Abstract

We propose a bipolar tap photonic microwave notch filter scheme, which can be used to realize a fully integrated, semiconductor-based notch filter. The scheme is based on two electroabsorption modu lator (EAM)-integrated distributed feedback laser diodes in a parallel configuration. We show that two filter taps with opposite polarities can be readily obtained by using the negative and positive slopes of the U-shaped electro-optic transfer functions of the EAMs under special design and operating conditions. An experiment was carried out to verify the working principle of the proposed scheme. Notch frequency tuning was also demonstrated by varying the laser wavelength spacing; the spacing was varied by changing the temperature. A frequency tuning range of 1.8GHz with a notch depth of 40dB was achieved.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Lucyszyn and I. D. Robertson, “MMIC tunable active notch filter,” Electron. Lett. 32, 980–981 (1996).
    [CrossRef]
  2. W.-N. Chen, M.-H. Weng, I.-T. Tang, C.-Y. Hung; T.-C. Cheng, and M.-P. Houng, “Notch filters with novel microstrip, triangle-type resonators,” IEEE Trans. Ultrason. Ferroelect. Freq. Control 51, 1018–1021 (2004).
    [CrossRef]
  3. C. S. Tsai, J. Su, and C. C. Lee, “Wideband electronically tunable microwave bandstop filters using iron film-gallium arsenide waveguide structure,” IEEE Trans. Magn. 35, 3178–3180 (1999).
    [CrossRef]
  4. I. C. Hunter and J. D. Rhodes, “Electronically tunable bandstop filter,” IEEE Trans. Microwave Theory Tech. 30, 1361–1367 (1982).
    [CrossRef]
  5. M. F. Karim, A. Q. Liu, A. Alphones, and A. B. Yu, “A tunable bandstop filter via the capacitance change of micromachined switches,” J. Micromech. Microeng. 16, 851–861 (2006).
    [CrossRef]
  6. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theory Tech. 54, 832–846(2006).
    [CrossRef]
  7. S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fibre-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
    [CrossRef]
  8. F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, “All-optical incoherent negative taps for photonic signal processing,” Electron. Lett. 33, 973–975 (1997).
    [CrossRef]
  9. X. Li, E. Xu, L. Zhou, Y. Yu, J. Dong, and X. Zhang, “Microwave photonic filter with multiple taps based on single semiconductor optical amplifier,” Opt. Commun. 283, 3026–3029 (2010).
    [CrossRef]
  10. T.-Y. Kim, C. K. Oh, S.-J. Kim, and C.-S. Park, “Tunable photonic microwave notch filter with negative coefficient based on polarization modulation,” IEEE Photon. Technol. Lett. 19, 907–909 (2007).
    [CrossRef]
  11. A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744–1746 (2006).
    [CrossRef]
  12. E. H. W. Chan and R. A. Minasian, “Novel all-optical RF notch filters with equivalent negative tap response,” IEEE Photon. Technol. Lett. 16, 1370–1372 (2004).
    [CrossRef]
  13. C. J. Chang-Hasnain and S. L. Chuang, “Slow and fast light in semiconductor quantum-well and quantum-dot devices,” J. Lightwave Technol. 24, 4642–4654 (2006).
    [CrossRef]
  14. F. Öhman, K. Yvind, and J. Mørk, “Voltage-controlled slow light in an integrated semiconductor structure with net gain,” Opt. Express 14, 9955–9962 (2006).
    [CrossRef] [PubMed]
  15. Y. Lee, T. Shiota, A. Takei, T. Taniguchi, and H. Uchiyama, “Semiconductor dispersion compensator based on two vertically coupled asymmetric ridge waveguides,” Jpn. J. Appl. Phys. 43, 7036–7041 (2004).
    [CrossRef]
  16. J. Shim, B. Liu, J. Piprek, and J. E. Bowers, “Nonlinear properties of traveling-wave electroabsorption modulator,” IEEE Photon. Technol. Lett. 16, 1035–1037 (2004).
    [CrossRef]
  17. J. Kim, Y.-S. Kang, Y.-D. Chung, and K.-S. Choi, “Development and RF characteristics of analog 60 GHz electroabsorption modulator module for RF/optic conversion,” IEEE Trans. Microwave Theory Tech. 54, 780–787(2006).
    [CrossRef]
  18. G. B. Morrison, J. W. Raring, C. S. Wang, E. J. Skogen, Y.-C. Chang, M. Sysak, and L. A. Coldren, “Electroabsorption modulator performance predicted from band-edge absorption spectra of bulk, quantum-well, and quantum-well-intermixed InGaAsP structures,” Solid-State Electron. 51, 38–47(2007).
    [CrossRef]
  19. T. H. Wood, “Direct measurement of the electric-field-dependent absorption coefficient in GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 48, 1413–1415(1986).
    [CrossRef]
  20. Y. M. Chang, J. Lee, D. Koh, H. Chung, and J. H. Lee, “Ultra-wideband doublet pulse generation based on semiconductor electroabsorption modulator and its distribution over a fiber/wireless link,” J. Opt. Commun. Netw. 2, 600–608(2010).
    [CrossRef]
  21. F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11, 1937–1940(1993).
    [CrossRef]
  22. C. Rauscher, “Varactor-tuned active notch filter with low passband noise and signal distortion,” IEEE Trans. Microwave Theory Tech. 49, 1431–1437 (2001).
    [CrossRef]

