Abstract

Volume Bragg gratings (VBGs) in photothermorefractive (PTR) glass are widely used for laser beam control including high-power laser systems. Among them, spectral beam combining based on VBGs is one of the most promising. Achieving 100+kW of combined laser beams requires the development of PTR glass and VBGs with an extremely low absorption coefficient and therefore methods of its measurement. This paper describes the calorimetric method that was developed for measuring a low absorption coefficient in PTR glass and VBGs. It is based on transmission monitoring of the intrinsic Fabry–Perot interferometer produced by the plane-parallel surfaces of the measured optical elements when heated by high-power laser radiation. An absorption coefficient at 1085nm as low as 5×105cm1 is demonstrated in pristine PTR glass while an absorption coefficient as low as 1×104cm1 is measured in high-efficiency reflecting Bragg gratings with highest purity. The actual level of absorption in PTR glass allows laser beam control at the 10kW level, while the 100kW level would require active cooling and/or decreasing the absorption in PTR Bragg gratings to a value similar to that in virgin PTR glass.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. B. Glebov, “Volume hologram recording in inorganic glasses,” Glass Sci. Technol. 75, 73–90 (2002).
  2. O. M. Efimov, L. B. Glebov, and V. I. Smirnov, “High efficiency volume diffractive elements in photo-thermo-refractive glass,” U.S. patent 6,673,497 (6 January 2004).
  3. L. Glebov, “Optimizing and stabilizing diode laser spectral parameters,” Photonics Spectra, 90–94 (January 2005), http://www.photonics.com/Article.aspx?AID=20819.
  4. O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, “Beam combining of lasers with high spectral density using volume Bragg gratings,” Opt. Commun. 282, 2560–2563 (2009).
    [CrossRef]
  5. O. Andrusyak, D. Drachenberg, V. Smirnov, G. Venus, and L. Glebov, “Fiber laser system with kW-level spectrally-combined output,” in 21st Annual Solid State and Diode Laser Technology Review, SSDLTR-2008 Technical Digest (Directed Energy Professional Society, 2008), pp. 2–6.
  6. A. Sevian, O. Andrusyak, I. Ciapurin, G. Venus, V. Smirnov, and L. Glebov, “Efficient power scaling of laser radiation by spectral beam combining,” Opt. Lett. 33, 384–386 (2008).
    [CrossRef] [PubMed]
  7. H. B. Rosenstock, “Absorption measurement by laser calorimetry,” J. Appl. Phys. 50, 102–110 (1979).
    [CrossRef]
  8. W. Triebel, Ch. Mühlig, and S. Kufert, “Application of the laser induced deflection (LID) technique for low absorption measurements in bulk materials and coatings,” Proc. SPIE 5965, 499–508 (2005).
  9. K. L. Saenger, “Interferometric measurement of substrate heating induced by pulsed laser irradiation,” J. Appl. Phys. 63, 2522–2525 (1988).
    [CrossRef]
  10. B. Li, Y. Deng, and J. Cheng, “Sensitive photothermal interferometric detection method for characterization of transparent plate samples,” Rev. Sci. Instrum. 67, 3649–3657(1996).
    [CrossRef]
  11. K. L. Saenger, “An interferometric calorimeter for thin film thermal diffusivity measurements,” J. Appl. Phys. 65, 1447–1452 (1989).
    [CrossRef]
  12. J. B. Gerardo and J. T. Verdeyen, “The laser interferometer: application to plasma diagnostics,” Proc. IEEE 52, 690–697 (1964).
    [CrossRef]
  13. J. Lumeau and M. Lequime, “Localized measurement of the optical thickness of a transparent window—application to the study of the photosensitivity of organic polymers,” Appl. Opt. 45, 1328–1332 (2006).
    [CrossRef] [PubMed]
  14. N. A. Riza, M. Sheikh, and F. Perez, “Optical substrate thickness measurement system using hybrid fiber-free space optics and selective wavelength interferometry,” Opt. Commun. 269, 24–29 (2007).
    [CrossRef]
  15. J. Arkwright, D. Farrant, and J. Zhang, “Sub-nanometer metrology of optical wafers using an angle-scanned Fabry–Perot interferometer,” Opt. Express 14, 114–119 (2006).
    [CrossRef] [PubMed]
  16. M. Kennedy, D. Ristau, G. Dumitru, D. G. Sporea, and C. Timus, “Calibration procedures for a 10.6 μm laser calorimeter,” Proc. SPIE 3405, 1083–1087 (1998).
    [CrossRef]
  17. L. B. Glebov and E. N. Boulos, “Absorption of iron and water in the Na2O–CaO–MgO–SiO2glasses. II. Selection of intrinsic, ferric, and ferrous spectra in the visible and UV regions,” J. Non-Cryst. Solids 242, 49–62 (1998).
    [CrossRef]
  18. J. Deubener, H. Bornhöft, S. Reinsch, R. Müller, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Viscosity, relaxation and elastic properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids 355, 126–131 (2009).
    [CrossRef]
  19. S. R. Nersisyan, N. V. Tabiryan, and C. Martin Stickley, “Characterization of glass and high-power near-infrared cw laser beams using nonlinear optical techniques,” Opt. Eng. 45, 104301 (2006).
    [CrossRef]
  20. D. Moncke and D. Ehrt, “Irradiation induced defects in glasses resulting in the photoionization of polyvalent dopants,” Opt. Mater. 25, 425–437 (2004).
    [CrossRef]

