Abstract

We ask whether it is possible to restore a multipass system alignment after a gas cell is inserted in the central region. Indeed, it is possible, and we report on a remarkably simple rearrangement of a laser multipass system, composed of two spherical mirrors and a gas cell with flat windows in the middle. For example, for a window of thickness d and refractive index of n, adjusting the mirror separation by 2d(11n) is sufficient to preserve the laser beam alignment and tracing. This expression is in agreement with ray-tracing computations and our laboratory experiment. Insofar as our solution corrects for spherical aberrations, it may also find applications in microscopy.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation, 3rd ed. (Springer-Verlag, 2003).
  2. J. U. White, “Long optical paths of large aperture,” J. Opt. Soc. Am. 32, 285 (1942).
    [CrossRef]
  3. J. U. White, “Very long optical paths in air,” J. Opt. Soc. Am. 66, 411–416 (1976).
    [CrossRef]
  4. D. Herriott, H. Kogelnik, and R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526(1964).
    [CrossRef]
  5. J. P. McManus, P. L. Kebabian, and M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34, 3336–3348 (1995).
    [CrossRef] [PubMed]
  6. Ch. Dyroff, A. Zahn, W. Freude, B. Janker, and P. Werle, “Multipass cell design for Stark-modulation spectroscopy,” Appl. Opt. 46, 4000–4007 (2007).
    [CrossRef] [PubMed]
  7. G. Durry, Th. Danguy, and I. Pouchet, “Open multipass absorption cell for in situ monitoring of stratospheric trace gas with telecommunication laser diode,” Appl. Opt. 41, 424–433 (2002).
    [CrossRef] [PubMed]
  8. D. Das and A. C. Wilson, “Very long optical path-length from a compact multi-pass cell,” Appl. Phys. B 103, 749–754(2010).
    [CrossRef]
  9. A. Weber, S. P. S. Porto, L. E. Cheesman, and J. J. Barrett, “High-resolution Raman spectroscopy of gases with cw-laser excitation,” J. Opt. Soc. Am. 57, 19–28 (1967).
    [CrossRef]
  10. D. L. Hartley and R. A. Hill, “A highly efficient light-trapping cell for Raman-scattering measurements,” J. Appl. Phys. 43, 4134–4136 (1972).
    [CrossRef]
  11. W. Kiefer, H. J. Bernstein, H. Wieser, and M. Danyluk, “The vapor-phase Raman spectra and the ring-puckering vibration of some deuterated analogs of trimethylene oxide,” J. Molec. Spectrosc. 43, 393–400 (1972).
    [CrossRef]
  12. J. Sabbaghzadeh, W. Buell, J. Holder, and M. Fink, “A very narrow high throughput Rayleigh filter for Raman spectroscopy,” Appl. Phys. B 60, S261–S265, (1995).
  13. R. Claps, J. Sabbaghzadeh, and M. Fink, “Raman spectroscopy with a single-frequency, high-power, broad-area laser diode,” Appl. Spectrosc. 53, 491–496 (1999).
    [CrossRef]
  14. J. Borysow and M. Fink, “Doppler width limited near-infrared Raman spectrometer,” Appl. Spectrosc. 60, 54–56(2006).
    [CrossRef] [PubMed]
  15. J. Borysow and M. Fink, “NIR Raman spectrometer for monitoring protonation reactions in gaseous hydrogen,” J. Nucl. Mater. 341, 224–230 (2005).
    [CrossRef]
  16. Focus Software, Inc., ZEMAX optical design program, version 8 (1999).
  17. J. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1997).

2010 (1)

D. Das and A. C. Wilson, “Very long optical path-length from a compact multi-pass cell,” Appl. Phys. B 103, 749–754(2010).
[CrossRef]

2007 (1)

2006 (1)

2005 (1)

J. Borysow and M. Fink, “NIR Raman spectrometer for monitoring protonation reactions in gaseous hydrogen,” J. Nucl. Mater. 341, 224–230 (2005).
[CrossRef]

2002 (1)

1999 (1)

1995 (2)

J. P. McManus, P. L. Kebabian, and M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34, 3336–3348 (1995).
[CrossRef] [PubMed]

J. Sabbaghzadeh, W. Buell, J. Holder, and M. Fink, “A very narrow high throughput Rayleigh filter for Raman spectroscopy,” Appl. Phys. B 60, S261–S265, (1995).