2010

X. Li, E. Xu, L. Zhou, Y. Yu, J. Dong, and X. Zhang, “Microwave photonic filter with multiple taps based on single semiconductor optical amplifier,” Opt. Commun. 283, 3026–3029 (2010).
[CrossRef]

Y. M. Chang, J. Lee, D. Koh, H. Chung, and J. H. Lee, “Ultra-wideband doublet pulse generation based on semiconductor electroabsorption modulator and its distribution over a fiber/wireless link,” J. Opt. Commun. Netw. 2, 600–608(2010).
[CrossRef]

2007

T.-Y. Kim, C. K. Oh, S.-J. Kim, and C.-S. Park, “Tunable photonic microwave notch filter with negative coefficient based on polarization modulation,” IEEE Photon. Technol. Lett. 19, 907–909 (2007).
[CrossRef]

G. B. Morrison, J. W. Raring, C. S. Wang, E. J. Skogen, Y.-C. Chang, M. Sysak, and L. A. Coldren, “Electroabsorption modulator performance predicted from band-edge absorption spectra of bulk, quantum-well, and quantum-well-intermixed InGaAsP structures,” Solid-State Electron. 51, 38–47(2007).
[CrossRef]

2006

C. J. Chang-Hasnain and S. L. Chuang, “Slow and fast light in semiconductor quantum-well and quantum-dot devices,” J. Lightwave Technol. 24, 4642–4654 (2006).
[CrossRef]

F. Öhman, K. Yvind, and J. Mørk, “Voltage-controlled slow light in an integrated semiconductor structure with net gain,” Opt. Express 14, 9955–9962 (2006).
[CrossRef] [PubMed]

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744–1746 (2006).
[CrossRef]

M. F. Karim, A. Q. Liu, A. Alphones, and A. B. Yu, “A tunable bandstop filter via the capacitance change of micromachined switches,” J. Micromech. Microeng. 16, 851–861 (2006).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theory Tech. 54, 832–846(2006).
[CrossRef]

J. Kim, Y.-S. Kang, Y.-D. Chung, and K.-S. Choi, “Development and RF characteristics of analog 60 GHz electroabsorption modulator module for RF/optic conversion,” IEEE Trans. Microwave Theory Tech. 54, 780–787(2006).
[CrossRef]

2004

W.-N. Chen, M.-H. Weng, I.-T. Tang, C.-Y. Hung; T.-C. Cheng, and M.-P. Houng, “Notch filters with novel microstrip, triangle-type resonators,” IEEE Trans. Ultrason. Ferroelect. Freq. Control 51, 1018–1021 (2004).
[CrossRef]