2009 (2)

O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, “Beam combining of lasers with high spectral density using volume Bragg gratings,” Opt. Commun. 282, 2560–2563 (2009).
[CrossRef]

J. Deubener, H. Bornhöft, S. Reinsch, R. Müller, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Viscosity, relaxation and elastic properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids 355, 126–131 (2009).
[CrossRef]

2008 (1)

2007 (1)

N. A. Riza, M. Sheikh, and F. Perez, “Optical substrate thickness measurement system using hybrid fiber-free space optics and selective wavelength interferometry,” Opt. Commun. 269, 24–29 (2007).
[CrossRef]

2006 (3)

2004 (1)

D. Moncke and D. Ehrt, “Irradiation induced defects in glasses resulting in the photoionization of polyvalent dopants,” Opt. Mater. 25, 425–437 (2004).
[CrossRef]

2002 (1)

L. B. Glebov, “Volume hologram recording in inorganic glasses,” Glass Sci. Technol. 75, 73–90 (2002).

1998 (2)

M. Kennedy, D. Ristau, G. Dumitru, D. G. Sporea, and C. Timus, “Calibration procedures for a 10.6 μm laser calorimeter,” Proc. SPIE 3405, 1083–1087 (1998).
[CrossRef]

L. B. Glebov and E. N. Boulos, “Absorption of iron and water in the Na2O–CaO–MgO–SiO2glasses. II. Selection of intrinsic, ferric, and ferrous spectra in the visible and UV regions,” J. Non-Cryst. Solids 242, 49–62 (1998).
[CrossRef]

1996 (1)

B. Li, Y. Deng, and J. Cheng, “Sensitive photothermal interferometric detection method for characterization of transparent plate samples,” Rev. Sci. Instrum. 67, 3649–3657(1996).
[CrossRef]

1989 (1)

K. L. Saenger, “An interferometric calorimeter for thin film thermal diffusivity measurements,” J. Appl. Phys. 65, 1447–1452 (1989).
[CrossRef]

1988 (1)

K. L. Saenger, “Interferometric measurement of substrate heating induced by pulsed laser irradiation,” J. Appl. Phys. 63, 2522–2525 (1988).
[CrossRef]

1979 (1)

H. B. Rosenstock, “Absorption measurement by laser calorimetry,” J. Appl. Phys. 50, 102–110 (1979).
[CrossRef]

1964 (1)

J. B. Gerardo and J. T. Verdeyen, “The laser interferometer: application to plasma diagnostics,” Proc. IEEE 52, 690–697 (1964).
[CrossRef]

Andrusyak, O.

O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, “Beam combining of lasers with high spectral density using volume Bragg gratings,” Opt. Commun. 282, 2560–2563 (2009).
[CrossRef]

A. Sevian, O. Andrusyak, I. Ciapurin, G. Venus, V. Smirnov, and L. Glebov, “Efficient power scaling of laser radiation by spectral beam combining,” Opt. Lett. 33, 384–386 (2008).
[CrossRef] [PubMed]

O. Andrusyak, D. Drachenberg, V. Smirnov, G. Venus, and L. Glebov, “Fiber laser system with kW-level spectrally-combined output,” in 21st Annual Solid State and Diode Laser Technology Review, SSDLTR-2008 Technical Digest (Directed Energy Professional Society, 2008), pp. 2–6.

Arkwright, J.

Bornhöft, H.

