Abstract

The parameters of the spectrometer were analyzed in order to optimize the performance of spectral- domain optical coherence tomography (SD-OCT). Because probing depth is proportional to spectral resolution, it can be increased with the choice of a higher resolution spectrometer, which implies greater pixel numbers and lower imaging speed, or by sacrificing part of the spectrum, which compromises the axial resolution and side lobes. With a dynamic range of 8  bits or more, the signal-to-noise ratio remains constant for different noise levels. The results were verified experimentally with in vivo retinal SD-OCT imaging.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
    [CrossRef] [PubMed]
  3. M. I. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
    [CrossRef] [PubMed]
  4. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmol. Annu. 112, 1734–1746 (2005).
    [CrossRef]
  5. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
    [CrossRef]
  6. B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004).
    [CrossRef] [PubMed]
  7. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
    [CrossRef] [PubMed]
  8. S.-W. Lee, H.-W. Jeong, B.-M. Kin, Y.-C. Ahn, W. Jung, and Z. Chen, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 μm,” J. Korean Phys. Soc. 55, 2354–2360 (2009).
    [CrossRef]
  9. B. Goldberg, B. Vakoc, W. Oh, M. Suter, S. Waxman, M. Freilich, B. Bouma, and G. Tearney, “Performance of reduced bit-depth acquisition for optical frequency domain imaging,” Opt. Express 17, 16957–16968 (2009).
    [CrossRef] [PubMed]
  10. W. Wieser, B. Biedermann, T. Klein, C. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18, 14685–14704 (2010).
    [CrossRef] [PubMed]
  11. A. Tumlinson, B. Hofer, A. Winkler, B. Považay, W. Drexler, and J. Barton, “Inherent homogenous media dispersion compensation in frequency domain optical coherence tomography by accurate k-sampling,” Appl. Opt. 47, 687–693(2008).
    [CrossRef] [PubMed]
  12. G. Häusler and M. W. Lindner, ““Coherence radar” and “spectral radar”:—new tools for dermatological diagnosis,” J Biomed. Opt. 3, 21–31 (1998).
    [CrossRef]
  13. J. Zhang, J. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30, 147–149 (2005).
    [CrossRef] [PubMed]
  14. R. Tripathi, N. Nassif, J. Nelson, B. Park, and J. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Opt. Lett. 27, 406–408(2002).
    [CrossRef]
  15. C. Zhou, J. Wang, and S. Jiao, “Dual channel dual focus optical coherence tomography for imaging accommodation of the eye,” Opt. Express 17, 8947–8955 (2009).
    [CrossRef] [PubMed]
  16. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004).
    [CrossRef] [PubMed]
  17. N. Nassif, B. Cense, B. H. Park, S. Yun, T. Chen, B. Bouma, G. Tearney, and J. Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480–482 (2004).
    [CrossRef] [PubMed]

2010 (1)

2009 (3)

2008 (1)

2005 (2)

J. Zhang, J. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30, 147–149 (2005).
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmol. Annu. 112, 1734–1746 (2005).
[CrossRef]

2004 (4)

2003 (2)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef] [PubMed]

2002 (2)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef] [PubMed]

R. Tripathi, N. Nassif, J. Nelson, B. Park, and J. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Opt. Lett. 27, 406–408(2002).
[CrossRef]

1998 (1)

G. Häusler and M. W. Lindner, ““Coherence radar” and “spectral radar”:—new tools for dermatological diagnosis,” J Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ahn, Y.-C.

S.-W. Lee, H.-W. Jeong, B.-M. Kin, Y.-C. Ahn, W. Jung, and Z. Chen, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 μm,” J. Korean Phys. Soc. 55, 2354–2360 (2009).
[CrossRef]

Bajraszewski, T.

M. I. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef] [PubMed]

Barton, J.

Biedermann, B.

Boer, J.

Bouma, B.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, T.

Chen, Z.

S.-W. Lee, H.-W. Jeong, B.-M. Kin, Y.-C. Ahn, W. Jung, and Z. Chen, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 μm,” J. Korean Phys. Soc. 55, 2354–2360 (2009).
[CrossRef]

J. Zhang, J. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30, 147–149 (2005).
[CrossRef] [PubMed]

de Boer, J.

Drexler, W.

Duker, J. S.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmol. Annu. 112, 1734–1746 (2005).
[CrossRef]

Eigenwillig, C.

Fercher, A.

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Freilich, M.

Fujimoto, J. G.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmol. Annu. 112, 1734–1746 (2005).
[CrossRef]

Goldberg, B.

Gorczynska, I.

M. I. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Häusler, G.

G. Häusler and M. W. Lindner, ““Coherence radar” and “spectral radar”:—new tools for dermatological diagnosis,” J Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Hofer, B.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Jeong, H.-W.

S.-W. Lee, H.-W. Jeong, B.-M. Kin, Y.-C. Ahn, W. Jung, and Z. Chen, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 μm,” J. Korean Phys. Soc. 55, 2354–2360 (2009).
[CrossRef]

Jiao, S.

