Abstract

The current work demonstrates a liquid crystalline polymer microlens array (LCP MLA) with an all- optically tunable and multistable focal intensity through photochemical phase transition. The operational mechanism of the optical tuning is associated with the photoisomerization effect. The proposed LCP MLA device has a focusing unit based on a birefringence LCP and a tuning unit with a light responsive material to control the polarization state of the incident probe beam. The optically variable refractive indices of LCP enable a positive or negative MLA that can control the polarization of incident light to be realized.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “All-optical switching and multistability in photonic structures with liquid crystal defects,” Appl. Phys. Lett. 92, 253306(2008).
    [CrossRef]
  2. E. Brasselet, A. E. Miroshnichenko, D. F. Chen, W. Krolikowski, and Y. S. Kivshar, “Polarizational nonlinear optical response of photonic structures with a liquid crystal defect,” Opt. Lett. 34, 488–490 (2009).
    [CrossRef] [PubMed]
  3. D. E. Lucchetta, F. Vita, and F. Simoni, “All-optical switching of diffraction gratings infiltrated with dye-doped liquid crystals,” Appl. Phys. Lett. 97, 231112 (2010).
    [CrossRef]
  4. U. Hrozhyk, S. Nersisyan, S. Serak, N. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Optical switching of liquid-crystal polarization gratings with nanosecond pulses,” Opt. Lett. 34, 2554–2556 (2009).
    [CrossRef] [PubMed]
  5. L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93, 181115 (2008).
    [CrossRef]
  6. H. C. Jau, T. H. Lin, R. X. Fung, S. Y. Huang, J. H. Liu, and A. Y. G. Fuh, “Optically tunable beam steering grating based n azobenzene doped cholesteric liquid crystal,” Opt. Express 18, 17498–17503 (2010).
    [CrossRef] [PubMed]
  7. S. Y. Huang, Y. S. Chen, H. C. Jau, M. S. Li, J. H. Liu, P. C. Yang, and A. Y. G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283, 1726–1731(2010).
    [CrossRef]
  8. H. Ono and M. Ito, “All-optical switching in a dye-doped liquid crystal Fabry–Perot device,” Jpn. J. Appl. Phys. 40, L206–L208 (2001).
    [CrossRef]
  9. L. Petti, P. Mormile, Y. Ren, M. Abbate, P. Musto, G. Ragosta, and W. J. Blau, “Optical switching property from a laser beam propagating in a polymer dispersed liquid crystal film,” Liq. Cryst. 28, 1831–1837 (2001).
    [CrossRef]
  10. L. C. Lin, H. C. Jau, T. H. Lin, and A. Y. G. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15, 2900–2906(2007).
    [CrossRef] [PubMed]
  11. Y. H. Fan, H. W. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11, 3080–3086 (2003).
    [CrossRef] [PubMed]
  12. H. W. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
    [CrossRef]
  13. T. H. Lin, Y. H. Huang, A. Y. G. Fuh, and S. T. Wu, “Polarization controllable Fresnel lens using dye-doped liquid crystals,” Opt. Express 14, 2359–2364 (2006).
    [CrossRef] [PubMed]
  14. M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, and A. I. Khrebtov, “Optical limiters based on liquid-crystal microlenses,” Opt. Spectrosc. 92, 614–618 (2002).
    [CrossRef]
  15. S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16, 8084–8093 (2008).
    [CrossRef] [PubMed]
  16. K. H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable microdoublet lens array,” Opt. Express 12, 2494–2500(2004).
    [CrossRef] [PubMed]
  17. S. Masuda, T. Nose, and S. Sato, “Optical properties of a polymer-stabilized liquid crystal microlens,” Jpn. J. Appl. Phys. 37, L1251–L1253 (1998).
    [CrossRef]
  18. Y. H. Fan, H. W. Ren, X. Liang, H. Y. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1, 151–156(2005).
    [CrossRef]
  19. H. W. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247, 101–106(2005).
    [CrossRef]
  20. L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and P. Ferraro, “Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy,” Opt. Express 17, 2487–2499(2009).
    [CrossRef] [PubMed]
  21. Y. Choi, H. R. Kim, K. H. Lee, Y. M. Lee, and J. H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91, 221113 (2007).
    [CrossRef]
  22. Y. M. Lee, K. H. Lee, Y. Choi, and J. H. Kim, “Fast bistable microlens arrays based on a birefringent layer and ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 47, 6343–6346(2008).
    [CrossRef]
  23. S.-Y. Huang, T.-C. Tung, C.-L. Ting, H.-C. Jau, M.-S. Li, H.-K. Hsu, and A. Y.-G. Fuh, “Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array,” Appl. Phys. B 104, 93–97 (2011).
    [CrossRef]
  24. T. H. Lin, H. C. Jau, S. Y. Hung, H. R. Fuh, and A. Y. G. Fuh, “Photoaddressable bistable reflective liquid crystal display,” Appl. Phys. Lett. 89, 021116 (2006).
    [CrossRef]
  25. S. Y. Huang, S. T. Wu, and A. Y. G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett. 88, 041104(2006).
    [CrossRef]
  26. C. H. Gooch and H. A. Tarry, “Optical properties of twisted nematic liquid-crystal structures with twist angles less than 90 degrees,” J. Phys. D 8, 1575–1584 (1975).
    [CrossRef]
  27. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
    [CrossRef]

