Abstract

Optical data storage inspired by Lippmann interference color photography was proposed a long time ago as an alternative to holographic memories. Very high capacities were predicted for a page-oriented approach with wavelength multiplexing, but, up to now, such an architecture has never been implemented. Based on simple conception rules, we build such a page-oriented Lippmann data storage system. Submicrometer resolved data pages recorded in thick materials are evidenced by the experimental results.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems(Wiley, 2010).
    [CrossRef]
  2. H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4, 840–848 (1998).
    [CrossRef]
  3. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multilayer optical disk data storage,” Appl. Opt. 44, 3197–3207 (2005).
    [CrossRef] [PubMed]
  4. T. Tanaka and S. Kawata, “Comparison of recording densities in three-dimensional optical storage systems: multilayered bit recording versus angularly multiplexed holographic recording,” J. Opt. Soc. Am. A 13, 935–942 (1996).
    [CrossRef]
  5. R. R. McLeod, “Impact of phase aberrations caused by multilayer optical data storage in weakly inhomogeneous media,” J. Opt. Soc. Am. B 26, 308–317 (2009).
    [CrossRef]
  6. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902–4914 (2004).
    [CrossRef] [PubMed]
  7. K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express 15, 16196–16209 (2007).
    [CrossRef] [PubMed]
  8. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575–2579 (2005).
    [CrossRef] [PubMed]
  9. Y. Taketomi, J. E. Ford, H. Sasaki, J. Ma, Y. Fainman, and S. H. Lee, “Incremental recording for photorefractive hologram multiplexing,” Opt. Lett. 16, 1774–1776 (1991).
    [CrossRef] [PubMed]
  10. C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
    [CrossRef]
  11. G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage using orthogonal wavelength multiplexed volume hologram,” Opt. Lett. 17, 1471–1473 (1992).
    [CrossRef] [PubMed]
  12. Y. Denisyuk, “The imaging of the optical properties of an object in a wave field of radiation scattered by it,” Opt. Spectrosc. 15, 279–284 (1963).
  13. Y. N. Denisyuk, “Imaging properties of light intensity waves: the development of the initial Lippmann ideas,” J. Opt. 22, 275–280 (1991).
    [CrossRef]
  14. B. Das, J. Joseph, and K. Singh, “Phase modulated gray-scale data pages for digital holographic data storage,” Opt. Commun. 282, 2147–2154 (2009).
    [CrossRef]
  15. Z. Göröcs, G. Erdei, T. Sarkadi, F. Ujhelyi, J. Reményi, P. Koppa, and E. Lorincz, “Hybrid multinary modulation using a phase modulating spatial light modulator and a low-pass spatial filter,” Opt. Lett. 32, 2336–2338 (2007).
    [CrossRef] [PubMed]
  16. H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, and G. Sincerbox, “An optically accessed memory using the Lippmann process for information storage,” in Optical and Electro-Optical Information Processing (MIT, 1965), pp. 1–30.
  17. A. S. Hoffman, “Optical information storage in three-dimensional media using the Lippmann technique,” Appl. Opt. 7, 1949–1954 (1968).
    [CrossRef] [PubMed]
  18. G. Maire, G. Pauliat, and G. Roosen, “Homodyne detection readout for bit-oriented holographic memories,” Opt. Lett. 31, 175–177 (2006).
    [CrossRef] [PubMed]
  19. J.-J. Yang and M.-R. Wang, “White light micrograting multiplexing for high density data storage,” Opt. Lett. 31, 1304–1306 (2006).
    [CrossRef] [PubMed]
  20. F. Guattari, G. Maire, K. Contreras, C. Arnaud, G. Pauliat, G. Roosen, S. Jradi, and C. Carré, “Balanced homodyne detection of Bragg microholograms in photopolymer for data storage,” Opt. Express 15, 2234–2243 (2007).
    [CrossRef] [PubMed]
  21. K. Contreras, G. Pauliat, C. Arnaud, and G. Roosen, “Application of Lippmann interference photography to data storage,” J. Europ. Opt. Soc. Rap. Public. 3, 08020 (2008).
    [CrossRef]
  22. G. Pauliat and K. Contreras, “Experimental investigation of a page-oriented Lippmann “holographic” data storage system,” Proc. SPIE 7730, 773004 (2010).
    [CrossRef]
  23. Silver halide plate, Ultimate 08: http://www.ultimate-holography.com.
  24. G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, and B. Marcus, “Modulation coding for pixel-matched holographic data storage,” Opt. Lett. 22, 639–641(1997).
    [CrossRef] [PubMed]
  25. B. Marcus, “Modulation codes for holographic recording,” in Holographic Data Storage, H.J.Coufal, D.Psaltis, and G.T.Sincerbox, (eds.), Springer Series in Optical Sciences(Springer-Verlag, 2000), pp. 283–292.
  26. M. Ayres, A. Hoskins, and K. Curtis, “Image oversampling for page-oriented optical data storage,” Appl. Opt. 45, 2459–2464(2006).
    [CrossRef] [PubMed]

