Sov. Phys. JETP 28, 69–74 (1969).

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).

Tobin, D.

R. A. Ferrare, E. V. Browell, S. Ismail, S. A. Kooi, L. H. Brasseur, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, G. S. Diskin, J. E. M. Goldsmith, B. M. Lesht, J. R. Podolske, G. W. Sachse, F. J. Schmidlin, D. D. Turner, D. N. Whiteman, D. Tobin, L. M. Miloshevich, H. E. Revercomb, B. B. Demoz, and P. Di Girolamo, “Characterization of upper-troposphere water vapor measurements during AFWEX using LASE,” J. Atmos. Ocean. Technol. 21, 1790–1808 (2004).
[CrossRef]

Torizuka, K.

S. Ito, H. Nagaoka, T. Miura, H. Kobayashi, A. Endo, and K. Torizuka, “Measurement of thermal lensing in a power amplifier of a terawatt Ti:sapphire laser,” Appl. Phys. B 74, 343–347 (2002).
[CrossRef]

Träumner, K.

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137, 81–100 (2011).
[CrossRef]

Trentmann, J.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Trickl, T.

Tsuda, T.

Turner, D. D.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

V. Wulfmeyer, S. Pal, D. D. Turner, and E. Wagner, “Can water vapour Raman lidar resolve profiles of turbulent variables in the convective boundary layer?,” Bound.-Lay. Meteorol. 136, 253–284 (2010).
[CrossRef]

R. A. Ferrare, E. V. Browell, S. Ismail, S. A. Kooi, L. H. Brasseur, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, G. S. Diskin, J. E. M. Goldsmith, B. M. Lesht, J. R. Podolske, G. W. Sachse, F. J. Schmidlin, D. D. Turner, D. N. Whiteman, D. Tobin, L. M. Miloshevich, H. E. Revercomb, B. B. Demoz, and P. Di Girolamo, “Characterization of upper-troposphere water vapor measurements during AFWEX using LASE,” J. Atmos. Ocean. Technol. 21, 1790–1808 (2004).
[CrossRef]

Tyminski, J. L.

R. C. Powell, G. E. Venikouas, L. Xi, J. L. Tyminski, and M. R. Kokta, “Thermal effects on the optical spectra of Al2O3:Ti3+,” J. Chem. Phys. 84, 662–665 (1986).
[CrossRef]

Uteza, O.

F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Uteza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandre, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 599123 (2005).
[CrossRef]

van Baelen, J.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Venable, D.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801(2010).
[CrossRef]

Venikouas, G. E.

R. C. Powell, G. E. Venikouas, L. Xi, J. L. Tyminski, and M. R. Kokta, “Thermal effects on the optical spectra of Al2O3:Ti3+,” J. Chem. Phys. 84, 662–665 (1986).
[CrossRef]

Veselovskii, I.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801(2010).
[CrossRef]

D. N. Whiteman, B. Demoz, P. Di Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, D. Sabatino, G. Schwemmer, B. Gentry, R.-F. Lin, A. Behrendt, V. Wulfmeyer, E. Browell, R. Ferrare, S. Ismail, and J. Wang, “Raman water vapor lidar measurements during the international H2O project. II. Case studies,” J. Atmos. Ocean. Technol. 23, 170–183 (2006).
[CrossRef]

Vincent, R. A.

Vogelmann, H.

Vogt, S.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Volkert, H.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Vömel, H.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801(2010).
[CrossRef]

Wagner, E.

V. Wulfmeyer, S. Pal, D. D. Turner, and E. Wagner, “Can water vapour Raman lidar resolve profiles of turbulent variables in the convective boundary layer?,” Bound.-Lay. Meteorol. 136, 253–284 (2010).
[CrossRef]

Wagner, G.

A. Behrendt, V. Wulfmeyer, A. Riede, G. Wagner, S. Pal, H. Bauer, M. Radlach, and F. Späth, “3-dimensional observations of atmospheric humidity with a scanning differential absorption lidar,” Proc. SPIE 7475, 74750L (2009).
[CrossRef]

G. Wagner, M. Shiler, and V. Wulfmeyer, “Simulations of thermal lensing of a Ti:sapphire crystal end-pumped with high average power,” Opt. Express 13, 8045–8055 (2005).
[CrossRef] [PubMed]

G. Wagner, V. Wulfmeyer, and A. Behrendt are preparing a manuscript to be called “The transmitter of a 3D-scanning DIAL system. System description and transmitter performance.”

A. Behrendt, V. Wulfmeyer, G. Wagner, A. Riede, and F. Späth are preparing a manuscript to be called “Measurements with the University of Hohenheim water vapor DIAL during COPS.”

Wakimoto, R. M.

H. V. Murphey, R. M. Wakimoto, C. Flamant, and D. E. Kingsmill, “Dryline on 19 June 2002 during IHOP. Part I: airborne Doppler and LEANDRE II analyses of the thin line structure and convection initiation,” Mon. Weather Rev. 134, 406–430 (2006).
[CrossRef]

R. M. Wakimoto, H. V. Murphey, E. V. Browell, and S. Ismail, “The “triple point” on 24 May 2020 during IHOP. Part I: airborne Doppler and LASE analyses of the frontal boundaries and convection initiation,” Mon. Weather Rev. 134, 231–250(2006).
[CrossRef]

Walther, C.

Wang, J.

A. Behrendt, V. Wulfmeyer, P. Di Girolamo, C. Kiemle, H.-S. Bauer, T. Schaberl, D. Summa, D. N. Whiteman, B. B. Demoz, E. V. Browell, S. Ismail, R. Ferrare, S. Kooi, G. Ehret, and J. Wang, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part I: airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes,” J. Atmos. Ocean. Technol. 24, 3–21 (2007).
[CrossRef]

D. N. Whiteman, B. Demoz, P. Di Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, D. Sabatino, G. Schwemmer, B. Gentry, R.-F. Lin, A. Behrendt, V. Wulfmeyer, E. Browell, R. Ferrare, S. Ismail, and J. Wang, “Raman water vapor lidar measurements during the international H2O project. II. Case studies,” J. Atmos. Ocean. Technol. 23, 170–183 (2006).
[CrossRef]

Wang, X.