1976 (1)

1972 (2)

D. L. Hartley and R. A. Hill, “A highly efficient light-trapping cell for Raman-scattering measurements,” J. Appl. Phys. 43, 4134–4136 (1972).
[CrossRef]

W. Kiefer, H. J. Bernstein, H. Wieser, and M. Danyluk, “The vapor-phase Raman spectra and the ring-puckering vibration of some deuterated analogs of trimethylene oxide,” J. Molec. Spectrosc. 43, 393–400 (1972).
[CrossRef]

1967 (1)

1964 (1)

1942 (1)

Barrett, J. J.

Bernstein, H. J.

W. Kiefer, H. J. Bernstein, H. Wieser, and M. Danyluk, “The vapor-phase Raman spectra and the ring-puckering vibration of some deuterated analogs of trimethylene oxide,” J. Molec. Spectrosc. 43, 393–400 (1972).
[CrossRef]

Borysow, J.

J. Borysow and M. Fink, “Doppler width limited near-infrared Raman spectrometer,” Appl. Spectrosc. 60, 54–56(2006).
[CrossRef] [PubMed]

J. Borysow and M. Fink, “NIR Raman spectrometer for monitoring protonation reactions in gaseous hydrogen,” J. Nucl. Mater. 341, 224–230 (2005).
[CrossRef]

Buell, W.

J. Sabbaghzadeh, W. Buell, J. Holder, and M. Fink, “A very narrow high throughput Rayleigh filter for Raman spectroscopy,” Appl. Phys. B 60, S261–S265, (1995).

Cheesman, L. E.

Claps, R.

Danguy, Th.

Danyluk, M.

W. Kiefer, H. J. Bernstein, H. Wieser, and M. Danyluk, “The vapor-phase Raman spectra and the ring-puckering vibration of some deuterated analogs of trimethylene oxide,” J. Molec. Spectrosc. 43, 393–400 (1972).
[CrossRef]

Das, D.

D. Das and A. C. Wilson, “Very long optical path-length from a compact multi-pass cell,” Appl. Phys. B 103, 749–754(2010).
[CrossRef]

Demtröder, W.

W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation, 3rd ed. (Springer-Verlag, 2003).

Durry, G.

Dyroff, Ch.

Fink, M.

J. Borysow and M. Fink, “Doppler width limited near-infrared Raman spectrometer,” Appl. Spectrosc. 60, 54–56(2006).
[CrossRef] [PubMed]

J. Borysow and M. Fink, “NIR Raman spectrometer for monitoring protonation reactions in gaseous hydrogen,” J. Nucl. Mater. 341, 224–230 (2005).
[CrossRef]

R. Claps, J. Sabbaghzadeh, and M. Fink, “Raman spectroscopy with a single-frequency, high-power, broad-area laser diode,” Appl. Spectrosc. 53, 491–496 (1999).
[CrossRef]

J. Sabbaghzadeh, W. Buell, J. Holder, and M. Fink, “A very narrow high throughput Rayleigh filter for Raman spectroscopy,” Appl. Phys. B 60, S261–S265, (1995).

Freude, W.

Hartley, D. L.

D. L. Hartley and R. A. Hill, “A highly efficient light-trapping cell for Raman-scattering measurements,” J. Appl. Phys. 43, 4134–4136 (1972).
[CrossRef]

Herriott, D.

Hill, R. A.

D. L. Hartley and R. A. Hill, “A highly efficient light-trapping cell for Raman-scattering measurements,” J. Appl. Phys. 43, 4134–4136 (1972).
[CrossRef]

Holder, J.

J. Sabbaghzadeh, W. Buell, J. Holder, and M. Fink, “A very narrow high throughput Rayleigh filter for Raman spectroscopy,” Appl. Phys. B 60, S261–S265, (1995).

Jackson, J.

J. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1997).

Janker, B.

Kebabian, P. L.

Kiefer, W.

W. Kiefer, H. J. Bernstein, H. Wieser, and M. Danyluk, “The vapor-phase Raman spectra and the ring-puckering vibration of some deuterated analogs of trimethylene oxide,” J. Molec. Spectrosc. 43, 393–400 (1972).
[CrossRef]

Kogelnik, H.

Kompfner, R.

McManus, J. P.

Porto, S. P. S.

Pouchet, I.