E. H. W. Chan and R. A. Minasian, “Novel all-optical RF notch filters with equivalent negative tap response,” IEEE Photon. Technol. Lett. 16, 1370–1372 (2004).
[CrossRef]

Y. Lee, T. Shiota, A. Takei, T. Taniguchi, and H. Uchiyama, “Semiconductor dispersion compensator based on two vertically coupled asymmetric ridge waveguides,” Jpn. J. Appl. Phys. 43, 7036–7041 (2004).
[CrossRef]

J. Shim, B. Liu, J. Piprek, and J. E. Bowers, “Nonlinear properties of traveling-wave electroabsorption modulator,” IEEE Photon. Technol. Lett. 16, 1035–1037 (2004).
[CrossRef]

2001

C. Rauscher, “Varactor-tuned active notch filter with low passband noise and signal distortion,” IEEE Trans. Microwave Theory Tech. 49, 1431–1437 (2001).
[CrossRef]

1999

C. S. Tsai, J. Su, and C. C. Lee, “Wideband electronically tunable microwave bandstop filters using iron film-gallium arsenide waveguide structure,” IEEE Trans. Magn. 35, 3178–3180 (1999).
[CrossRef]

1997

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, “All-optical incoherent negative taps for photonic signal processing,” Electron. Lett. 33, 973–975 (1997).
[CrossRef]

1996

S. Lucyszyn and I. D. Robertson, “MMIC tunable active notch filter,” Electron. Lett. 32, 980–981 (1996).
[CrossRef]

1995

S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fibre-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
[CrossRef]

1993

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11, 1937–1940(1993).
[CrossRef]

1986

T. H. Wood, “Direct measurement of the electric-field-dependent absorption coefficient in GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 48, 1413–1415(1986).
[CrossRef]

1982

I. C. Hunter and J. D. Rhodes, “Electronically tunable bandstop filter,” IEEE Trans. Microwave Theory Tech. 30, 1361–1367 (1982).
[CrossRef]

Alphones, A.

M. F. Karim, A. Q. Liu, A. Alphones, and A. B. Yu, “A tunable bandstop filter via the capacitance change of micromachined switches,” J. Micromech. Microeng. 16, 851–861 (2006).
[CrossRef]

Bowers, J. E.

J. Shim, B. Liu, J. Piprek, and J. E. Bowers, “Nonlinear properties of traveling-wave electroabsorption modulator,” IEEE Photon. Technol. Lett. 16, 1035–1037 (2004).
[CrossRef]

Capmany, J.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744–1746 (2006).
[CrossRef]

S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fibre-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
[CrossRef]

Chan, E. H. W.

E. H. W. Chan and R. A. Minasian, “Novel all-optical RF notch filters with equivalent negative tap response,” IEEE Photon. Technol. Lett. 16, 1370–1372 (2004).
[CrossRef]

Chang, Y. M.

Chang, Y.-C.

G. B. Morrison, J. W. Raring, C. S. Wang, E. J. Skogen, Y.-C. Chang, M. Sysak, and L. A. Coldren, “Electroabsorption modulator performance predicted from band-edge absorption spectra of bulk, quantum-well, and quantum-well-intermixed InGaAsP structures,” Solid-State Electron. 51, 38–47(2007).
[CrossRef]

Chang-Hasnain, C. J.

Chen, W.-N.

W.-N. Chen, M.-H. Weng, I.-T. Tang, C.-Y. Hung; T.-C. Cheng, and M.-P. Houng, “Notch filters with novel microstrip, triangle-type resonators,” IEEE Trans. Ultrason. Ferroelect. Freq. Control 51, 1018–1021 (2004).
[CrossRef]

Cheng, T.-C.

W.-N. Chen, M.-H. Weng, I.-T. Tang, C.-Y. Hung; T.-C. Cheng, and M.-P. Houng, “Notch filters with novel microstrip, triangle-type resonators,” IEEE Trans. Ultrason. Ferroelect. Freq. Control 51, 1018–1021 (2004).
[CrossRef]

Choi, K.-S.