2011 (1)

S.-Y. Huang, T.-C. Tung, C.-L. Ting, H.-C. Jau, M.-S. Li, H.-K. Hsu, and A. Y.-G. Fuh, “Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array,” Appl. Phys. B 104, 93–97 (2011).
[CrossRef]

2010 (3)

D. E. Lucchetta, F. Vita, and F. Simoni, “All-optical switching of diffraction gratings infiltrated with dye-doped liquid crystals,” Appl. Phys. Lett. 97, 231112 (2010).
[CrossRef]

H. C. Jau, T. H. Lin, R. X. Fung, S. Y. Huang, J. H. Liu, and A. Y. G. Fuh, “Optically tunable beam steering grating based n azobenzene doped cholesteric liquid crystal,” Opt. Express 18, 17498–17503 (2010).
[CrossRef] [PubMed]

S. Y. Huang, Y. S. Chen, H. C. Jau, M. S. Li, J. H. Liu, P. C. Yang, and A. Y. G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283, 1726–1731(2010).
[CrossRef]

2009 (3)

2008 (4)

Y. M. Lee, K. H. Lee, Y. Choi, and J. H. Kim, “Fast bistable microlens arrays based on a birefringent layer and ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 47, 6343–6346(2008).
[CrossRef]

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “All-optical switching and multistability in photonic structures with liquid crystal defects,” Appl. Phys. Lett. 92, 253306(2008).
[CrossRef]

L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93, 181115 (2008).
[CrossRef]

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16, 8084–8093 (2008).
[CrossRef] [PubMed]

2007 (2)

L. C. Lin, H. C. Jau, T. H. Lin, and A. Y. G. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15, 2900–2906(2007).
[CrossRef] [PubMed]

Y. Choi, H. R. Kim, K. H. Lee, Y. M. Lee, and J. H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

2006 (3)

T. H. Lin, H. C. Jau, S. Y. Hung, H. R. Fuh, and A. Y. G. Fuh, “Photoaddressable bistable reflective liquid crystal display,” Appl. Phys. Lett. 89, 021116 (2006).
[CrossRef]

S. Y. Huang, S. T. Wu, and A. Y. G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett. 88, 041104(2006).
[CrossRef]

T. H. Lin, Y. H. Huang, A. Y. G. Fuh, and S. T. Wu, “Polarization controllable Fresnel lens using dye-doped liquid crystals,” Opt. Express 14, 2359–2364 (2006).
[CrossRef] [PubMed]

2005 (2)

Y. H. Fan, H. W. Ren, X. Liang, H. Y. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1, 151–156(2005).
[CrossRef]

H. W. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247, 101–106(2005).
[CrossRef]

2004 (1)

2003 (2)

Y. H. Fan, H. W. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11, 3080–3086 (2003).
[CrossRef] [PubMed]

H. W. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
[CrossRef]

2002 (1)

