Abstract

Multiscale cameras achieve wide-angle, high-resolution imaging by combining coarse image formation by a simplified wide-field objective with localized aberration correction in an array of narrow field microcameras. Microcamera aperture size is a critical parameter in multiscale design; a larger aperture has greater capacity to correct aberration but requires a more complex microcamera optic. A smaller aperture requires integration of more microcameras to cover the field. This paper analyzes multiscale system performance as a function of microcamera aperture for 2 and 40 gigapixel monocentric objective lenses. We find that microcamera aperture diameters of 3 to 12mm paired with complementary metal oxide semiconductor sensors in the 1 to 15 megapixel range are most attractive for gigapixel-scale cameras.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Brady, Optical Imaging and Spectroscopy (Wiley, Optical Society of America, 2009).
    [CrossRef]
  2. D. J. Brady and N. Hagen, “Multiscale lens design,” Opt. Express 17, 10659–10674 (2009).
    [CrossRef] [PubMed]
  3. D. Daly, Microlens Arrays (Taylor & Francis, 2001).
  4. E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
    [CrossRef]
  5. M. Levoy, “Light fields and computational imaging,” Computer 39, 46–55 (2006).
    [CrossRef]
  6. J. E. Ford and E. Tremblay, “Extreme form factor imagers,” in Imaging Systems, OSA Technical Digest (CD) (Optical Society of America, 2010), paper IMC2.
  7. D. L. Marks and D. J. Brady, “Gigagon: a monocentric lens design imaging 40 gigapixels,” in Imaging Systems, OSA Technical Digest (CD) (Optical Society of America, 2010), paper ITuC2.
  8. D. Marks and D. Brady, “Close-up imaging using microcamera arrays for focal plane synthesis,” Opt. Eng. 50, 033205(2011).
    [CrossRef]
  9. G. J. Swanson, “Binary optics technology: the theory and design of multi-level diffractive optical elements,” Tech. Rep. 854 (Massachusetts Institute of Technology, 1989).

2011 (1)

D. Marks and D. Brady, “Close-up imaging using microcamera arrays for focal plane synthesis,” Opt. Eng. 50, 033205(2011).
[CrossRef]

2009 (1)

2006 (1)

M. Levoy, “Light fields and computational imaging,” Computer 39, 46–55 (2006).
[CrossRef]

1992 (1)

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
[CrossRef]

Adelson, E. H.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
[CrossRef]

Brady, D.

D. Marks and D. Brady, “Close-up imaging using microcamera arrays for focal plane synthesis,” Opt. Eng. 50, 033205(2011).
[CrossRef]

Brady, D. J.

D. J. Brady and N. Hagen, “Multiscale lens design,” Opt. Express 17, 10659–10674 (2009).
[CrossRef] [PubMed]

D. J. Brady, Optical Imaging and Spectroscopy (Wiley, Optical Society of America, 2009).
[CrossRef]

D. L. Marks and D. J. Brady, “Gigagon: a monocentric lens design imaging 40 gigapixels,” in Imaging Systems, OSA Technical Digest (CD) (Optical Society of America, 2010), paper ITuC2.

Daly, D.

D. Daly, Microlens Arrays (Taylor & Francis, 2001).

Ford, J. E.

J. E. Ford and E. Tremblay, “Extreme form factor imagers,” in Imaging Systems, OSA Technical Digest (CD) (Optical Society of America, 2010), paper IMC2.

Hagen, N.

Levoy, M.

M. Levoy, “Light fields and computational imaging,” Computer 39, 46–55 (2006).
[CrossRef]

Marks, D.

D. Marks and D. Brady, “Close-up imaging using microcamera arrays for focal plane synthesis,” Opt. Eng. 50, 033205(2011).
[CrossRef]

Marks, D. L.

D. L. Marks and D. J. Brady, “Gigagon: a monocentric lens design imaging 40 gigapixels,” in Imaging Systems, OSA Technical Digest (CD) (Optical Society of America, 2010), paper ITuC2.

Swanson, G. J.

G. J. Swanson, “Binary optics technology: the theory and design of multi-level diffractive optical elements,” Tech. Rep. 854 (Massachusetts Institute of Technology, 1989).