2010 (1)

G. Pauliat and K. Contreras, “Experimental investigation of a page-oriented Lippmann “holographic” data storage system,” Proc. SPIE 7730, 773004 (2010).
[CrossRef]

2009 (2)

B. Das, J. Joseph, and K. Singh, “Phase modulated gray-scale data pages for digital holographic data storage,” Opt. Commun. 282, 2147–2154 (2009).
[CrossRef]

R. R. McLeod, “Impact of phase aberrations caused by multilayer optical data storage in weakly inhomogeneous media,” J. Opt. Soc. Am. B 26, 308–317 (2009).
[CrossRef]

2008 (1)

K. Contreras, G. Pauliat, C. Arnaud, and G. Roosen, “Application of Lippmann interference photography to data storage,” J. Europ. Opt. Soc. Rap. Public. 3, 08020 (2008).
[CrossRef]

2007 (3)

2006 (3)

2005 (2)

2004 (1)

1998 (1)

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4, 840–848 (1998).
[CrossRef]

1997 (1)

1996 (1)

1992 (1)

1991 (3)

C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Y. Taketomi, J. E. Ford, H. Sasaki, J. Ma, Y. Fainman, and S. H. Lee, “Incremental recording for photorefractive hologram multiplexing,” Opt. Lett. 16, 1774–1776 (1991).
[CrossRef] [PubMed]

Y. N. Denisyuk, “Imaging properties of light intensity waves: the development of the initial Lippmann ideas,” J. Opt. 22, 275–280 (1991).
[CrossRef]

1968 (1)

1963 (1)

Y. Denisyuk, “The imaging of the optical properties of an object in a wave field of radiation scattered by it,” Opt. Spectrosc. 15, 279–284 (1963).

Arnaud, C.

K. Contreras, G. Pauliat, C. Arnaud, and G. Roosen, “Application of Lippmann interference photography to data storage,” J. Europ. Opt. Soc. Rap. Public. 3, 08020 (2008).
[CrossRef]

F. Guattari, G. Maire, K. Contreras, C. Arnaud, G. Pauliat, G. Roosen, S. Jradi, and C. Carré, “Balanced homodyne detection of Bragg microholograms in photopolymer for data storage,” Opt. Express 15, 2234–2243 (2007).
[CrossRef] [PubMed]

Ashley, J.

Ayres, M.

M. Ayres, A. Hoskins, and K. Curtis, “Image oversampling for page-oriented optical data storage,” Appl. Opt. 45, 2459–2464(2006).
[CrossRef] [PubMed]

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems(Wiley, 2010).
[CrossRef]

Bjornson, E.

Burr, G. W.

Carré, C.

Contreras, K.

G. Pauliat and K. Contreras, “Experimental investigation of a page-oriented Lippmann “holographic” data storage system,” Proc. SPIE 7730, 773004 (2010).
[CrossRef]

K. Contreras, G. Pauliat, C. Arnaud, and G. Roosen, “Application of Lippmann interference photography to data storage,” J. Europ. Opt. Soc. Rap. Public. 3, 08020 (2008).
[CrossRef]

F. Guattari, G. Maire, K. Contreras, C. Arnaud, G. Pauliat, G. Roosen, S. Jradi, and C. Carré, “Balanced homodyne detection of Bragg microholograms in photopolymer for data storage,” Opt. Express 15, 2234–2243 (2007).
[CrossRef] [PubMed]

Coufal, H.

Curtis, K.

M. Ayres, A. Hoskins, and K. Curtis, “Image oversampling for page-oriented optical data storage,” Appl. Opt. 45, 2459–2464(2006).
[CrossRef] [PubMed]

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems(Wiley, 2010).
[CrossRef]

Daiber, A. J.

Das, B.

B. Das, J. Joseph, and K. Singh, “Phase modulated gray-scale data pages for digital holographic data storage,” Opt. Commun. 282, 2147–2154 (2009).
[CrossRef]

Denisyuk, Y.

Y. Denisyuk, “The imaging of the optical properties of an object in a wave field of radiation scattered by it,” Opt. Spectrosc. 15, 279–284 (1963).