M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, and A. I. Khrebtov, “Optical limiters based on liquid-crystal microlenses,” Opt. Spectrosc. 92, 614–618 (2002).
[CrossRef]

2001 (2)

H. Ono and M. Ito, “All-optical switching in a dye-doped liquid crystal Fabry–Perot device,” Jpn. J. Appl. Phys. 40, L206–L208 (2001).
[CrossRef]

L. Petti, P. Mormile, Y. Ren, M. Abbate, P. Musto, G. Ragosta, and W. J. Blau, “Optical switching property from a laser beam propagating in a polymer dispersed liquid crystal film,” Liq. Cryst. 28, 1831–1837 (2001).
[CrossRef]

1998 (1)

S. Masuda, T. Nose, and S. Sato, “Optical properties of a polymer-stabilized liquid crystal microlens,” Jpn. J. Appl. Phys. 37, L1251–L1253 (1998).
[CrossRef]

1975 (1)

C. H. Gooch and H. A. Tarry, “Optical properties of twisted nematic liquid-crystal structures with twist angles less than 90 degrees,” J. Phys. D 8, 1575–1584 (1975).
[CrossRef]

Abbate, M.

L. Petti, P. Mormile, Y. Ren, M. Abbate, P. Musto, G. Ragosta, and W. J. Blau, “Optical switching property from a laser beam propagating in a polymer dispersed liquid crystal film,” Liq. Cryst. 28, 1831–1837 (2001).
[CrossRef]

Belyaeva, M. A.

M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, and A. I. Khrebtov, “Optical limiters based on liquid-crystal microlenses,” Opt. Spectrosc. 92, 614–618 (2002).
[CrossRef]

Blau, W. J.

L. Petti, P. Mormile, Y. Ren, M. Abbate, P. Musto, G. Ragosta, and W. J. Blau, “Optical switching property from a laser beam propagating in a polymer dispersed liquid crystal film,” Liq. Cryst. 28, 1831–1837 (2001).
[CrossRef]

Brasselet, E.

E. Brasselet, A. E. Miroshnichenko, D. F. Chen, W. Krolikowski, and Y. S. Kivshar, “Polarizational nonlinear optical response of photonic structures with a liquid crystal defect,” Opt. Lett. 34, 488–490 (2009).
[CrossRef] [PubMed]

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “All-optical switching and multistability in photonic structures with liquid crystal defects,” Appl. Phys. Lett. 92, 253306(2008).
[CrossRef]

Chen, D. F.

Chen, Y. S.

S. Y. Huang, Y. S. Chen, H. C. Jau, M. S. Li, J. H. Liu, P. C. Yang, and A. Y. G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283, 1726–1731(2010).
[CrossRef]

Chistyakova, O. V.

M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, and A. I. Khrebtov, “Optical limiters based on liquid-crystal microlenses,” Opt. Spectrosc. 92, 614–618 (2002).
[CrossRef]

Choi, Y.

Y. M. Lee, K. H. Lee, Y. Choi, and J. H. Kim, “Fast bistable microlens arrays based on a birefringent layer and ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 47, 6343–6346(2008).
[CrossRef]

Y. Choi, H. R. Kim, K. H. Lee, Y. M. Lee, and J. H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

Chronis, N.

Danilov, V. V.

M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, and A. I. Khrebtov, “Optical limiters based on liquid-crystal microlenses,” Opt. Spectrosc. 92, 614–618 (2002).
[CrossRef]

De Nicola, S.

De Sio, L.

L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93, 181115 (2008).
[CrossRef]

Fan, Y. H.

Y. H. Fan, H. W. Ren, X. Liang, H. Y. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1, 151–156(2005).
[CrossRef]

H. W. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247, 101–106(2005).
[CrossRef]

H. W. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
[CrossRef]

Y. H. Fan, H. W. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11, 3080–3086 (2003).
[CrossRef] [PubMed]

Ferraro, P.

Finizio, A.

Fuh, A. Y. G.