Z. Lin, X. Wang, F. Kallmeyer, H. J. Eichler, and C. Gao, “Single frequency operation of a tunable injection-seeded Nd:GSAG Q-switched laser around 942 nm,” Opt. Express 18, 6131–6136 (2010).
[CrossRef] [PubMed]

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943 nm and crystal growth,” Appl. Phys. B 89, 305–310 (2007).
[CrossRef]

V. Ramanathan, J. Lee, S. Xu, X. Wang, L. Williams, W. Malphurs, and D. H. Reitze, “Analysis of thermal aberrations in a high average power single-stage Ti:sapphire regenerative chirped pulse amplifier: simulation and experiment,” Rev. Sci. Instrum. 77, 103103 (2006).
[CrossRef]

Wang, Z.

D. N. Whiteman, B. Demoz, P. Di Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, D. Sabatino, G. Schwemmer, B. Gentry, R.-F. Lin, A. Behrendt, V. Wulfmeyer, E. Browell, R. Ferrare, S. Ismail, and J. Wang, “Raman water vapor lidar measurements during the international H2O project. II. Case studies,” J. Atmos. Ocean. Technol. 23, 170–183 (2006).
[CrossRef]

Weber, H.

H. P. Kortz, R. Iffländer, and H. Weber, “Stability and beam divergence of multimode lasers with internal variable lenses,” Appl. Opt. 20, 4124–4134 (1981).
[CrossRef] [PubMed]

N. Hodgson and H. Weber, “Unstable resonators,” in Optical Sciences: Laser Resonators and Beam Propagation, 2nd ed., W.T.Rhodes, ed. (Springer, 2005), Vol.  108, Chap. 7.

N. Hodgson and H. Weber, “Resonators with variable internal lenses,” in Optical Sciences: Laser Resonators and Beam Propagation, 2nd ed., W.T.Rhodes, ed. (Springer, 2005), Vol.  108, Chap. 13.

Weber, H. P.

R. Weber, B. Neuenschwander, M. MacDonald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34, 1046–1053 (1998).
[CrossRef]

Weber, R.

R. Weber, B. Neuenschwander, M. MacDonald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34, 1046–1053 (1998).
[CrossRef]

Weckwerth, T.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Welch, W.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801(2010).
[CrossRef]

Wernli, H.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Whiteman, D. N.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801(2010).
[CrossRef]

A. Behrendt, V. Wulfmeyer, C. Kiemle, G. Ehret, C. Flamant, T. Schaberl, H.-S. Bauer, S. Kooi, S. Ismail, R. Ferrare, E. V. Browell, and D. N. Whiteman, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part II: airborne-to-airborne systems,” J. Atmos. Ocean. Technol. 24, 22–39 (2007).
[CrossRef]

A. Behrendt, V. Wulfmeyer, P. Di Girolamo, C. Kiemle, H.-S. Bauer, T. Schaberl, D. Summa, D. N. Whiteman, B. B. Demoz, E. V. Browell, S. Ismail, R. Ferrare, S. Kooi, G. Ehret, and J. Wang, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part I: airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes,” J. Atmos. Ocean. Technol. 24, 3–21 (2007).
[CrossRef]

D. N. Whiteman, B. Demoz, P. Di Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, D. Sabatino, G. Schwemmer, B. Gentry, R.-F. Lin, A. Behrendt, V. Wulfmeyer, E. Browell, R. Ferrare, S. Ismail, and J. Wang, “Raman water vapor lidar measurements during the international H2O project. II. Case studies,” J. Atmos. Ocean. Technol. 23, 170–183 (2006).
[CrossRef]

R. A. Ferrare, E. V. Browell, S. Ismail, S. A. Kooi, L. H. Brasseur, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, G. S. Diskin, J. E. M. Goldsmith, B. M. Lesht, J. R. Podolske, G. W. Sachse, F. J. Schmidlin, D. D. Turner, D. N. Whiteman, D. Tobin, L. M. Miloshevich, H. E. Revercomb, B. B. Demoz, and P. Di Girolamo, “Characterization of upper-troposphere water vapor measurements during AFWEX using LASE,” J. Atmos. Ocean. Technol. 21, 1790–1808 (2004).
[CrossRef]

Wickert, J.

U. Corsmeier, N. Kalthoff, C. Barthlott, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS-IOP 9c,” Q. J. R. Meteorol. Soc. 137, 137–155 (2011).
[CrossRef]

Wieser, A.

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137, 81–100 (2011).
[CrossRef]

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

Wilkerson, T. D.

Williams, L.

V. Ramanathan, J. Lee, S. Xu, X. Wang, L. Williams, W. Malphurs, and D. H. Reitze, “Analysis of thermal aberrations in a high average power single-stage Ti:sapphire regenerative chirped pulse amplifier: simulation and experiment,” Rev. Sci. Instrum. 77, 103103 (2006).
[CrossRef]

Wirth, M.