J. Kim, Y.-S. Kang, Y.-D. Chung, and K.-S. Choi, “Development and RF characteristics of analog 60 GHz electroabsorption modulator module for RF/optic conversion,” IEEE Trans. Microwave Theory Tech. 54, 780–787(2006).
[CrossRef]

Chuang, S. L.

Chung, H.

Chung, Y.-D.

J. Kim, Y.-S. Kang, Y.-D. Chung, and K.-S. Choi, “Development and RF characteristics of analog 60 GHz electroabsorption modulator module for RF/optic conversion,” IEEE Trans. Microwave Theory Tech. 54, 780–787(2006).
[CrossRef]

Coldren, L. A.

G. B. Morrison, J. W. Raring, C. S. Wang, E. J. Skogen, Y.-C. Chang, M. Sysak, and L. A. Coldren, “Electroabsorption modulator performance predicted from band-edge absorption spectra of bulk, quantum-well, and quantum-well-intermixed InGaAsP structures,” Solid-State Electron. 51, 38–47(2007).
[CrossRef]

Coppinger, F.

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, “All-optical incoherent negative taps for photonic signal processing,” Electron. Lett. 33, 973–975 (1997).
[CrossRef]

Devaux, F.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11, 1937–1940(1993).
[CrossRef]

Dong, J.

X. Li, E. Xu, L. Zhou, Y. Yu, J. Dong, and X. Zhang, “Microwave photonic filter with multiple taps based on single semiconductor optical amplifier,” Opt. Commun. 283, 3026–3029 (2010).
[CrossRef]

Houng, M.-P.

W.-N. Chen, M.-H. Weng, I.-T. Tang, C.-Y. Hung; T.-C. Cheng, and M.-P. Houng, “Notch filters with novel microstrip, triangle-type resonators,” IEEE Trans. Ultrason. Ferroelect. Freq. Control 51, 1018–1021 (2004).
[CrossRef]

Hung, C.-Y.

W.-N. Chen, M.-H. Weng, I.-T. Tang, C.-Y. Hung; T.-C. Cheng, and M.-P. Houng, “Notch filters with novel microstrip, triangle-type resonators,” IEEE Trans. Ultrason. Ferroelect. Freq. Control 51, 1018–1021 (2004).
[CrossRef]

Hunter, I. C.

I. C. Hunter and J. D. Rhodes, “Electronically tunable bandstop filter,” IEEE Trans. Microwave Theory Tech. 30, 1361–1367 (1982).
[CrossRef]

Jalali, B.

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, “All-optical incoherent negative taps for photonic signal processing,” Electron. Lett. 33, 973–975 (1997).
[CrossRef]

Kang, Y.-S.

J. Kim, Y.-S. Kang, Y.-D. Chung, and K.-S. Choi, “Development and RF characteristics of analog 60 GHz electroabsorption modulator module for RF/optic conversion,” IEEE Trans. Microwave Theory Tech. 54, 780–787(2006).
[CrossRef]

Karim, M. F.

M. F. Karim, A. Q. Liu, A. Alphones, and A. B. Yu, “A tunable bandstop filter via the capacitance change of micromachined switches,” J. Micromech. Microeng. 16, 851–861 (2006).
[CrossRef]

Kerdiles, J. F.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11, 1937–1940(1993).
[CrossRef]

Kim, J.

J. Kim, Y.-S. Kang, Y.-D. Chung, and K.-S. Choi, “Development and RF characteristics of analog 60 GHz electroabsorption modulator module for RF/optic conversion,” IEEE Trans. Microwave Theory Tech. 54, 780–787(2006).
[CrossRef]

Kim, S.-J.

T.-Y. Kim, C. K. Oh, S.-J. Kim, and C.-S. Park, “Tunable photonic microwave notch filter with negative coefficient based on polarization modulation,” IEEE Photon. Technol. Lett. 19, 907–909 (2007).
[CrossRef]

Kim, T.-Y.