S. Y. Huang, Y. S. Chen, H. C. Jau, M. S. Li, J. H. Liu, P. C. Yang, and A. Y. G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283, 1726–1731(2010).
[CrossRef]

H. C. Jau, T. H. Lin, R. X. Fung, S. Y. Huang, J. H. Liu, and A. Y. G. Fuh, “Optically tunable beam steering grating based n azobenzene doped cholesteric liquid crystal,” Opt. Express 18, 17498–17503 (2010).
[CrossRef] [PubMed]

L. C. Lin, H. C. Jau, T. H. Lin, and A. Y. G. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15, 2900–2906(2007).
[CrossRef] [PubMed]

T. H. Lin, Y. H. Huang, A. Y. G. Fuh, and S. T. Wu, “Polarization controllable Fresnel lens using dye-doped liquid crystals,” Opt. Express 14, 2359–2364 (2006).
[CrossRef] [PubMed]

T. H. Lin, H. C. Jau, S. Y. Hung, H. R. Fuh, and A. Y. G. Fuh, “Photoaddressable bistable reflective liquid crystal display,” Appl. Phys. Lett. 89, 021116 (2006).
[CrossRef]

S. Y. Huang, S. T. Wu, and A. Y. G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett. 88, 041104(2006).
[CrossRef]

Fuh, A. Y.-G.

S.-Y. Huang, T.-C. Tung, C.-L. Ting, H.-C. Jau, M.-S. Li, H.-K. Hsu, and A. Y.-G. Fuh, “Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array,” Appl. Phys. B 104, 93–97 (2011).
[CrossRef]

Fuh, H. R.

T. H. Lin, H. C. Jau, S. Y. Hung, H. R. Fuh, and A. Y. G. Fuh, “Photoaddressable bistable reflective liquid crystal display,” Appl. Phys. Lett. 89, 021116 (2006).
[CrossRef]

Fung, R. X.

Gooch, C. H.

C. H. Gooch and H. A. Tarry, “Optical properties of twisted nematic liquid-crystal structures with twist angles less than 90 degrees,” J. Phys. D 8, 1575–1584 (1975).
[CrossRef]

Grilli, S.

Gryaznova, M. V.

M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, and A. I. Khrebtov, “Optical limiters based on liquid-crystal microlenses,” Opt. Spectrosc. 92, 614–618 (2002).
[CrossRef]

Hoke, L.

Hrozhyk, U.

Hsu, H.-K.

S.-Y. Huang, T.-C. Tung, C.-L. Ting, H.-C. Jau, M.-S. Li, H.-K. Hsu, and A. Y.-G. Fuh, “Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array,” Appl. Phys. B 104, 93–97 (2011).
[CrossRef]

Huang, S. Y.

H. C. Jau, T. H. Lin, R. X. Fung, S. Y. Huang, J. H. Liu, and A. Y. G. Fuh, “Optically tunable beam steering grating based n azobenzene doped cholesteric liquid crystal,” Opt. Express 18, 17498–17503 (2010).
[CrossRef] [PubMed]

S. Y. Huang, Y. S. Chen, H. C. Jau, M. S. Li, J. H. Liu, P. C. Yang, and A. Y. G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283, 1726–1731(2010).
[CrossRef]

S. Y. Huang, S. T. Wu, and A. Y. G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett. 88, 041104(2006).
[CrossRef]

Huang, S.-Y.

S.-Y. Huang, T.-C. Tung, C.-L. Ting, H.-C. Jau, M.-S. Li, H.-K. Hsu, and A. Y.-G. Fuh, “Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array,” Appl. Phys. B 104, 93–97 (2011).
[CrossRef]

Huang, Y. H.

Hung, S. Y.

T. H. Lin, H. C. Jau, S. Y. Hung, H. R. Fuh, and A. Y. G. Fuh, “Photoaddressable bistable reflective liquid crystal display,” Appl. Phys. Lett. 89, 021116 (2006).
[CrossRef]

Ito, M.

H. Ono and M. Ito, “All-optical switching in a dye-doped liquid crystal Fabry–Perot device,” Jpn. J. Appl. Phys. 40, L206–L208 (2001).
[CrossRef]

Jau, H. C.