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

C. Kiemle, M. Wirth, A. Fix, S. Rahm, U. Corsmeier, and P. DiGirolamo, “Latent heat flux measurements over complex terrain by airborne water vapour and wind lidars,” Q. J. R. Meteorol. Soc. 137, 190–203 (2011).
[CrossRef]

R. Bhawar, P. Di Girolamo, D. Summa, C. Flamant, D. Althausen, A. Behrendt, C. Kiemle, P. Bosser, M. Cacciani, C. Champollion, T. Di Iorio, R. Engelmann, C. Herold, S. Pal, A. Riede, M. Wirth, and V. Wulfmeyer, “The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: airborne-to-ground-based and airborne-to-airborne lidar systems,” Q. J. R. Meteorol. Soc. 137, 325–348 (2011).
[CrossRef]

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B 96, 201–213 (2009).
[CrossRef]

G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, and G. Ehret, “Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy,” Appl. Phys. B 75, 165–172 (2002).
[CrossRef]

Wulfmeyer, V.

R. Bhawar, P. Di Girolamo, D. Summa, C. Flamant, D. Althausen, A. Behrendt, C. Kiemle, P. Bosser, M. Cacciani, C. Champollion, T. Di Iorio, R. Engelmann, C. Herold, S. Pal, A. Riede, M. Wirth, and V. Wulfmeyer, “The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: airborne-to-ground-based and airborne-to-airborne lidar systems,” Q. J. R. Meteorol. Soc. 137, 325–348 (2011).
[CrossRef]

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137, 81–100 (2011).
[CrossRef]

U. Corsmeier, N. Kalthoff, C. Barthlott, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS-IOP 9c,” Q. J. R. Meteorol. Soc. 137, 137–155 (2011).
[CrossRef]

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

V. Wulfmeyer, S. Pal, D. D. Turner, and E. Wagner, “Can water vapour Raman lidar resolve profiles of turbulent variables in the convective boundary layer?,” Bound.-Lay. Meteorol. 136, 253–284 (2010).
[CrossRef]

A. Behrendt, V. Wulfmeyer, A. Riede, G. Wagner, S. Pal, H. Bauer, M. Radlach, and F. Späth, “3-dimensional observations of atmospheric humidity with a scanning differential absorption lidar,” Proc. SPIE 7475, 74750L (2009).
[CrossRef]

P. Di Girolamo, A. Behrendt, C. Kiemle, V. Wulfmeyer, H. Bauer, D. Summa, A. Dörnbrack, and G. Ehret, “Simulation of satellite water vapour lidar measurements: performance assessment under real atmospheric conditions,” Remote Sens. Environ. 112, 1552–1568 (2008).
[CrossRef]

A. Petrova-Mayor, and V. Wulfmeyer, “Development of an eye-safe solid-state tunable laser transmitter in the 1.4–1.5 μm wavelength region based on Cr4+:YAG crystal for lidar applications,” Appl. Opt. 47, 1522–1534 (2008).
[CrossRef] [PubMed]

A. Behrendt, V. Wulfmeyer, C. Kiemle, G. Ehret, C. Flamant, T. Schaberl, H.-S. Bauer, S. Kooi, S. Ismail, R. Ferrare, E. V. Browell, and D. N. Whiteman, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part II: airborne-to-airborne systems,” J. Atmos. Ocean. Technol. 24, 22–39 (2007).
[CrossRef]

A. Behrendt, V. Wulfmeyer, P. Di Girolamo, C. Kiemle, H.-S. Bauer, T. Schaberl, D. Summa, D. N. Whiteman, B. B. Demoz, E. V. Browell, S. Ismail, R. Ferrare, S. Kooi, G. Ehret, and J. Wang, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part I: airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes,” J. Atmos. Ocean. Technol. 24, 3–21 (2007).
[CrossRef]

D. N. Whiteman, B. Demoz, P. Di Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, D. Sabatino, G. Schwemmer, B. Gentry, R.-F. Lin, A. Behrendt, V. Wulfmeyer, E. Browell, R. Ferrare, S. Ismail, and J. Wang, “Raman water vapor lidar measurements during the international H2O project. II. Case studies,” J. Atmos. Ocean. Technol. 23, 170–183 (2006).
[CrossRef]

V. Wulfmeyer, H. Bauer, P. Di Girolamo, and C. Serio,”Comparison of active and passive remote sensing from space: an analysis based on the simulated performance of IASI and space borne differential absorption lidar,” Remote Sens. Environ. 95, 211–230 (2005).
[CrossRef]

G. Wagner, M. Shiler, and V. Wulfmeyer, “Simulations of thermal lensing of a Ti:sapphire crystal end-pumped with high average power,” Opt. Express 13, 8045–8055 (2005).
[CrossRef] [PubMed]

M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, “Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system,” Appl. Opt. 44, 582–590 (2005).
[CrossRef] [PubMed]

V. Wulfmeyer and C. Walther, “Future performance of ground-based and airborne water-vapor differential absorption lidar. II. Simulations of the precision of a near-infrared, high-power system,” Appl. Opt. 40, 5321–5336 (2001).
[CrossRef]

V. Wulfmeyer and C. Walther, “Future performance of ground-based and airborne water-vapor differential absorption lidar. I. Overview and theory,” Appl. Opt. 40, 5304–5320(2001).
[CrossRef]

V. Wulfmeyer, “Investigation of turbulent processes in the lower troposphere with water vapor DIAL and radar-RASS,” J. Atmos. Sci. 56, 1055–1076 (1999).
[CrossRef]

V. Wulfmeyer, “Investigations of humidity skewness and variance profiles in the convective boundary layer and comparison of the latter with large eddy simulation results,” J. Atmos. Sci. 56, 1077–1087 (1999).
[CrossRef]

V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 3804–3824 (1998).
[CrossRef]

V. Wulfmeyer and J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
[CrossRef]

V. Wulfmeyer and J. Bösenberg, “Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar,” Opt. Lett. 21, 1150–1152 (1996).
[CrossRef] [PubMed]

V. Wulfmeyer, J. Bösenberg, S. Lehmann, C. Senff, and S. Schmitz, “Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar,” Opt. Lett. 20, 638–640 (1995).
[CrossRef] [PubMed]

A. Behrendt, V. Wulfmeyer, G. Wagner, A. Riede, and F. Späth are preparing a manuscript to be called “Measurements with the University of Hohenheim water vapor DIAL during COPS.”