T.-Y. Kim, C. K. Oh, S.-J. Kim, and C.-S. Park, “Tunable photonic microwave notch filter with negative coefficient based on polarization modulation,” IEEE Photon. Technol. Lett. 19, 907–909 (2007).
[CrossRef]

Koh, D.

Lee, C. C.

C. S. Tsai, J. Su, and C. C. Lee, “Wideband electronically tunable microwave bandstop filters using iron film-gallium arsenide waveguide structure,” IEEE Trans. Magn. 35, 3178–3180 (1999).
[CrossRef]

Lee, J.

Lee, J. H.

Lee, Y.

Y. Lee, T. Shiota, A. Takei, T. Taniguchi, and H. Uchiyama, “Semiconductor dispersion compensator based on two vertically coupled asymmetric ridge waveguides,” Jpn. J. Appl. Phys. 43, 7036–7041 (2004).
[CrossRef]

Li, X.

X. Li, E. Xu, L. Zhou, Y. Yu, J. Dong, and X. Zhang, “Microwave photonic filter with multiple taps based on single semiconductor optical amplifier,” Opt. Commun. 283, 3026–3029 (2010).
[CrossRef]

Liu, A. Q.

M. F. Karim, A. Q. Liu, A. Alphones, and A. B. Yu, “A tunable bandstop filter via the capacitance change of micromachined switches,” J. Micromech. Microeng. 16, 851–861 (2006).
[CrossRef]

Liu, B.

J. Shim, B. Liu, J. Piprek, and J. E. Bowers, “Nonlinear properties of traveling-wave electroabsorption modulator,” IEEE Photon. Technol. Lett. 16, 1035–1037 (2004).
[CrossRef]

Loayssa, A.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744–1746 (2006).
[CrossRef]

Lucyszyn, S.

S. Lucyszyn and I. D. Robertson, “MMIC tunable active notch filter,” Electron. Lett. 32, 980–981 (1996).
[CrossRef]

Marti, J.

S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fibre-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
[CrossRef]

Minasian, R. A.

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theory Tech. 54, 832–846(2006).
[CrossRef]

E. H. W. Chan and R. A. Minasian, “Novel all-optical RF notch filters with equivalent negative tap response,” IEEE Photon. Technol. Lett. 16, 1370–1372 (2004).
[CrossRef]

Mora, J.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744–1746 (2006).
[CrossRef]

Mørk, J.

Morrison, G. B.

G. B. Morrison, J. W. Raring, C. S. Wang, E. J. Skogen, Y.-C. Chang, M. Sysak, and L. A. Coldren, “Electroabsorption modulator performance predicted from band-edge absorption spectra of bulk, quantum-well, and quantum-well-intermixed InGaAsP structures,” Solid-State Electron. 51, 38–47(2007).
[CrossRef]

Oh, C. K.

T.-Y. Kim, C. K. Oh, S.-J. Kim, and C.-S. Park, “Tunable photonic microwave notch filter with negative coefficient based on polarization modulation,” IEEE Photon. Technol. Lett. 19, 907–909 (2007).
[CrossRef]

Öhman, F.

Park, C.-S.

T.-Y. Kim, C. K. Oh, S.-J. Kim, and C.-S. Park, “Tunable photonic microwave notch filter with negative coefficient based on polarization modulation,” IEEE Photon. Technol. Lett. 19, 907–909 (2007).
[CrossRef]

Pastor, D.

S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fibre-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
[CrossRef]

Piprek, J.

J. Shim, B. Liu, J. Piprek, and J. E. Bowers, “Nonlinear properties of traveling-wave electroabsorption modulator,” IEEE Photon. Technol. Lett. 16, 1035–1037 (2004).
[CrossRef]

Raring, J. W.

G. B. Morrison, J. W. Raring, C. S. Wang, E. J. Skogen, Y.-C. Chang, M. Sysak, and L. A. Coldren, “Electroabsorption modulator performance predicted from band-edge absorption spectra of bulk, quantum-well, and quantum-well-intermixed InGaAsP structures,” Solid-State Electron. 51, 38–47(2007).
[CrossRef]

Rauscher, C.