J. Deubener, H. Bornhöft, S. Reinsch, R. Müller, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Viscosity, relaxation and elastic properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids 355, 126–131 (2009).
[CrossRef]

Boulos, E. N.

L. B. Glebov and E. N. Boulos, “Absorption of iron and water in the Na2O–CaO–MgO–SiO2glasses. II. Selection of intrinsic, ferric, and ferrous spectra in the visible and UV regions,” J. Non-Cryst. Solids 242, 49–62 (1998).
[CrossRef]

Cheng, J.

B. Li, Y. Deng, and J. Cheng, “Sensitive photothermal interferometric detection method for characterization of transparent plate samples,” Rev. Sci. Instrum. 67, 3649–3657(1996).
[CrossRef]

Ciapurin, I.

Deng, Y.

B. Li, Y. Deng, and J. Cheng, “Sensitive photothermal interferometric detection method for characterization of transparent plate samples,” Rev. Sci. Instrum. 67, 3649–3657(1996).
[CrossRef]

Deubener, J.

J. Deubener, H. Bornhöft, S. Reinsch, R. Müller, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Viscosity, relaxation and elastic properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids 355, 126–131 (2009).
[CrossRef]

Drachenberg, D.

O. Andrusyak, D. Drachenberg, V. Smirnov, G. Venus, and L. Glebov, “Fiber laser system with kW-level spectrally-combined output,” in 21st Annual Solid State and Diode Laser Technology Review, SSDLTR-2008 Technical Digest (Directed Energy Professional Society, 2008), pp. 2–6.

Dumitru, G.

M. Kennedy, D. Ristau, G. Dumitru, D. G. Sporea, and C. Timus, “Calibration procedures for a 10.6 μm laser calorimeter,” Proc. SPIE 3405, 1083–1087 (1998).
[CrossRef]

Efimov, O. M.

O. M. Efimov, L. B. Glebov, and V. I. Smirnov, “High efficiency volume diffractive elements in photo-thermo-refractive glass,” U.S. patent 6,673,497 (6 January 2004).

Ehrt, D.

D. Moncke and D. Ehrt, “Irradiation induced defects in glasses resulting in the photoionization of polyvalent dopants,” Opt. Mater. 25, 425–437 (2004).
[CrossRef]

Farrant, D.

Gerardo, J. B.

J. B. Gerardo and J. T. Verdeyen, “The laser interferometer: application to plasma diagnostics,” Proc. IEEE 52, 690–697 (1964).
[CrossRef]

Glebov, L.

O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, “Beam combining of lasers with high spectral density using volume Bragg gratings,” Opt. Commun. 282, 2560–2563 (2009).
[CrossRef]

A. Sevian, O. Andrusyak, I. Ciapurin, G. Venus, V. Smirnov, and L. Glebov, “Efficient power scaling of laser radiation by spectral beam combining,” Opt. Lett. 33, 384–386 (2008).
[CrossRef] [PubMed]

O. Andrusyak, D. Drachenberg, V. Smirnov, G. Venus, and L. Glebov, “Fiber laser system with kW-level spectrally-combined output,” in 21st Annual Solid State and Diode Laser Technology Review, SSDLTR-2008 Technical Digest (Directed Energy Professional Society, 2008), pp. 2–6.

L. Glebov, “Optimizing and stabilizing diode laser spectral parameters,” Photonics Spectra, 90–94 (January 2005), http://www.photonics.com/Article.aspx?AID=20819.

Glebov, L. B.

J. Deubener, H. Bornhöft, S. Reinsch, R. Müller, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Viscosity, relaxation and elastic properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids 355, 126–131 (2009).
[CrossRef]

L. B. Glebov, “Volume hologram recording in inorganic glasses,” Glass Sci. Technol. 75, 73–90 (2002).

L. B. Glebov and E. N. Boulos, “Absorption of iron and water in the Na2O–CaO–MgO–SiO2glasses. II. Selection of intrinsic, ferric, and ferrous spectra in the visible and UV regions,” J. Non-Cryst. Solids 242, 49–62 (1998).
[CrossRef]

O. M. Efimov, L. B. Glebov, and V. I. Smirnov, “High efficiency volume diffractive elements in photo-thermo-refractive glass,” U.S. patent 6,673,497 (6 January 2004).

Glebova, L. N.

J. Deubener, H. Bornhöft, S. Reinsch, R. Müller, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Viscosity, relaxation and elastic properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids 355, 126–131 (2009).
[CrossRef]

Kennedy, M.