G. Wagner, V. Wulfmeyer, and A. Behrendt are preparing a manuscript to be called “The transmitter of a 3D-scanning DIAL system. System description and transmitter performance.”

Xi, L.

R. C. Powell, G. E. Venikouas, L. Xi, J. L. Tyminski, and M. R. Kokta, “Thermal effects on the optical spectra of Al2O3:Ti3+,” J. Chem. Phys. 84, 662–665 (1986).
[CrossRef]

Xu, S.

V. Ramanathan, J. Lee, S. Xu, X. Wang, L. Williams, W. Malphurs, and D. H. Reitze, “Analysis of thermal aberrations in a high average power single-stage Ti:sapphire regenerative chirped pulse amplifier: simulation and experiment,” Rev. Sci. Instrum. 77, 103103 (2006).
[CrossRef]

Yura, H. T.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

Zachorowski, J.

Zenzie, H. H.

G. A. Rines, H. H. Zenzie, and P. F. Moulton, “Recent advantages in Ti:Al2O3 unstable resonator lasers,” in Advanced Solid State Lasers, G.Dube and L.Chase, eds. Vol.  10 of OSA Proceedings Series (Optical Society of America, 1991), paper TL3.

Appl. Opt. (23)

E. V. Browell, T. D. Wilkerson, and T. J. Mcilrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 3474–3483 (1979).
[CrossRef] [PubMed]

J. Bösenberg, “Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998).
[CrossRef]

V. Wulfmeyer and J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
[CrossRef]

S. Ismail, and E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
[CrossRef] [PubMed]

A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, and T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41, 7657–7666 (2002).
[CrossRef]

V. Wulfmeyer and C. Walther, “Future performance of ground-based and airborne water-vapor differential absorption lidar. I. Overview and theory,” Appl. Opt. 40, 5304–5320(2001).
[CrossRef]

V. Wulfmeyer and C. Walther, “Future performance of ground-based and airborne water-vapor differential absorption lidar. II. Simulations of the precision of a near-infrared, high-power system,” Appl. Opt. 40, 5321–5336 (2001).
[CrossRef]

V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 3804–3824 (1998).
[CrossRef]

J. L. Machol, T. Ayers, K. T. Schwenz, K. W. Koenig, R. M. Hardesty, C. J. Senff, M. A. Krainak, J. B. Abshire, H. E. Bravo, and S. P. Sandberg, “Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor,” Appl. Opt. 43, 3110–3121 (2004).
[CrossRef] [PubMed]

K. Ertel, H. Linné, and J. Bösenberg, “Injection-seeded pulsed Ti:sapphire laser with novel stabilization scheme and capability of dual-wavelength operation,” Appl. Opt. 44, 5120–5126(2005).
[CrossRef] [PubMed]

H. Vogelmann and T. Trickl, “Wide-range sounding of free-tropospheric water vapor with a differential-absorption lidar (DIAL) at a high-altitude station,” Appl. Opt. 47, 2116–2132 (2008).
[CrossRef] [PubMed]

D. Bruneau, P. Quaglia, C. Flament, M. Meissonnier, and J. Pelon, “Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description,” Appl. Opt. 40, 3450–3461 (2001).
[CrossRef]

D. Bruneau, H. Cazeneuve, C. Loth, and J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937(1991).
[CrossRef] [PubMed]

D. Bruneau, T. Arnaud des Lions, P. Quaglia, and J. Pelon, “Injection-seeded pulsed alexandrite laser for differential absorption lidar application,” Appl. Opt. 33, 3941–3950(1994).
[CrossRef] [PubMed]

D. Bruneau, P. Quaglia, C. Flament, and J. Pelon, “Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. II. First results,” Appl. Opt. 40, 3462–3475 (2001).
[CrossRef]

A. Dinovitser, M. W. Hamilton, and R. A. Vincent, “Stabilized master laser system for differential absorption lidar,” Appl. Opt. 49, 3274–3281 (2010).
[CrossRef] [PubMed]

A. Petrova-Mayor, and V. Wulfmeyer, “Development of an eye-safe solid-state tunable laser transmitter in the 1.4–1.5 μm wavelength region based on Cr4+:YAG crystal for lidar applications,” Appl. Opt. 47, 1522–1534 (2008).
[CrossRef] [PubMed]

M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, “Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system,” Appl. Opt. 44, 582–590 (2005).
[CrossRef] [PubMed]

H. P. Kortz, R. Iffländer, and H. Weber, “Stability and beam divergence of multimode lasers with internal variable lenses,” Appl. Opt. 20, 4124–4134 (1981).
[CrossRef] [PubMed]

V. Magni, “Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability,” Appl. Opt. 25, 107–117 (1986).
[CrossRef] [PubMed]

D. MetcalfP. de Giovanni, J. Zachorowski, and M. Leduc, “Laser resonators containing self-focusing elements,” Appl. Opt. 26, 4508–4517 (1987).
[CrossRef] [PubMed]

H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966).
[CrossRef] [PubMed]

W. R. Rapoport and C. P. Khattak, “Titanium sapphire laser characteristics,” Appl. Opt. 27, 2677–2684 (1988).
[CrossRef] [PubMed]

Appl. Phys. B (7)

S. Ito, H. Nagaoka, T. Miura, H. Kobayashi, A. Endo, and K. Torizuka, “Measurement of thermal lensing in a power amplifier of a terawatt Ti:sapphire laser,” Appl. Phys. B 74, 343–347 (2002).
[CrossRef]

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943 nm and crystal growth,” Appl. Phys. B 89, 305–310 (2007).
[CrossRef]

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
[CrossRef]

G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, and G. Ehret, “Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy,” Appl. Phys. B 75, 165–172 (2002).
[CrossRef]

J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water-vapor DIAL measurements: design, setup and performance,” Appl. Phys. B 102, 917–935 (2011).
[CrossRef]

A. Fix, G. Ehret, J. Löhring, D. Hoffmann, and M. Alpers, “Water vapor differential absorption lidar measurements using a diode-pumped all-solid-state laser at 935 nm,” Appl. Phys. B 102, 905–915 (2011).
[CrossRef]

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B 96, 201–213 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).