C. Rauscher, “Varactor-tuned active notch filter with low passband noise and signal distortion,” IEEE Trans. Microwave Theory Tech. 49, 1431–1437 (2001).
[CrossRef]

Rhodes, J. D.

I. C. Hunter and J. D. Rhodes, “Electronically tunable bandstop filter,” IEEE Trans. Microwave Theory Tech. 30, 1361–1367 (1982).
[CrossRef]

Robertson, I. D.

S. Lucyszyn and I. D. Robertson, “MMIC tunable active notch filter,” Electron. Lett. 32, 980–981 (1996).
[CrossRef]

Sagues, M.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744–1746 (2006).
[CrossRef]

Sales, S.

S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fibre-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
[CrossRef]

Shim, J.

J. Shim, B. Liu, J. Piprek, and J. E. Bowers, “Nonlinear properties of traveling-wave electroabsorption modulator,” IEEE Photon. Technol. Lett. 16, 1035–1037 (2004).
[CrossRef]

Shiota, T.

Y. Lee, T. Shiota, A. Takei, T. Taniguchi, and H. Uchiyama, “Semiconductor dispersion compensator based on two vertically coupled asymmetric ridge waveguides,” Jpn. J. Appl. Phys. 43, 7036–7041 (2004).
[CrossRef]

Skogen, E. J.

G. B. Morrison, J. W. Raring, C. S. Wang, E. J. Skogen, Y.-C. Chang, M. Sysak, and L. A. Coldren, “Electroabsorption modulator performance predicted from band-edge absorption spectra of bulk, quantum-well, and quantum-well-intermixed InGaAsP structures,” Solid-State Electron. 51, 38–47(2007).
[CrossRef]

Sorel, Y.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11, 1937–1940(1993).
[CrossRef]

Su, J.

C. S. Tsai, J. Su, and C. C. Lee, “Wideband electronically tunable microwave bandstop filters using iron film-gallium arsenide waveguide structure,” IEEE Trans. Magn. 35, 3178–3180 (1999).
[CrossRef]

Sysak, M.

G. B. Morrison, J. W. Raring, C. S. Wang, E. J. Skogen, Y.-C. Chang, M. Sysak, and L. A. Coldren, “Electroabsorption modulator performance predicted from band-edge absorption spectra of bulk, quantum-well, and quantum-well-intermixed InGaAsP structures,” Solid-State Electron. 51, 38–47(2007).
[CrossRef]

Takei, A.

Y. Lee, T. Shiota, A. Takei, T. Taniguchi, and H. Uchiyama, “Semiconductor dispersion compensator based on two vertically coupled asymmetric ridge waveguides,” Jpn. J. Appl. Phys. 43, 7036–7041 (2004).
[CrossRef]

Tang, I.-T.

W.-N. Chen, M.-H. Weng, I.-T. Tang, C.-Y. Hung; T.-C. Cheng, and M.-P. Houng, “Notch filters with novel microstrip, triangle-type resonators,” IEEE Trans. Ultrason. Ferroelect. Freq. Control 51, 1018–1021 (2004).
[CrossRef]

Taniguchi, T.

Y. Lee, T. Shiota, A. Takei, T. Taniguchi, and H. Uchiyama, “Semiconductor dispersion compensator based on two vertically coupled asymmetric ridge waveguides,” Jpn. J. Appl. Phys. 43, 7036–7041 (2004).
[CrossRef]

Trinh, P. D.

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, “All-optical incoherent negative taps for photonic signal processing,” Electron. Lett. 33, 973–975 (1997).
[CrossRef]

Tsai, C. S.

C. S. Tsai, J. Su, and C. C. Lee, “Wideband electronically tunable microwave bandstop filters using iron film-gallium arsenide waveguide structure,” IEEE Trans. Magn. 35, 3178–3180 (1999).
[CrossRef]

Uchiyama, H.