S. Y. Huang, Y. S. Chen, H. C. Jau, M. S. Li, J. H. Liu, P. C. Yang, and A. Y. G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283, 1726–1731(2010).
[CrossRef]

H. C. Jau, T. H. Lin, R. X. Fung, S. Y. Huang, J. H. Liu, and A. Y. G. Fuh, “Optically tunable beam steering grating based n azobenzene doped cholesteric liquid crystal,” Opt. Express 18, 17498–17503 (2010).
[CrossRef] [PubMed]

L. C. Lin, H. C. Jau, T. H. Lin, and A. Y. G. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15, 2900–2906(2007).
[CrossRef] [PubMed]

T. H. Lin, H. C. Jau, S. Y. Hung, H. R. Fuh, and A. Y. G. Fuh, “Photoaddressable bistable reflective liquid crystal display,” Appl. Phys. Lett. 89, 021116 (2006).
[CrossRef]

Jau, H.-C.

S.-Y. Huang, T.-C. Tung, C.-L. Ting, H.-C. Jau, M.-S. Li, H.-K. Hsu, and A. Y.-G. Fuh, “Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array,” Appl. Phys. B 104, 93–97 (2011).
[CrossRef]

Jeong, K. H.

Khrebtov, A. I.

M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, and A. I. Khrebtov, “Optical limiters based on liquid-crystal microlenses,” Opt. Spectrosc. 92, 614–618 (2002).
[CrossRef]

Kim, H. R.

Y. Choi, H. R. Kim, K. H. Lee, Y. M. Lee, and J. H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

Kim, J. H.

Y. M. Lee, K. H. Lee, Y. Choi, and J. H. Kim, “Fast bistable microlens arrays based on a birefringent layer and ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 47, 6343–6346(2008).
[CrossRef]

Y. Choi, H. R. Kim, K. H. Lee, Y. M. Lee, and J. H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

Kimball, B. R.

Kivshar, Y. S.

E. Brasselet, A. E. Miroshnichenko, D. F. Chen, W. Krolikowski, and Y. S. Kivshar, “Polarizational nonlinear optical response of photonic structures with a liquid crystal defect,” Opt. Lett. 34, 488–490 (2009).
[CrossRef] [PubMed]

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “All-optical switching and multistability in photonic structures with liquid crystal defects,” Appl. Phys. Lett. 92, 253306(2008).
[CrossRef]

Krolikowski, W.

Lee, K. H.

Y. M. Lee, K. H. Lee, Y. Choi, and J. H. Kim, “Fast bistable microlens arrays based on a birefringent layer and ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 47, 6343–6346(2008).
[CrossRef]

Y. Choi, H. R. Kim, K. H. Lee, Y. M. Lee, and J. H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

Lee, L. P.

Lee, Y. M.

Y. M. Lee, K. H. Lee, Y. Choi, and J. H. Kim, “Fast bistable microlens arrays based on a birefringent layer and ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 47, 6343–6346(2008).
[CrossRef]

Y. Choi, H. R. Kim, K. H. Lee, Y. M. Lee, and J. H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

Li, M. S.

S. Y. Huang, Y. S. Chen, H. C. Jau, M. S. Li, J. H. Liu, P. C. Yang, and A. Y. G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283, 1726–1731(2010).
[CrossRef]

Li, M.-S.

S.-Y. Huang, T.-C. Tung, C.-L. Ting, H.-C. Jau, M.-S. Li, H.-K. Hsu, and A. Y.-G. Fuh, “Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array,” Appl. Phys. B 104, 93–97 (2011).
[CrossRef]

Liang, X.

Y. H. Fan, H. W. Ren, X. Liang, H. Y. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1, 151–156(2005).
[CrossRef]

Lin, L. C.

Lin, T. H.

Lin, Y. H.

H. W. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247, 101–106(2005).
[CrossRef]

Liu, G. L.

Liu, J. H.