Bound.-Lay. Meteorol. (2)

J. S. Grabon, K. J. Davis, C. Kiemle, and G. Ehret, “Airborne lidar observations of the transition zone between the convective boundary layer and free atmosphere during the international H2O project (IHOP) in 2002,” Bound.-Lay. Meteorol. 134, 61–83 (2010).
[CrossRef]

V. Wulfmeyer, S. Pal, D. D. Turner, and E. Wagner, “Can water vapour Raman lidar resolve profiles of turbulent variables in the convective boundary layer?,” Bound.-Lay. Meteorol. 136, 253–284 (2010).
[CrossRef]

IEEE J. Quantum Electron. (5)

R. Weber, B. Neuenschwander, M. MacDonald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34, 1046–1053 (1998).
[CrossRef]

R. J. Freiberg, P. P. Chenausky, and C. J. Buczek, “Asymmetric unstable traveling-wave resonators,” IEEE J. Quantum Electron. 10, 279–289 (1974).
[CrossRef]

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[CrossRef]

J. M. Eggleston, L. G. DeShazer, and K. W. Kangas, “Characteristics and kinetics of laser-pumped Ti:sapphire oscillators,” IEEE J. Quantum Electron. 24, 1009–1015(1988).
[CrossRef]

S. DeSilvestri, P. Laporta, V. Magni, and O. Svelto, “Solid-state laser unstable resonators with tapered reflectivity mirrors: the super-Gaussian approach,” IEEE J. Quantum Electron. 24, 1172–1177 (1988).
[CrossRef]

J. Appl. Phys. (1)

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

J. Appl. Remote Sens. (1)

M. D. Obland, K. S. Repasky, A. R. Nehrir, J. L. Carlsten, and J. A. Shaw, “Development of a widely tunable amplified diode laser differential absorption lidar for profiling atmospheric water vapor,” J. Appl. Remote Sens. 4, 1–24 (2010).
[CrossRef]

J. Atmos. Ocean. Technol. (7)

A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL),” J. Atmos. Ocean. Technol. 26, 733–745 (2009).
[CrossRef]

R. A. Ferrare, E. V. Browell, S. Ismail, S. A. Kooi, L. H. Brasseur, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, G. S. Diskin, J. E. M. Goldsmith, B. M. Lesht, J. R. Podolske, G. W. Sachse, F. J. Schmidlin, D. D. Turner, D. N. Whiteman, D. Tobin, L. M. Miloshevich, H. E. Revercomb, B. B. Demoz, and P. Di Girolamo, “Characterization of upper-troposphere water vapor measurements during AFWEX using LASE,” J. Atmos. Ocean. Technol. 21, 1790–1808 (2004).
[CrossRef]

D. N. Whiteman, B. Demoz, P. Di Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, D. Sabatino, G. Schwemmer, B. Gentry, R.-F. Lin, A. Behrendt, V. Wulfmeyer, E. Browell, R. Ferrare, S. Ismail, and J. Wang, “Raman water vapor lidar measurements during the international H2O project. II. Case studies,” J. Atmos. Ocean. Technol. 23, 170–183 (2006).
[CrossRef]

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801(2010).
[CrossRef]

A. Behrendt, V. Wulfmeyer, P. Di Girolamo, C. Kiemle, H.-S. Bauer, T. Schaberl, D. Summa, D. N. Whiteman, B. B. Demoz, E. V. Browell, S. Ismail, R. Ferrare, S. Kooi, G. Ehret, and J. Wang, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part I: airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes,” J. Atmos. Ocean. Technol. 24, 3–21 (2007).
[CrossRef]

A. Behrendt, V. Wulfmeyer, C. Kiemle, G. Ehret, C. Flamant, T. Schaberl, H.-S. Bauer, S. Kooi, S. Ismail, R. Ferrare, E. V. Browell, and D. N. Whiteman, “Intercomparison of water vapor data measured with lidar during IHOP 2002. Part II: airborne-to-airborne systems,” J. Atmos. Ocean. Technol. 24, 22–39 (2007).
[CrossRef]

S. Ismail and E. V. Browell, “Recent lidar technology developments and their influence on measurements of tropospheric water vapor,” J. Atmos. Ocean. Technol. 11, 76–84(1994).
[CrossRef]

J. Atmos. Sci. (2)

V. Wulfmeyer, “Investigation of turbulent processes in the lower troposphere with water vapor DIAL and radar-RASS,” J. Atmos. Sci. 56, 1055–1076 (1999).
[CrossRef]

V. Wulfmeyer, “Investigations of humidity skewness and variance profiles in the convective boundary layer and comparison of the latter with large eddy simulation results,” J. Atmos. Sci. 56, 1077–1087 (1999).
[CrossRef]

J. Chem. Phys. (1)

R. C. Powell, G. E. Venikouas, L. Xi, J. L. Tyminski, and M. R. Kokta, “Thermal effects on the optical spectra of Al2O3:Ti3+,” J. Chem. Phys. 84, 662–665 (1986).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. D (2)

H. J. Eichler, A. Haase, R. Menzel, and A. Siemoneit, “Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier,” J. Phys. D 26, 1884–1891 (1993).
[CrossRef]