Y. Lee, T. Shiota, A. Takei, T. Taniguchi, and H. Uchiyama, “Semiconductor dispersion compensator based on two vertically coupled asymmetric ridge waveguides,” Jpn. J. Appl. Phys. 43, 7036–7041 (2004).
[CrossRef]

Wang, C. S.

G. B. Morrison, J. W. Raring, C. S. Wang, E. J. Skogen, Y.-C. Chang, M. Sysak, and L. A. Coldren, “Electroabsorption modulator performance predicted from band-edge absorption spectra of bulk, quantum-well, and quantum-well-intermixed InGaAsP structures,” Solid-State Electron. 51, 38–47(2007).
[CrossRef]

Weng, M.-H.

W.-N. Chen, M.-H. Weng, I.-T. Tang, C.-Y. Hung; T.-C. Cheng, and M.-P. Houng, “Notch filters with novel microstrip, triangle-type resonators,” IEEE Trans. Ultrason. Ferroelect. Freq. Control 51, 1018–1021 (2004).
[CrossRef]

Wood, T. H.

T. H. Wood, “Direct measurement of the electric-field-dependent absorption coefficient in GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 48, 1413–1415(1986).
[CrossRef]

Xu, E.

X. Li, E. Xu, L. Zhou, Y. Yu, J. Dong, and X. Zhang, “Microwave photonic filter with multiple taps based on single semiconductor optical amplifier,” Opt. Commun. 283, 3026–3029 (2010).
[CrossRef]

Yegnanarayanan, S.

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, “All-optical incoherent negative taps for photonic signal processing,” Electron. Lett. 33, 973–975 (1997).
[CrossRef]

Yu, A. B.

M. F. Karim, A. Q. Liu, A. Alphones, and A. B. Yu, “A tunable bandstop filter via the capacitance change of micromachined switches,” J. Micromech. Microeng. 16, 851–861 (2006).
[CrossRef]

Yu, Y.

X. Li, E. Xu, L. Zhou, Y. Yu, J. Dong, and X. Zhang, “Microwave photonic filter with multiple taps based on single semiconductor optical amplifier,” Opt. Commun. 283, 3026–3029 (2010).
[CrossRef]

Yvind, K.

Zhang, X.

X. Li, E. Xu, L. Zhou, Y. Yu, J. Dong, and X. Zhang, “Microwave photonic filter with multiple taps based on single semiconductor optical amplifier,” Opt. Commun. 283, 3026–3029 (2010).
[CrossRef]

Zhou, L.

X. Li, E. Xu, L. Zhou, Y. Yu, J. Dong, and X. Zhang, “Microwave photonic filter with multiple taps based on single semiconductor optical amplifier,” Opt. Commun. 283, 3026–3029 (2010).
[CrossRef]

Appl. Phys. Lett.

T. H. Wood, “Direct measurement of the electric-field-dependent absorption coefficient in GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 48, 1413–1415(1986).
[CrossRef]

Electron. Lett.

S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fibre-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
[CrossRef]

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, “All-optical incoherent negative taps for photonic signal processing,” Electron. Lett. 33, 973–975 (1997).
[CrossRef]

S. Lucyszyn and I. D. Robertson, “MMIC tunable active notch filter,” Electron. Lett. 32, 980–981 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

T.-Y. Kim, C. K. Oh, S.-J. Kim, and C.-S. Park, “Tunable photonic microwave notch filter with negative coefficient based on polarization modulation,” IEEE Photon. Technol. Lett. 19, 907–909 (2007).
[CrossRef]

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744–1746 (2006).
[CrossRef]

E. H. W. Chan and R. A. Minasian, “Novel all-optical RF notch filters with equivalent negative tap response,” IEEE Photon. Technol. Lett. 16, 1370–1372 (2004).
[CrossRef]

J. Shim, B. Liu, J. Piprek, and J. E. Bowers, “Nonlinear properties of traveling-wave electroabsorption modulator,” IEEE Photon. Technol. Lett. 16, 1035–1037 (2004).
[CrossRef]

IEEE Trans. Magn.