Denisyuk, Y. N.

Y. N. Denisyuk, “Imaging properties of light intensity waves: the development of the initial Lippmann ideas,” J. Opt. 22, 275–280 (1991).
[CrossRef]

Denz, C.

C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Dhar, L.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems(Wiley, 2010).
[CrossRef]

Eichler, H. J.

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4, 840–848 (1998).
[CrossRef]

Erdei, G.

Fainman, Y.

Fleisher, H.

H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, and G. Sincerbox, “An optically accessed memory using the Lippmann process for information storage,” in Optical and Electro-Optical Information Processing (MIT, 1965), pp. 1–30.

Ford, J. E.

Fukumoto, A.

Göröcs, Z.

Grygier, R. K.

Guattari, F.

Hara, M.

Hesselink, L.

Hill, A.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems(Wiley, 2010).
[CrossRef]

Hirooka, K.

Hoffman, A. S.

Hoffnagle, J. A.

Horimai, H.

Hoskins, A.

Ishioka, K.

Jefferson, C. M.

Joseph, J.

B. Das, J. Joseph, and K. Singh, “Phase modulated gray-scale data pages for digital holographic data storage,” Opt. Commun. 282, 2147–2154 (2009).
[CrossRef]

Jradi, S.

Kawata, S.

Koppa, P.

Kuemmel, P.

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4, 840–848 (1998).
[CrossRef]

Kwan, D.

Lee, S. H.

Leyva, V.

Li, J.

Lorincz, E.

Ma, J.

Maire, G.

Marcus, B.

G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, and B. Marcus, “Modulation coding for pixel-matched holographic data storage,” Opt. Lett. 22, 639–641(1997).
[CrossRef] [PubMed]

B. Marcus, “Modulation codes for holographic recording,” in Holographic Data Storage, H.J.Coufal, D.Psaltis, and G.T.Sincerbox, (eds.), Springer Series in Optical Sciences(Springer-Verlag, 2000), pp. 283–292.

McDonald, M. E.

McLeod, R. R.

Okas, R.

Orlic, S.

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4, 840–848 (1998).
[CrossRef]

Orlov, S. S.

Pauliat, G.

G. Pauliat and K. Contreras, “Experimental investigation of a page-oriented Lippmann “holographic” data storage system,” Proc. SPIE 7730, 773004 (2010).
[CrossRef]

K. Contreras, G. Pauliat, C. Arnaud, and G. Roosen, “Application of Lippmann interference photography to data storage,” J. Europ. Opt. Soc. Rap. Public. 3, 08020 (2008).
[CrossRef]

F. Guattari, G. Maire, K. Contreras, C. Arnaud, G. Pauliat, G. Roosen, S. Jradi, and C. Carré, “Balanced homodyne detection of Bragg microholograms in photopolymer for data storage,” Opt. Express 15, 2234–2243 (2007).
[CrossRef] [PubMed]

G. Maire, G. Pauliat, and G. Roosen, “Homodyne detection readout for bit-oriented holographic memories,” Opt. Lett. 31, 175–177 (2006).
[CrossRef] [PubMed]

C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Pengelly, P.

H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, and G. Sincerbox, “An optically accessed memory using the Lippmann process for information storage,” in Optical and Electro-Optical Information Processing (MIT, 1965), pp. 1–30.

Phillips, W.

Rakuljic, G. A.

Reményi, J.

Reynolds, J.

H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, and G. Sincerbox, “An optically accessed memory using the Lippmann process for information storage,” in Optical and Electro-Optical Information Processing (MIT, 1965), pp. 1–30.

Robertson, T. L.

Roosen, G.

K. Contreras, G. Pauliat, C. Arnaud, and G. Roosen, “Application of Lippmann interference photography to data storage,” J. Europ. Opt. Soc. Rap. Public. 3, 08020 (2008).
[CrossRef]

F. Guattari, G. Maire, K. Contreras, C. Arnaud, G. Pauliat, G. Roosen, S. Jradi, and C. Carré, “Balanced homodyne detection of Bragg microholograms in photopolymer for data storage,” Opt. Express 15, 2234–2243 (2007).
[CrossRef] [PubMed]

G. Maire, G. Pauliat, and G. Roosen, “Homodyne detection readout for bit-oriented holographic memories,” Opt. Lett. 31, 175–177 (2006).
[CrossRef] [PubMed]

C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Sarkadi, T.

Sasaki, H.

Schools, R.

H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, and G. Sincerbox, “An optically accessed memory using the Lippmann process for information storage,” in Optical and Electro-Optical Information Processing (MIT, 1965), pp. 1–30.