D. B. Coyle, D. V. Guerra, and R. B. Kay, “An interactive numerical model of diode-pumped, Q-switched/cavity-dumped lasers,” J. Phys. D 28, 452–462 (1995).
[CrossRef]

Mon. Weather Rev. (2)

H. V. Murphey, R. M. Wakimoto, C. Flamant, and D. E. Kingsmill, “Dryline on 19 June 2002 during IHOP. Part I: airborne Doppler and LEANDRE II analyses of the thin line structure and convection initiation,” Mon. Weather Rev. 134, 406–430 (2006).
[CrossRef]

R. M. Wakimoto, H. V. Murphey, E. V. Browell, and S. Ismail, “The “triple point” on 24 May 2020 during IHOP. Part I: airborne Doppler and LASE analyses of the frontal boundaries and convection initiation,” Mon. Weather Rev. 134, 231–250(2006).
[CrossRef]

Opt. Commun. (1)

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935 nm,” Opt. Commun. 275, 170–172 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Opt. Quantum Electron. (2)

M. Morin, “Graded reflectivity mirror unstable laser resonators,” Opt. Quantum Electron. 29, 819–866 (1997).
[CrossRef]

J. P. Lörtscher and J. Steffen, “Dynamic stable resonators: a design procedure,” Opt. Quantum Electron. 7, 505–514 (1975).
[CrossRef]

Proc. SPIE (2)

A. Behrendt, V. Wulfmeyer, A. Riede, G. Wagner, S. Pal, H. Bauer, M. Radlach, and F. Späth, “3-dimensional observations of atmospheric humidity with a scanning differential absorption lidar,” Proc. SPIE 7475, 74750L (2009).
[CrossRef]

F. Canova, J.-P. Chambaret, G. Mourou, M. Sentis, O. Uteza, P. Delaporte, T. Itina, J.-Y. Natoli, M. Commandre, and C. Amra, “Complete characterization of damage threshold in titanium doped sapphire crystals with nanosecond, picosecond and femtosecond laser pulses,” Proc. SPIE 5991, 599123 (2005).
[CrossRef]

Q. J. R. Meteorol. Soc. (5)

R. Bhawar, P. Di Girolamo, D. Summa, C. Flamant, D. Althausen, A. Behrendt, C. Kiemle, P. Bosser, M. Cacciani, C. Champollion, T. Di Iorio, R. Engelmann, C. Herold, S. Pal, A. Riede, M. Wirth, and V. Wulfmeyer, “The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: airborne-to-ground-based and airborne-to-airborne lidar systems,” Q. J. R. Meteorol. Soc. 137, 325–348 (2011).
[CrossRef]

U. Corsmeier, N. Kalthoff, C. Barthlott, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS-IOP 9c,” Q. J. R. Meteorol. Soc. 137, 137–155 (2011).
[CrossRef]

V. Wulfmeyer, A. Behrendt, C. Kottmeier, U. Corsmeier, C. Barthlott, G. C. Craig, M. Hagen, D. Althausen, F. Aoshima, M. Apagaus, H.-S. Bauer, L. Bennett, A. Blyth, C. Brandau, C. Champollion, S. Crewell, G. Dick, P. Di Girolamo, M. Dorninger, Y. Dufournet, R. Eigenmann, R. Engelmann, C. Flamant, T. Foken, T. Gorgas, M. Grzeschik, J. Handwerker, C. Hauck, H. Höller, W. Junkermann, N. Kalthoff, C. Kiemle, S. Klink, M. König, L. Krauss, C. N. Long, F. Madonna, S. Mobbs, B. Neininger, S. Pal, G. Peters, G. Pigeon, E. Richard, M. W. Rotach, H. Russchenberg, T. Schwitalla, V. Smith, R. Steinacker, J. Trentmann, D. D. Turner, J. van Baelen, S. Vogt, H. Volkert, T. Weckwerth, H. Wernli, A. Wieser, and M. Wirth, “The Convective and Orographically-induced Precipitation Study (COPS): the scientific strategy, the field phase and research highlights,” Q. J. R. Meteorol. Soc. 137, 3–30 (2011).
[CrossRef]

C. Kiemle, M. Wirth, A. Fix, S. Rahm, U. Corsmeier, and P. DiGirolamo, “Latent heat flux measurements over complex terrain by airborne water vapour and wind lidars,” Q. J. R. Meteorol. Soc. 137, 190–203 (2011).
[CrossRef]

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137, 81–100 (2011).
[CrossRef]

Remote Sens. Environ. (2)

P. Di Girolamo, A. Behrendt, C. Kiemle, V. Wulfmeyer, H. Bauer, D. Summa, A. Dörnbrack, and G. Ehret, “Simulation of satellite water vapour lidar measurements: performance assessment under real atmospheric conditions,” Remote Sens. Environ. 112, 1552–1568 (2008).
[CrossRef]

V. Wulfmeyer, H. Bauer, P. Di Girolamo, and C. Serio,”Comparison of active and passive remote sensing from space: an analysis based on the simulated performance of IASI and space borne differential absorption lidar,” Remote Sens. Environ. 95, 211–230 (2005).
[CrossRef]

Rev. Sci. Instrum. (1)

V. Ramanathan, J. Lee, S. Xu, X. Wang, L. Williams, W. Malphurs, and D. H. Reitze, “Analysis of thermal aberrations in a high average power single-stage Ti:sapphire regenerative chirped pulse amplifier: simulation and experiment,” Rev. Sci. Instrum. 77, 103103 (2006).
[CrossRef]

Sov. Phys. JETP (1)

Y. A. Anan’ev, N. A. Sventsitskaya, and V. E. Sherstobitov, “Properties of a laser with an unstable resonator,” Sov. Phys. JETP 28, 69–74 (1969).