S. Y. Huang, Y. S. Chen, H. C. Jau, M. S. Li, J. H. Liu, P. C. Yang, and A. Y. G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283, 1726–1731(2010).
[CrossRef]

H. C. Jau, T. H. Lin, R. X. Fung, S. Y. Huang, J. H. Liu, and A. Y. G. Fuh, “Optically tunable beam steering grating based n azobenzene doped cholesteric liquid crystal,” Opt. Express 18, 17498–17503 (2010).
[CrossRef] [PubMed]

Lucchetta, D. E.

D. E. Lucchetta, F. Vita, and F. Simoni, “All-optical switching of diffraction gratings infiltrated with dye-doped liquid crystals,” Appl. Phys. Lett. 97, 231112 (2010).
[CrossRef]

Masuda, S.

S. Masuda, T. Nose, and S. Sato, “Optical properties of a polymer-stabilized liquid crystal microlens,” Jpn. J. Appl. Phys. 37, L1251–L1253 (1998).
[CrossRef]

Miccio, L.

Miroshnichenko, A. E.

E. Brasselet, A. E. Miroshnichenko, D. F. Chen, W. Krolikowski, and Y. S. Kivshar, “Polarizational nonlinear optical response of photonic structures with a liquid crystal defect,” Opt. Lett. 34, 488–490 (2009).
[CrossRef] [PubMed]

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “All-optical switching and multistability in photonic structures with liquid crystal defects,” Appl. Phys. Lett. 92, 253306(2008).
[CrossRef]

Mormile, P.

L. Petti, P. Mormile, Y. Ren, M. Abbate, P. Musto, G. Ragosta, and W. J. Blau, “Optical switching property from a laser beam propagating in a polymer dispersed liquid crystal film,” Liq. Cryst. 28, 1831–1837 (2001).
[CrossRef]

Musto, P.

L. Petti, P. Mormile, Y. Ren, M. Abbate, P. Musto, G. Ragosta, and W. J. Blau, “Optical switching property from a laser beam propagating in a polymer dispersed liquid crystal film,” Liq. Cryst. 28, 1831–1837 (2001).
[CrossRef]

Nersisyan, S.

Nose, T.

S. Masuda, T. Nose, and S. Sato, “Optical properties of a polymer-stabilized liquid crystal microlens,” Jpn. J. Appl. Phys. 37, L1251–L1253 (1998).
[CrossRef]

Ono, H.

H. Ono and M. Ito, “All-optical switching in a dye-doped liquid crystal Fabry–Perot device,” Jpn. J. Appl. Phys. 40, L206–L208 (2001).
[CrossRef]

Paturzo, M.

Petti, L.

L. Petti, P. Mormile, Y. Ren, M. Abbate, P. Musto, G. Ragosta, and W. J. Blau, “Optical switching property from a laser beam propagating in a polymer dispersed liquid crystal film,” Liq. Cryst. 28, 1831–1837 (2001).
[CrossRef]

Ragosta, G.

L. Petti, P. Mormile, Y. Ren, M. Abbate, P. Musto, G. Ragosta, and W. J. Blau, “Optical switching property from a laser beam propagating in a polymer dispersed liquid crystal film,” Liq. Cryst. 28, 1831–1837 (2001).
[CrossRef]

Ren, H. W.

Y. H. Fan, H. W. Ren, X. Liang, H. Y. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1, 151–156(2005).
[CrossRef]

H. W. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247, 101–106(2005).
[CrossRef]

H. W. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
[CrossRef]

Y. H. Fan, H. W. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11, 3080–3086 (2003).
[CrossRef] [PubMed]

Ren, Y.

L. Petti, P. Mormile, Y. Ren, M. Abbate, P. Musto, G. Ragosta, and W. J. Blau, “Optical switching property from a laser beam propagating in a polymer dispersed liquid crystal film,” Liq. Cryst. 28, 1831–1837 (2001).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
[CrossRef]

Sato, S.

S. Masuda, T. Nose, and S. Sato, “Optical properties of a polymer-stabilized liquid crystal microlens,” Jpn. J. Appl. Phys. 37, L1251–L1253 (1998).
[CrossRef]

Serak, S.

U. Hrozhyk, S. Nersisyan, S. Serak, N. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Optical switching of liquid-crystal polarization gratings with nanosecond pulses,” Opt. Lett. 34, 2554–2556 (2009).
[CrossRef] [PubMed]

L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93, 181115 (2008).
[CrossRef]

Shakhverdov, P. A.