M. Kennedy, D. Ristau, G. Dumitru, D. G. Sporea, and C. Timus, “Calibration procedures for a 10.6 μm laser calorimeter,” Proc. SPIE 3405, 1083–1087 (1998).
[CrossRef]

Kufert, S.

W. Triebel, Ch. Mühlig, and S. Kufert, “Application of the laser induced deflection (LID) technique for low absorption measurements in bulk materials and coatings,” Proc. SPIE 5965, 499–508 (2005).

Lequime, M.

Li, B.

B. Li, Y. Deng, and J. Cheng, “Sensitive photothermal interferometric detection method for characterization of transparent plate samples,” Rev. Sci. Instrum. 67, 3649–3657(1996).
[CrossRef]

Lumeau, J.

J. Deubener, H. Bornhöft, S. Reinsch, R. Müller, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Viscosity, relaxation and elastic properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids 355, 126–131 (2009).
[CrossRef]

J. Lumeau and M. Lequime, “Localized measurement of the optical thickness of a transparent window—application to the study of the photosensitivity of organic polymers,” Appl. Opt. 45, 1328–1332 (2006).
[CrossRef] [PubMed]

Moncke, D.

D. Moncke and D. Ehrt, “Irradiation induced defects in glasses resulting in the photoionization of polyvalent dopants,” Opt. Mater. 25, 425–437 (2004).
[CrossRef]

Mühlig, Ch.

W. Triebel, Ch. Mühlig, and S. Kufert, “Application of the laser induced deflection (LID) technique for low absorption measurements in bulk materials and coatings,” Proc. SPIE 5965, 499–508 (2005).

Müller, R.

J. Deubener, H. Bornhöft, S. Reinsch, R. Müller, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Viscosity, relaxation and elastic properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids 355, 126–131 (2009).
[CrossRef]

Nersisyan, S. R.

S. R. Nersisyan, N. V. Tabiryan, and C. Martin Stickley, “Characterization of glass and high-power near-infrared cw laser beams using nonlinear optical techniques,” Opt. Eng. 45, 104301 (2006).
[CrossRef]

Perez, F.

N. A. Riza, M. Sheikh, and F. Perez, “Optical substrate thickness measurement system using hybrid fiber-free space optics and selective wavelength interferometry,” Opt. Commun. 269, 24–29 (2007).
[CrossRef]

Reinsch, S.

J. Deubener, H. Bornhöft, S. Reinsch, R. Müller, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Viscosity, relaxation and elastic properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids 355, 126–131 (2009).
[CrossRef]

Ristau, D.

M. Kennedy, D. Ristau, G. Dumitru, D. G. Sporea, and C. Timus, “Calibration procedures for a 10.6 μm laser calorimeter,” Proc. SPIE 3405, 1083–1087 (1998).
[CrossRef]

Riza, N. A.

N. A. Riza, M. Sheikh, and F. Perez, “Optical substrate thickness measurement system using hybrid fiber-free space optics and selective wavelength interferometry,” Opt. Commun. 269, 24–29 (2007).
[CrossRef]

Rosenstock, H. B.

H. B. Rosenstock, “Absorption measurement by laser calorimetry,” J. Appl. Phys. 50, 102–110 (1979).
[CrossRef]

Saenger, K. L.

K. L. Saenger, “An interferometric calorimeter for thin film thermal diffusivity measurements,” J. Appl. Phys. 65, 1447–1452 (1989).
[CrossRef]

K. L. Saenger, “Interferometric measurement of substrate heating induced by pulsed laser irradiation,” J. Appl. Phys. 63, 2522–2525 (1988).
[CrossRef]

Sevian, A.

Sheikh, M.

N. A. Riza, M. Sheikh, and F. Perez, “Optical substrate thickness measurement system using hybrid fiber-free space optics and selective wavelength interferometry,” Opt. Commun. 269, 24–29 (2007).
[CrossRef]

Smirnov, V.

O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, “Beam combining of lasers with high spectral density using volume Bragg gratings,” Opt. Commun. 282, 2560–2563 (2009).
[CrossRef]

A. Sevian, O. Andrusyak, I. Ciapurin, G. Venus, V. Smirnov, and L. Glebov, “Efficient power scaling of laser radiation by spectral beam combining,” Opt. Lett. 33, 384–386 (2008).
[CrossRef] [PubMed]

O. Andrusyak, D. Drachenberg, V. Smirnov, G. Venus, and L. Glebov, “Fiber laser system with kW-level spectrally-combined output,” in 21st Annual Solid State and Diode Laser Technology Review, SSDLTR-2008 Technical Digest (Directed Energy Professional Society, 2008), pp. 2–6.