Jung, W.

S.-W. Lee, H.-W. Jeong, B.-M. Kin, Y.-C. Ahn, W. Jung, and Z. Chen, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 μm,” J. Korean Phys. Soc. 55, 2354–2360 (2009).
[CrossRef]

Kin, B.-M.

S.-W. Lee, H.-W. Jeong, B.-M. Kin, Y.-C. Ahn, W. Jung, and Z. Chen, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 μm,” J. Korean Phys. Soc. 55, 2354–2360 (2009).
[CrossRef]

Klein, T.

Ko, T.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmol. Annu. 112, 1734–1746 (2005).
[CrossRef]

Kowalczyk, A.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmol. Annu. 112, 1734–1746 (2005).
[CrossRef]

M. I. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef] [PubMed]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Lee, S.-W.

S.-W. Lee, H.-W. Jeong, B.-M. Kin, Y.-C. Ahn, W. Jung, and Z. Chen, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 μm,” J. Korean Phys. Soc. 55, 2354–2360 (2009).
[CrossRef]

Leitgeb, R.

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Lindner, M. W.

G. Häusler and M. W. Lindner, ““Coherence radar” and “spectral radar”:—new tools for dermatological diagnosis,” J Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Nassif, N.

Nelson, J.

Oh, W.

Park, B.

Park, B. H.

Pierce, M.

Považay, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Radzewicz, C.

M. I. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
[CrossRef] [PubMed]

Schuman, J. S.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmol. Annu. 112, 1734–1746 (2005).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Srinivasan, V.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmol. Annu. 112, 1734–1746 (2005).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Suter, M.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Targowski, P.

M. I. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
[CrossRef] [PubMed]

Tearney, G.

Tripathi, R.

Tumlinson, A.

Vakoc, B.

Wang, J.

Wasilewski, W.

M. I. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
[CrossRef] [PubMed]

Waxman, S.

Wieser, W.

Winkler, A.

Wojtkowski, M.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmol. Annu. 112, 1734–1746 (2005).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef] [PubMed]

Wojtkowski, M. I.

M. I. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
[CrossRef] [PubMed]

Yun, S.

Yun, S. H.

Zhang, J.

Zhou, C.

Am. J. Ophthalmol. (1)

M. I. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
[CrossRef] [PubMed]

Appl. Opt. (1)

J Biomed. Opt. (1)

G. Häusler and M. W. Lindner, ““Coherence radar” and “spectral radar”:—new tools for dermatological diagnosis,” J Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

J. Biomed. Opt. (1)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef] [PubMed]

J. Korean Phys. Soc. (1)

S.-W. Lee, H.-W. Jeong, B.-M. Kin, Y.-C. Ahn, W. Jung, and Z. Chen, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 μm,” J. Korean Phys. Soc. 55, 2354–2360 (2009).
[CrossRef]

Ophthalmol. Annu. (1)

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmol. Annu. 112, 1734–1746 (2005).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Diagram of the SD-OCT postprocessing algorithm.

Fig. 2
Fig. 2

Schematic diagram of the retinal imaging SD-OCT system.

Fig. 3
Fig. 3

(a) Relationship between spectrometric resolution and MPD, (b) SLD and Gaussian spectra used in our work. For SLD spectrum detection, the spectral range was 807 to 881 nm (indicated by arrows).

Fig. 4
Fig. 4

MPD, axial resolution, and intensity detected as a function of the spectrum being used versus the full spectral range. Coverage of 100% means four times the FWHM of the Gaussian spectrum. The resolution was measured with FWHM of the PSF in pixels, then calibrated with the physical dimensions of each pixel.

Fig. 5
Fig. 5

PSFs of partial spectrum detection with various spectrum percentages.

Fig. 6
Fig. 6

(a) OCT image of a human retina with pixel binning from 2048 to 512 shows severe mirror image interference due to insufficient MPD. The image of 2048 pixels (without binning) is shown in 8c. (b) OCT image of the same data, but only the central 512 pixels were used for processing. As can be seen, the penetration depth was maintained at the cost of decreasing the resolution. (c) Pixel binning from 2048 to 1024 gave optimal probing depth and resolution. Scale bar: 1 mm .

Fig. 7
Fig. 7

SNR analysis at different dynamic ranges, simulating a 0.25% low-reflectivity surface at distance z = 1 mm .

Fig. 8
Fig. 8

OCT image of human retina processed using different dynamic ranges. Scale bar: 1 mm .

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S S = R z A ( ω ) e i ω z d ω d z ,
I = | S s + S R | 2 .
Δ z = 2 ln 2 n · π λ ¯ 2 Δ λ ,
Δ d = 1 4 n λ ¯ 2 Λ N ,
f d · r 0.61 λ ¯
P = N d f Λ .
SNR [ dB ] = 10 log μ σ ,

Metrics