M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, and A. I. Khrebtov, “Optical limiters based on liquid-crystal microlenses,” Opt. Spectrosc. 92, 614–618 (2002).
[CrossRef]

Simoni, F.

D. E. Lucchetta, F. Vita, and F. Simoni, “All-optical switching of diffraction gratings infiltrated with dye-doped liquid crystals,” Appl. Phys. Lett. 97, 231112 (2010).
[CrossRef]

Steeves, D. M.

Tabiryan, N.

U. Hrozhyk, S. Nersisyan, S. Serak, N. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Optical switching of liquid-crystal polarization gratings with nanosecond pulses,” Opt. Lett. 34, 2554–2556 (2009).
[CrossRef] [PubMed]

L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93, 181115 (2008).
[CrossRef]

Tarry, H. A.

C. H. Gooch and H. A. Tarry, “Optical properties of twisted nematic liquid-crystal structures with twist angles less than 90 degrees,” J. Phys. D 8, 1575–1584 (1975).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
[CrossRef]

Ting, C.-L.

S.-Y. Huang, T.-C. Tung, C.-L. Ting, H.-C. Jau, M.-S. Li, H.-K. Hsu, and A. Y.-G. Fuh, “Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array,” Appl. Phys. B 104, 93–97 (2011).
[CrossRef]

Tung, T.-C.

S.-Y. Huang, T.-C. Tung, C.-L. Ting, H.-C. Jau, M.-S. Li, H.-K. Hsu, and A. Y.-G. Fuh, “Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array,” Appl. Phys. B 104, 93–97 (2011).
[CrossRef]

Umeton, C.

L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93, 181115 (2008).
[CrossRef]

Veltri, A.

L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93, 181115 (2008).
[CrossRef]

Vespini, V.

Vita, F.

D. E. Lucchetta, F. Vita, and F. Simoni, “All-optical switching of diffraction gratings infiltrated with dye-doped liquid crystals,” Appl. Phys. Lett. 97, 231112 (2010).
[CrossRef]

Wang, H. Y.

Y. H. Fan, H. W. Ren, X. Liang, H. Y. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1, 151–156(2005).
[CrossRef]

Wu, S. T.

S. Y. Huang, S. T. Wu, and A. Y. G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett. 88, 041104(2006).
[CrossRef]

T. H. Lin, Y. H. Huang, A. Y. G. Fuh, and S. T. Wu, “Polarization controllable Fresnel lens using dye-doped liquid crystals,” Opt. Express 14, 2359–2364 (2006).
[CrossRef] [PubMed]

Y. H. Fan, H. W. Ren, X. Liang, H. Y. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1, 151–156(2005).
[CrossRef]

H. W. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247, 101–106(2005).
[CrossRef]

H. W. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
[CrossRef]

Y. H. Fan, H. W. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11, 3080–3086 (2003).
[CrossRef] [PubMed]

Yang, P. C.

S. Y. Huang, Y. S. Chen, H. C. Jau, M. S. Li, J. H. Liu, P. C. Yang, and A. Y. G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283, 1726–1731(2010).
[CrossRef]

Appl. Phys. B (1)

S.-Y. Huang, T.-C. Tung, C.-L. Ting, H.-C. Jau, M.-S. Li, H.-K. Hsu, and A. Y.-G. Fuh, “Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array,” Appl. Phys. B 104, 93–97 (2011).
[CrossRef]

Appl. Phys. Lett. (7)

T. H. Lin, H. C. Jau, S. Y. Hung, H. R. Fuh, and A. Y. G. Fuh, “Photoaddressable bistable reflective liquid crystal display,” Appl. Phys. Lett. 89, 021116 (2006).
[CrossRef]

S. Y. Huang, S. T. Wu, and A. Y. G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett. 88, 041104(2006).
[CrossRef]

Y. Choi, H. R. Kim, K. H. Lee, Y. M. Lee, and J. H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett. 91, 221113 (2007).
[CrossRef]