Tremblay, E.

J. E. Ford and E. Tremblay, “Extreme form factor imagers,” in Imaging Systems, OSA Technical Digest (CD) (Optical Society of America, 2010), paper IMC2.

Wang, J. Y. A.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
[CrossRef]

Computer (1)

M. Levoy, “Light fields and computational imaging,” Computer 39, 46–55 (2006).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
[CrossRef]

Opt. Eng. (1)

D. Marks and D. Brady, “Close-up imaging using microcamera arrays for focal plane synthesis,” Opt. Eng. 50, 033205(2011).
[CrossRef]

Opt. Express (1)

Other (5)

D. Daly, Microlens Arrays (Taylor & Francis, 2001).

D. J. Brady, Optical Imaging and Spectroscopy (Wiley, Optical Society of America, 2009).
[CrossRef]

G. J. Swanson, “Binary optics technology: the theory and design of multi-level diffractive optical elements,” Tech. Rep. 854 (Massachusetts Institute of Technology, 1989).

J. E. Ford and E. Tremblay, “Extreme form factor imagers,” in Imaging Systems, OSA Technical Digest (CD) (Optical Society of America, 2010), paper IMC2.

D. L. Marks and D. J. Brady, “Gigagon: a monocentric lens design imaging 40 gigapixels,” in Imaging Systems, OSA Technical Digest (CD) (Optical Society of America, 2010), paper ITuC2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Shaded model of an objective lens with several microcameras.

Fig. 2
Fig. 2

Specifications of the 2 gigapixel objective. (a) Diagram and ray trace of the lens. (b) Ray fan plot. (c) Modulation transfer function curve.

Fig. 3
Fig. 3

Specifications of the 40 gigapixel objective. (a) Diagram and ray trace of the lens. (b) Ray fan plot. (c) Modulation transfer function curve.

Fig. 4
Fig. 4

Ray traces of microcameras for the 2 gigapixel objective of various scales. A “C” indicates a crown plastic element, an “F” indicates a flint plastic element, and a “D” indicates a diffractive surface.

Fig. 5
Fig. 5

Ray traces of microcameras for the 40 gigapixel objective of various scales. A “C” indicates a crown plastic element, an “F” indicates a flint plastic element, and a “D” indicates a diffractive surface.

Fig. 6
Fig. 6

Change in focus with wavelength for the 36 mm aperture, five-element microcameras. (a) Chromatic focal shift of 2 gigapixel objective microcamera. (b) Chromatic focal shift of the 40 gigapixel objective microcamera.

Fig. 7
Fig. 7

Change in focus with wavelength for the 9 mm aperture, three-element microcameras. (a) Chromatic focal shift of 2 gigapixel objective microcamera. (b) Chromatic focal shift of the 40 gigapixel objective microcamera.

Fig. 8
Fig. 8

Ray traces and MTF of 9 mm aperture, three-element microcamera for the 2 gigapixel objective. (a), (b), and (c) Ray traces for on-axis, half-field, and full-field object points, respectively. (d) Sagittal and tangential modulation transfer functions of this camera as a function of object point. T denotes tangential curves and S denotes sagittal curves in the MTF plot.

Fig. 9
Fig. 9

Ray traces and MTF of 9 mm aperture, three-element microcamera for the 40 gigapixel objective. (a), (b), and (c) Ray traces for on-axis, half-field, and full-field object points, respectively. (d) Sagittal and tangential modulation transfer functions of this camera as a function of object point. T denotes tangential curves and S denotes sagittal curves in the MTF plot.

Tables (4)

Tables Icon

Table 1 Prescription for the 2 Gigapixel Microcamera Objective

Tables Icon

Table 2 Prescription for the 40 Gigapixel Microcamera Objective

Tables Icon

Table 3 Modulation Transfer Function of Microcameras for Various Aperture Sizes and Elements with the 2 Gigapixel Objective

Tables Icon

Table 4 Modulation Transfer Function of Microcameras for Various Aperture Sizes and Elements with the 40 Gigapixel Objective

Metrics