Sincerbox, G.

H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, and G. Sincerbox, “An optically accessed memory using the Lippmann process for information storage,” in Optical and Electro-Optical Information Processing (MIT, 1965), pp. 1–30.

Singh, K.

B. Das, J. Joseph, and K. Singh, “Phase modulated gray-scale data pages for digital holographic data storage,” Opt. Commun. 282, 2147–2154 (2009).
[CrossRef]

Slagle, T.

Snyder, R.

Sochava, S. L.

Sundaram, P.

Takashima, Y.

Taketomi, Y.

Tan, X.

Tanaka, K.

Tanaka, T.

Tokuyama, K.

Ujhelyi, F.

Wang, M.-R.

Wappelt, A.

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4, 840–848 (1998).
[CrossRef]

Watanabe, K.

Wilson, W.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems(Wiley, 2010).
[CrossRef]

Yang, J.-J.

Yariv, A.

Appl. Opt. (5)

IEEE J. Sel. Top. Quantum Electron. (1)

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4, 840–848 (1998).
[CrossRef]

J. Europ. Opt. Soc. Rap. Public. (1)

K. Contreras, G. Pauliat, C. Arnaud, and G. Roosen, “Application of Lippmann interference photography to data storage,” J. Europ. Opt. Soc. Rap. Public. 3, 08020 (2008).
[CrossRef]

J. Opt. (1)

Y. N. Denisyuk, “Imaging properties of light intensity waves: the development of the initial Lippmann ideas,” J. Opt. 22, 275–280 (1991).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

B. Das, J. Joseph, and K. Singh, “Phase modulated gray-scale data pages for digital holographic data storage,” Opt. Commun. 282, 2147–2154 (2009).
[CrossRef]

C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Opt. Express (2)

Opt. Lett. (6)

Opt. Spectrosc. (1)

Y. Denisyuk, “The imaging of the optical properties of an object in a wave field of radiation scattered by it,” Opt. Spectrosc. 15, 279–284 (1963).

Proc. SPIE (1)

G. Pauliat and K. Contreras, “Experimental investigation of a page-oriented Lippmann “holographic” data storage system,” Proc. SPIE 7730, 773004 (2010).
[CrossRef]

Other (4)

Silver halide plate, Ultimate 08: http://www.ultimate-holography.com.

B. Marcus, “Modulation codes for holographic recording,” in Holographic Data Storage, H.J.Coufal, D.Psaltis, and G.T.Sincerbox, (eds.), Springer Series in Optical Sciences(Springer-Verlag, 2000), pp. 283–292.

H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, and G. Sincerbox, “An optically accessed memory using the Lippmann process for information storage,” in Optical and Electro-Optical Information Processing (MIT, 1965), pp. 1–30.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems(Wiley, 2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

a) Recording scheme for Denisyuk holo graphy with A and O the image and reference beams; (b) readout scheme for Denisyuk holography; (c) recording scheme for Lippmann storage with image beam A resulting from the reflection of the incident beam B onto the mirror; (d) readout scheme for Lippmann storage, the mirror is replaced by an absorbing layer. e is the recording medium thickness.

Fig. 2
Fig. 2

Optical scheme of the recording/readout setup.

Fig. 3
Fig. 3

Photograph of the optical setup.

Fig. 4
Fig. 4

Recording substrate arrangement. Incoming light is partly reflected by the interface air/sensitive layer; transmitted light is blocked by the light-trapping velvet.

Fig. 5
Fig. 5

Typical data page with (3,16) bloc coding. This page is made of 5 × 4 subpages made each of 8 × 8 blocs. Fiducial patterns are located in the center of each subpage.

Fig. 6
Fig. 6

Image grabbed by the CCD camera corresponding to a data page recorded and retrieved at 475 nm . The pixel pitch is 2.64 μm .

Fig. 7
Fig. 7

Image grabbed by the CCD camera corresponding to a data page recorded and retrieved at 532 nm with the smallest pixel pitch of 0. 88 μm .

Fig. 8
Fig. 8

Decoding procedure of a subpage recorded at 532 nm , retrieved at 532 nm , and detected with the CCD camera. The pixel pitch is 0. 88 μm . (a) Subpage grabbed with the CCD camera without any processing; (b) after compensation of distortions, rotation, magnification, and shifts (see text); (c) after decoding; (d) comparison with the original subpage before recording.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

B = O + b p and A = O + a p .
B * A = O * ( 0.5 O + a p ) + ( 0.5 O * + b q * ) O + a p b q * .

Metrics