Other (17)

G. A. Rines, H. H. Zenzie, and P. F. Moulton, “Recent advantages in Ti:Al2O3 unstable resonator lasers,” in Advanced Solid State Lasers, G.Dube and L.Chase, eds. Vol.  10 of OSA Proceedings Series (Optical Society of America, 1991), paper TL3.

W. Koechner, “Thermo-optic effects and heat removal,” in Solid-State Laser Engineering, T.Tamir and A.L.Schawlow, eds. (Springer-Verlag1999), Chap. 7.

N. Hodgson and H. Weber, “Resonators with variable internal lenses,” in Optical Sciences: Laser Resonators and Beam Propagation, 2nd ed., W.T.Rhodes, ed. (Springer, 2005), Vol.  108, Chap. 13.

G. Wagner, V. Wulfmeyer, and A. Behrendt are preparing a manuscript to be called “The transmitter of a 3D-scanning DIAL system. System description and transmitter performance.”

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).

P. Ingmann and A. Hélière, “WALES—WAter vapour Lidar Experiment in Space—Report for assessment,” ESA SP-1257(2), (European Space Agency, 2001).

P. Langen and Mission Experts Division, “WALES—WAter vapour Lidar Experiment in Space—Report for Mission Selection,” ESA SP-1279(3), (European Space Agency, 2004).

P. Langen and Mission Experts Division, “WALES—WAter vapour Lidar Experiment in Space—Technical and Programmatic Annex,” Annex to ESA SP-1279(3), (European Space Agency, 2004).

LASE Project, “http://asd-www.larc.nasa.gov/lase/ASDlase.html,” (2007).

A. Behrendt, V. Wulfmeyer, G. Wagner, A. Riede, and F. Späth are preparing a manuscript to be called “Measurements with the University of Hohenheim water vapor DIAL during COPS.”

W. Koechner, “Q-switching,” in Solid-State Laser Engineering, T.Tamir, and A.L.Schawlow, eds. (Springer-Verlag, 1999), Chap. 8.

Applied Optics Research (AOR), “GLAD: General Laser Analysis and Design program,” Version 5.0.5, www.aor.com.

G. N. Lawrence, “Optical modeling,” in Applied Optics and Optical Engineering XI, R.R.Shannon and J.C.Wyant, eds. (Academic, 1992), Chap. 3.

Y.S.Touloukian and C.Y.Ho, eds., “Thermal conductivity—nonmetalic solids,” in Thermophysical Properties of Matter (IFI/Plenum, 1972), Vol.  2.

Y.S.Touloukian and C.Y.Ho, eds., “Specific heat—nonmetalic solids,” in Thermophysical Properties of Matter (IFI/Plenum, 1972), Vol.  5.

N. Hodgson and H. Weber, “Unstable resonators,” in Optical Sciences: Laser Resonators and Beam Propagation, 2nd ed., W.T.Rhodes, ed. (Springer, 2005), Vol.  108, Chap. 7.

A. E. Siegman, “Derivation of the cavity rate equation—spontaneous emission: the “extra photon,” in Lasers, A.Kelly, ed. (University Science, 1986), Chap. 13.2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Crystal cooler setup for FEA model, (b) meshed Brewster-cut TISA crystal with cooler, (c) solved FEA model with pump laser turned off.

Fig. 2
Fig. 2

(a) Brewster-cut TISA crystal pumped from both sides with an average pump power level of 50 W . Isotemperature surfaces are shown in variable black and white shading given in Kelvin. The crystal is located in the center of an aluminum cooler with Peltier cooling. The coordinate origin is at the crystal center. Dimensions are given in meters. (b) Temperature profiles along the z direction of Fig. 2a. (c) Same as Fig. 2a, but pumped from a single side with a pump power level of 50 W . (d) Temperature profiles along the z direction of Fig. 2c.

Fig. 3
Fig. 3

Calculated focal length of thermal lens f th for a Brewster-cut TISA crystal pumped with the power P 0 from each side and comparison with the model of Innocenzi et al. [68]. Our design pump power is marked with a vertical line. For an average pump power of 50 W , the focal lengths of f th , s = 0.54 m and f th , t = 0.24 m are calculated, respectively.

Fig. 4
Fig. 4

High average power dynamically stable ring resonator setup. Propagation direction indicated by arrows. The TISA crystal is pumped from both sides through dichroic mirrors (DCs). OC, output coupler; BM, bending mirror; L, optional intracavity lens; BF for coarse tuning. Half-wave plate ( λ / 2 ) aligned to 45 ° retardation and Faraday rotator (FR) serve as an optical diode. The resonator is seeded through the output coupler.

Fig. 5
Fig. 5

Beam propagation of the stable ring resonator. z , distance from principle plane of thermal lens; ω m , mode radius. Resonator length: 145 cm . The tangential plane includes cylindrical lens L with focal length of 0.3 m at z = 7 cm .

Fig. 6
Fig. 6

Stability zone of the stable ring resonator. Mode radius ω m on the TISA crystal for different values of the thermal lens f th . The dynamically stable point is marked for each plane. The tangential plane includes the cylindrical lens (see Figs. 4, 5).

Fig. 7
Fig. 7

High average power unstable ring resonator design template. Propagation direction indicated by arrows. M3 and M4, flat resonator mirrors; M1 and M2, spherical resonator mirrors with curvature radius ρ 1 and ρ 2 , respectively. M1 serves as an output coupler (variable reflectivity profile). The distance d between the curved mirrors has to be adjusted to meet the confocality condition of M1 and M2. Thermal lensing has to be compensated by additional cylindrical lenses L x and L y .