C. S. Tsai, J. Su, and C. C. Lee, “Wideband electronically tunable microwave bandstop filters using iron film-gallium arsenide waveguide structure,” IEEE Trans. Magn. 35, 3178–3180 (1999).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

I. C. Hunter and J. D. Rhodes, “Electronically tunable bandstop filter,” IEEE Trans. Microwave Theory Tech. 30, 1361–1367 (1982).
[CrossRef]

J. Kim, Y.-S. Kang, Y.-D. Chung, and K.-S. Choi, “Development and RF characteristics of analog 60 GHz electroabsorption modulator module for RF/optic conversion,” IEEE Trans. Microwave Theory Tech. 54, 780–787(2006).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theory Tech. 54, 832–846(2006).
[CrossRef]

C. Rauscher, “Varactor-tuned active notch filter with low passband noise and signal distortion,” IEEE Trans. Microwave Theory Tech. 49, 1431–1437 (2001).
[CrossRef]

IEEE Trans. Ultrason. Ferroelect. Freq. Control

W.-N. Chen, M.-H. Weng, I.-T. Tang, C.-Y. Hung; T.-C. Cheng, and M.-P. Houng, “Notch filters with novel microstrip, triangle-type resonators,” IEEE Trans. Ultrason. Ferroelect. Freq. Control 51, 1018–1021 (2004).
[CrossRef]

J. Lightwave Technol.

C. J. Chang-Hasnain and S. L. Chuang, “Slow and fast light in semiconductor quantum-well and quantum-dot devices,” J. Lightwave Technol. 24, 4642–4654 (2006).
[CrossRef]

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11, 1937–1940(1993).
[CrossRef]

J. Micromech. Microeng.

M. F. Karim, A. Q. Liu, A. Alphones, and A. B. Yu, “A tunable bandstop filter via the capacitance change of micromachined switches,” J. Micromech. Microeng. 16, 851–861 (2006).
[CrossRef]

J. Opt. Commun. Netw.

Jpn. J. Appl. Phys.

Y. Lee, T. Shiota, A. Takei, T. Taniguchi, and H. Uchiyama, “Semiconductor dispersion compensator based on two vertically coupled asymmetric ridge waveguides,” Jpn. J. Appl. Phys. 43, 7036–7041 (2004).
[CrossRef]

Opt. Commun.

X. Li, E. Xu, L. Zhou, Y. Yu, J. Dong, and X. Zhang, “Microwave photonic filter with multiple taps based on single semiconductor optical amplifier,” Opt. Commun. 283, 3026–3029 (2010).
[CrossRef]

Opt. Express

Solid-State Electron.

G. B. Morrison, J. W. Raring, C. S. Wang, E. J. Skogen, Y.-C. Chang, M. Sysak, and L. A. Coldren, “Electroabsorption modulator performance predicted from band-edge absorption spectra of bulk, quantum-well, and quantum-well-intermixed InGaAsP structures,” Solid-State Electron. 51, 38–47(2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Principle of generating optical channels with opposite polarities using the EAM transfer curve.

Fig. 2
Fig. 2

(a) Schematic plot of the conventional band-edge absorption spectrum in quantum-well-based EAMs. (b) Expected EO transfer function.

Fig. 3
Fig. 3

Experimental schematic of the proposed bipolar tap photonic microwave notch filter.

Fig. 4
Fig. 4

Measured EO transfer function of the EAM-integrated DFB LDs used in the experimental demonstration.

Fig. 5
Fig. 5

(a) Measured RF frequency responses for various wavelength spacings between the two DFB lasers. (b) Corresponding theoretically calculated RF frequency responses.

Fig. 6
Fig. 6

(a) Wavelength spacing and (b) RF notch frequency as a function of the temperature.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P RF ( f ) P 1 2 + P 2 2 2 P 1 · P 2 · cos ( 2 π f · Δ τ ) .
τ ( λ ) = τ 0 + D · λ ,
Δ τ = τ ( λ 1 ) τ ( λ 2 + S · T ) ,

Metrics