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “All-optical switching and multistability in photonic structures with liquid crystal defects,” Appl. Phys. Lett. 92, 253306(2008).
[CrossRef]

D. E. Lucchetta, F. Vita, and F. Simoni, “All-optical switching of diffraction gratings infiltrated with dye-doped liquid crystals,” Appl. Phys. Lett. 97, 231112 (2010).
[CrossRef]

L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93, 181115 (2008).
[CrossRef]

H. W. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
[CrossRef]

J. Disp. Technol. (1)

Y. H. Fan, H. W. Ren, X. Liang, H. Y. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1, 151–156(2005).
[CrossRef]

J. Phys. D (1)

C. H. Gooch and H. A. Tarry, “Optical properties of twisted nematic liquid-crystal structures with twist angles less than 90 degrees,” J. Phys. D 8, 1575–1584 (1975).
[CrossRef]

Jpn. J. Appl. Phys. (3)

Y. M. Lee, K. H. Lee, Y. Choi, and J. H. Kim, “Fast bistable microlens arrays based on a birefringent layer and ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 47, 6343–6346(2008).
[CrossRef]

S. Masuda, T. Nose, and S. Sato, “Optical properties of a polymer-stabilized liquid crystal microlens,” Jpn. J. Appl. Phys. 37, L1251–L1253 (1998).
[CrossRef]

H. Ono and M. Ito, “All-optical switching in a dye-doped liquid crystal Fabry–Perot device,” Jpn. J. Appl. Phys. 40, L206–L208 (2001).
[CrossRef]

Liq. Cryst. (1)

L. Petti, P. Mormile, Y. Ren, M. Abbate, P. Musto, G. Ragosta, and W. J. Blau, “Optical switching property from a laser beam propagating in a polymer dispersed liquid crystal film,” Liq. Cryst. 28, 1831–1837 (2001).
[CrossRef]

Opt. Commun. (2)

S. Y. Huang, Y. S. Chen, H. C. Jau, M. S. Li, J. H. Liu, P. C. Yang, and A. Y. G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283, 1726–1731(2010).
[CrossRef]

H. W. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247, 101–106(2005).
[CrossRef]

Opt. Express (7)

Opt. Lett. (2)

Opt. Spectrosc. (1)

M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, and A. I. Khrebtov, “Optical limiters based on liquid-crystal microlenses,” Opt. Spectrosc. 92, 614–618 (2002).
[CrossRef]

Other (1)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Chemical structures of azo dye used in the study (AzoC5) and their isomerization effect; Δ stands for heat; (b) OPM image of the microlens array; (c) AFM image of a single microlens. Diameter and depth are 100 and 3 μm , respectively.

Fig. 2
Fig. 2

(a) Schematic configuration of the proposed device; (b) operating principle of the LCP MLA device with two optically tunable stable states.

Fig. 3
Fig. 3

Experimental setup for measuring the focusing properties of the formed LCP MLA device.

Fig. 4
Fig. 4

Transmission through formed LCP MLA device observed under a broadband OPM with two angles between the direction of alignment (rubbing) of the LCP molecules and the polarizer axis when no voltage is applied, (a)  45 ° ; (b)  0 ° . R, A, and P denote the rubbing direction, analyzer, and polarizer, respectively.

Fig. 5
Fig. 5

Focal beam images captured by CCD and transmitted from the LCP MLA device with tuning unit tuned to an (a) isotropic state, (b) intermediate states, and (c)  90 ° TN state. (d) Focal intensity profiles of the probe beam through the LCP MLA device with various LC phase states by radiating the cell with various UV dosages.

Fig. 6
Fig. 6

(a) Dynamic measurements of the focal intensity of an LCP MLA device doped with 1 wt . % of AzoC5 tuned using two pump beams, i.e., UV light and Ar + laser. Top purple and green bars represent the periods during which UV light and Ar + laser beam were applied, respectively. (b) Possible switching of AzoC5-doped NLC between 90 ° TN and isotropic states induced by the photoisomerization effect.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 [ cos 2 θ + sin 2 θ ( n e n p n e n 0 ) 2 ] ,
f = R / ( n e n p ) ,

Metrics