Fig. 8
Fig. 8

Unstable resonator calculated beam propagation. The parameters are: resonator length 80 cm ; planoconvex VRM with radius of curvature 160 cm at the origin ( z = 0 ); planoconcave mirror with radius of curvature + 200 cm at z = 20 cm ; TISA crystal position z = 50 cm ; focal length of thermal lens 140 cm (sagittal plane) and 40 cm (tangential plane); cylindrical lenses at resonator position z = 70 cm with focal lengths of 77.2 cm (sagittal plane) and 18.3 cm (tangential plane); magnification 1.6 (both planes).

Fig. 9
Fig. 9

Unstable resonator: (a) calculated intracavity beam profile in front of VRM mirror, (b) calculated outcoupled beam profile.

Fig. 10
Fig. 10

Stable ring resonator TISA laser at 820 nm : (a) input pulse energy E pump versus calculated output pulse energy E out . R, output coupler reflectivity; L, dissipative resonator loss; (b) calculated total laser efficiency η total ; (c) calculated pulse length τ p ; (d) calculated linewidth Γ.

Fig. 11
Fig. 11

Unstable ring resonator TISA laser at 820 nm : (a) input pulse energy E pump versus calculated output pulse energy E out . R 0 , VRM center reflectivity; L, dissipative resonator loss; (b) calculated total laser efficiency η total ; (c) calculated pulse length τ p ; (d) calculated linewidth Γ.

Fig. 12
Fig. 12

Calculated spectral impurity 1 SP versus seed power P s in logarithmic scale. The requirement value for the spectral purity of SP > 99.9 % is marked.

Tables (8)

Tables Icon

Table 1 Comparison of Different Existing Operated Water Vapor DIAL Systems and Their Applications a

Tables Icon

Table 2 Transmitter Requirements for Water Vapor DIAL from Ground to the Lower Stratosphere According to [13, 14, 16, 17, 18, 92] a

Tables Icon

Table 3 Thermal Model Parameters

Tables Icon

Table 4 Parameters of Stable Resonator TISA Laser Simulation at 820 nm

Tables Icon

Table 5 Stable Resonator TISA Laser Simulation at 820 nm : Optimum Output Coupler (OC) Reflectivities R opt for Different Pump Pulse Energies a

Tables Icon

Table 6 Parameters of Unstable Resonator TISA Laser Performance Simulation at 820 nm

Tables Icon

Table 7 Spectral Purity Simulation Parameter Table of Stable Resonator (SR) and Unstable Resonator (UR)

Tables Icon

Table 8 Final Comparison of Stable and Unstable Resonator Concepts for Water Vapor DIAL [(+) More Suitable, (−) Less Suitable, (0) Uncertain]

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

ρ C p T t · ( k T ) = Q .
F sat = h σ abs · c λ p ,
η h = 1 η c = 1 ν l ν p = 1 λ p λ l ,
Q ( x , y , z ) = η h P 0 p ( x , y ) α 1 exp ( α l ) · [ exp { α ( z + l 2 ) } + exp { α ( z l 2 ) } ] .
p G ( x , y ) = 2 π ω p , x ω p , y exp ( 2 x 2 ω p , x 2 ) exp ( 2 y 2 ω p , y 2 ) ,
p ( x , y ) d x d y = 1 .
p SG ( x , y ) = 2 2 + 1 2 m + 1 2 n ω p , x ω p , y Γ ( 1 + 1 2 m ) Γ ( 1 + 1 2 n ) · exp { 2 ( x 2 ω p , x 2 ) n } exp { 2 ( y 2 ω p , y 2 ) m } ,
Γ ( x ) = 0 + exp ( t ) t x 1 d t ( x > 0 ) .
M S = ( 1 0 0 0 1 0 0 tan θ 1 ) ,
θ = 90 ° arctan ( n ) = 90 ° θ B .
Q G , θ ( x , y , z ) = η h P 0 p G , θ ( x , y ) α 1 exp ( α l ) · [ exp { α ( z y tan θ + l 2 ) } + exp { α ( z y tan θ l 2 ) } ] ,
p G , θ ( x , y ) = 2 π n ω p , x ω p , y exp ( 2 x 2 ω p , x 2 ) exp ( 2 y 2 ( n ω p , y ) 2 ) .
OPD ( x , y ) = l / 2 + l / 2 d n d T T ( x , y ) d z + ( n 0 1 ) Δ l ( x , y ) ,
R 0 1 / | M | n ,
d N d t = γ c σ e N ( t ) ϕ ( t ) ,
d ϕ d t = ϕ ( t ) [ c σ e l l N ( t ) ϵ t r ] .
ϵ t r = c l [ L + ln ( 1 R ) ] ,
N ( 0 ) = E ST E L 1 V = E ST h ν L 1 V ,
ϕ ( 0 ) = N ( 0 ) l c τ f d Ω 4 π .
E out = h ν L V t r ln ( 1 R ) 0 ϕ ( t ) d t ,
Δ V = 1 R 0 M 2 .
V = R 0 M 2 ,
ϵ t r = c l [ L + ln ( 1 R 0 ) + ln ( M 2 ) ] ,
E out = h ν L V t r ln ( M 2 R 0 ) 0 ϕ ( t ) d t .
d N d t = γ c N ( t ) [ σ seed ϕ seed ( t ) + σ spon ϕ spon ( t ) ] N ( t ) τ f ,
d ϕ seed d t = ( ϕ seed ( t ) + 1 V ) c σ seed l l N ( t ) ϕ seed ( t ) ϵ t r + Φ seeder ,
d ϕ spon d t = ( ϕ spon ( t ) + M V ) c σ spon l l N ( t ) ϕ spon ( t ) ϵ t r .
M Δ ν BF Δ ν L = Δ ν BF l c ,
Φ seeder = P s λ L h c 1 V ,
SP = 0 ϕ seed ( t ) d t 0 ϕ seed ( t ) d t + 0 ϕ spon ( t ) d t .

Metrics