Smirnov, V. I.

O. M. Efimov, L. B. Glebov, and V. I. Smirnov, “High efficiency volume diffractive elements in photo-thermo-refractive glass,” U.S. patent 6,673,497 (6 January 2004).

Sporea, D. G.

M. Kennedy, D. Ristau, G. Dumitru, D. G. Sporea, and C. Timus, “Calibration procedures for a 10.6 μm laser calorimeter,” Proc. SPIE 3405, 1083–1087 (1998).
[CrossRef]

Stickley, C. Martin

S. R. Nersisyan, N. V. Tabiryan, and C. Martin Stickley, “Characterization of glass and high-power near-infrared cw laser beams using nonlinear optical techniques,” Opt. Eng. 45, 104301 (2006).
[CrossRef]

Tabiryan, N. V.

S. R. Nersisyan, N. V. Tabiryan, and C. Martin Stickley, “Characterization of glass and high-power near-infrared cw laser beams using nonlinear optical techniques,” Opt. Eng. 45, 104301 (2006).
[CrossRef]

Timus, C.

M. Kennedy, D. Ristau, G. Dumitru, D. G. Sporea, and C. Timus, “Calibration procedures for a 10.6 μm laser calorimeter,” Proc. SPIE 3405, 1083–1087 (1998).
[CrossRef]

Triebel, W.

W. Triebel, Ch. Mühlig, and S. Kufert, “Application of the laser induced deflection (LID) technique for low absorption measurements in bulk materials and coatings,” Proc. SPIE 5965, 499–508 (2005).

Venus, G.

O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, “Beam combining of lasers with high spectral density using volume Bragg gratings,” Opt. Commun. 282, 2560–2563 (2009).
[CrossRef]

A. Sevian, O. Andrusyak, I. Ciapurin, G. Venus, V. Smirnov, and L. Glebov, “Efficient power scaling of laser radiation by spectral beam combining,” Opt. Lett. 33, 384–386 (2008).
[CrossRef] [PubMed]

O. Andrusyak, D. Drachenberg, V. Smirnov, G. Venus, and L. Glebov, “Fiber laser system with kW-level spectrally-combined output,” in 21st Annual Solid State and Diode Laser Technology Review, SSDLTR-2008 Technical Digest (Directed Energy Professional Society, 2008), pp. 2–6.

Verdeyen, J. T.

J. B. Gerardo and J. T. Verdeyen, “The laser interferometer: application to plasma diagnostics,” Proc. IEEE 52, 690–697 (1964).
[CrossRef]

Zhang, J.

Appl. Opt. (1)

Glass Sci. Technol. (1)

L. B. Glebov, “Volume hologram recording in inorganic glasses,” Glass Sci. Technol. 75, 73–90 (2002).

J. Appl. Phys. (3)

H. B. Rosenstock, “Absorption measurement by laser calorimetry,” J. Appl. Phys. 50, 102–110 (1979).
[CrossRef]

K. L. Saenger, “Interferometric measurement of substrate heating induced by pulsed laser irradiation,” J. Appl. Phys. 63, 2522–2525 (1988).
[CrossRef]

K. L. Saenger, “An interferometric calorimeter for thin film thermal diffusivity measurements,” J. Appl. Phys. 65, 1447–1452 (1989).
[CrossRef]

J. Non-Cryst. Solids (2)

L. B. Glebov and E. N. Boulos, “Absorption of iron and water in the Na2O–CaO–MgO–SiO2glasses. II. Selection of intrinsic, ferric, and ferrous spectra in the visible and UV regions,” J. Non-Cryst. Solids 242, 49–62 (1998).
[CrossRef]

J. Deubener, H. Bornhöft, S. Reinsch, R. Müller, J. Lumeau, L. N. Glebova, and L. B. Glebov, “Viscosity, relaxation and elastic properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids 355, 126–131 (2009).
[CrossRef]

Opt. Commun. (2)

N. A. Riza, M. Sheikh, and F. Perez, “Optical substrate thickness measurement system using hybrid fiber-free space optics and selective wavelength interferometry,” Opt. Commun. 269, 24–29 (2007).
[CrossRef]