Sabbaghzadeh, J.

R. Claps, J. Sabbaghzadeh, and M. Fink, “Raman spectroscopy with a single-frequency, high-power, broad-area laser diode,” Appl. Spectrosc. 53, 491–496 (1999).
[CrossRef]

J. Sabbaghzadeh, W. Buell, J. Holder, and M. Fink, “A very narrow high throughput Rayleigh filter for Raman spectroscopy,” Appl. Phys. B 60, S261–S265, (1995).

Weber, A.

Werle, P.

White, J. U.

Wieser, H.

W. Kiefer, H. J. Bernstein, H. Wieser, and M. Danyluk, “The vapor-phase Raman spectra and the ring-puckering vibration of some deuterated analogs of trimethylene oxide,” J. Molec. Spectrosc. 43, 393–400 (1972).
[CrossRef]

Wilson, A. C.

D. Das and A. C. Wilson, “Very long optical path-length from a compact multi-pass cell,” Appl. Phys. B 103, 749–754(2010).
[CrossRef]

Zahn, A.

Zahniser, M. S.

Appl. Opt. (4)

Appl. Phys. B (2)

J. Sabbaghzadeh, W. Buell, J. Holder, and M. Fink, “A very narrow high throughput Rayleigh filter for Raman spectroscopy,” Appl. Phys. B 60, S261–S265, (1995).

D. Das and A. C. Wilson, “Very long optical path-length from a compact multi-pass cell,” Appl. Phys. B 103, 749–754(2010).
[CrossRef]

Appl. Spectrosc. (2)

J. Appl. Phys. (1)

D. L. Hartley and R. A. Hill, “A highly efficient light-trapping cell for Raman-scattering measurements,” J. Appl. Phys. 43, 4134–4136 (1972).
[CrossRef]

J. Molec. Spectrosc. (1)

W. Kiefer, H. J. Bernstein, H. Wieser, and M. Danyluk, “The vapor-phase Raman spectra and the ring-puckering vibration of some deuterated analogs of trimethylene oxide,” J. Molec. Spectrosc. 43, 393–400 (1972).
[CrossRef]

J. Nucl. Mater. (1)

J. Borysow and M. Fink, “NIR Raman spectrometer for monitoring protonation reactions in gaseous hydrogen,” J. Nucl. Mater. 341, 224–230 (2005).
[CrossRef]

J. Opt. Soc. Am. (3)

Other (3)

W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation, 3rd ed. (Springer-Verlag, 2003).

Focus Software, Inc., ZEMAX optical design program, version 8 (1999).

J. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Multipass system built from a pair of 50.2 mm diameter concave mirrors with a 100.0 mm radius of curvature, separated by a distance of about 200 mm . (a) Consecutive laser beams inside a multipass system without interior disturbance. (b) The same, but with a gas vessel placed between the spherical mirrors. The windows in the gas sample are made out of BK7 glass of index of refraction equal to 1.5 and thickness 3 mm . (c) Laser beam trajectories for multipass cell with a 3 mm thick glass window cell inside: realigned as given by Eq. (3).

Fig. 2
Fig. 2

(a) Displacement of the laser beam passing through a glass windows of thickness d. The net effect of the double refraction at the window walls is a vertical shift Δ y = 2 d cos ( β ) sin ( α β ) . (b) Restoring alignment of the multipass system with the glass window inside: (1) original laser beam and (2) displaced laser beam. Mirror, original position of the spherical mirror; Mirror’, corrected position of the spherical mirror. Mirror moved horizontally by CC 2 d ( 1 1 n ) .

Fig. 3
Fig. 3

Horizontal shift of the spherical mirror, required for alignment of the multipass system as a function of the thickness of the windows of the gas cell: (1) simple approximate analytic expression (solid line), (2) ZEMAX simulations (circles), and (3) laboratory experiment (triangle). The vertical line is an estimate of our accuracy to judge optimal alignment.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ y = d cos ( β ) sin ( α β ) ,
CC = Δ y sin ( α ) .
CC = 2 d sin ( α ) cos ( β ) sin ( α β ) = 2 d ( 1 tan ( β ) tan ( α ) ) ,
CC = 2 d ( 1 tan ( β ) tan ( α ) ) 2 d ( 1 sin ( β ) sin ( α ) ) 2 d ( 1 1 n ) ,

Metrics