O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, “Beam combining of lasers with high spectral density using volume Bragg gratings,” Opt. Commun. 282, 2560–2563 (2009).
[CrossRef]

Opt. Eng. (1)

S. R. Nersisyan, N. V. Tabiryan, and C. Martin Stickley, “Characterization of glass and high-power near-infrared cw laser beams using nonlinear optical techniques,” Opt. Eng. 45, 104301 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (1)

D. Moncke and D. Ehrt, “Irradiation induced defects in glasses resulting in the photoionization of polyvalent dopants,” Opt. Mater. 25, 425–437 (2004).
[CrossRef]

Proc. IEEE (1)

J. B. Gerardo and J. T. Verdeyen, “The laser interferometer: application to plasma diagnostics,” Proc. IEEE 52, 690–697 (1964).
[CrossRef]

Proc. SPIE (1)

M. Kennedy, D. Ristau, G. Dumitru, D. G. Sporea, and C. Timus, “Calibration procedures for a 10.6 μm laser calorimeter,” Proc. SPIE 3405, 1083–1087 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

B. Li, Y. Deng, and J. Cheng, “Sensitive photothermal interferometric detection method for characterization of transparent plate samples,” Rev. Sci. Instrum. 67, 3649–3657(1996).
[CrossRef]

Other (4)

W. Triebel, Ch. Mühlig, and S. Kufert, “Application of the laser induced deflection (LID) technique for low absorption measurements in bulk materials and coatings,” Proc. SPIE 5965, 499–508 (2005).

O. Andrusyak, D. Drachenberg, V. Smirnov, G. Venus, and L. Glebov, “Fiber laser system with kW-level spectrally-combined output,” in 21st Annual Solid State and Diode Laser Technology Review, SSDLTR-2008 Technical Digest (Directed Energy Professional Society, 2008), pp. 2–6.

O. M. Efimov, L. B. Glebov, and V. I. Smirnov, “High efficiency volume diffractive elements in photo-thermo-refractive glass,” U.S. patent 6,673,497 (6 January 2004).

L. Glebov, “Optimizing and stabilizing diode laser spectral parameters,” Photonics Spectra, 90–94 (January 2005), http://www.photonics.com/Article.aspx?AID=20819.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Ray tracing of the beam transmitted through a Fabry–Perot-like structure. Transmitted ( I T ) and reflected ( I R ) intensities are obtained as a coherent sum of all transmitted beams ( A T i and A R i ).

Fig. 2
Fig. 2

Dependence of the intensity of a beam transmitted through an optical flat on the total phase incursion in the plate.

Fig. 3
Fig. 3

Optical setup designed for the measurement of the phase incursion induced by laser heating in an optical flat. W, wedge; L, lens; D, diaphragm; D i , detector; M, mirror; C, chopper; and BD, beam dumps.

Fig. 4
Fig. 4

(a) Evolution of intensity of a probe beam transmitted through the sample exposed to a high-power pump beam and (b) corresponding evolution of the optical thickness. The exposure started at the time marked by the arrow.

Fig. 5
Fig. 5

Correlation between specific optical thickness change ( Δ n t / P ) and PTR glass absorption coefficient.

Fig. 6
Fig. 6

Bragg wavelength shift in a conventionally cooled in air PTR glass plate versus the absorption coefficient for different incident power of laser beams.

Tables (4)

Tables Icon

Table 1 Repeatability of the Absorption Coefficient Measurements

Tables Icon

Table 2 Absorption Coefficient Measured in the Samples with Different Lateral Sizes

Tables Icon

Table 3 Absorption Coefficient Measured in the Samples with Different Thicknesses

Tables Icon

Table 4 Absorption Coefficient of Virgin PTR Glass Samples from Different Melts

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

{ I T ( n t , λ ) = I 0 1 + F sin 2 ( Φ 2 ) Φ = 4 π n t λ cos ( θ ) ,
{ I 0 = I max F = I max I min 1 ,
{ n t = λ 0 2 π arcsin 1 F ( I 0 I T 1 ) n t [ 0 , λ 2 ] .
λ 1064 = 2 n 0 Λ ,
1 λ 1064 λ 1064 T = 1 n 0 Λ n 0 Λ T = 1 Λ Λ T + 1 n 0 n 0 T .
t = ( N + ε ) Λ ,
1 n 0 Λ n 0 Λ T = 1 n 0 t n 0 t T = 1 λ 1064 λ 1064 T .

Metrics