Abstract

We present spectra of depleted uranium metal from laser plasmas generated by nanosecond Nd:YAG (1064nm) and femtosecond Ti:sapphire (800nm) laser pulses. The latter pulses produce short-lived and relatively cool plasmas in comparison to the longer pulses, and the spectra of neutral uranium atoms appear immediately after excitation. Evidence for nonequilibrium excitation with femtosecond pulses is found in the dependence of spectral line intensities on the pulse chirp.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
    [CrossRef]
  2. J. Blaise and L. J. Radziemski, Jr., “Energy levels of neutral atomic uranium (UI),” J. Opt. Soc. Am. 66, 644–659 (1976).
    [CrossRef]
  3. P. Fichet, P. Mauchien, and C. Moulin, “Determination of impurities in uranium and plutonium dioxides by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 53, 1111–1117(1999).
    [CrossRef]
  4. A. Sarkar, D. Alamelu, and S. K. Aggarwal, “Determination of thorium and uranium in solution by laser-induced breakdown spectrometry,” Appl. Opt. 47, G58–G64 (2008).
    [CrossRef]
  5. R. C. Chinni, D. A. Cremers, L. J. Radziemski, M. Bostian, and C. Navarro-Northrup, “Detection of uranium using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 63, 1238–1250 (2009).
    [CrossRef] [PubMed]
  6. P. D. Zimmerman and C. Loeb, “Dirty bombs: the threat revisited” (Defense Horizons 38:1−11, Jan. 2004) available at http://www.hps.org/documents/RDD_report.pdf. accessed December 2010.
  7. W. Pietsch, A. Petit, and A. Briand, “Isotope ratio determination of uranium by optical emission spectroscopy on a laser-produced plasma—basic investigations and analytical results,” Spectrochim. Acta B 53, 751–761 (1998).
    [CrossRef]
  8. C. A. Smith, M. A. Martinez, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B 57, 929–937 (2002).
    [CrossRef]
  9. M. Bostian, D. A. Cremers, C. Randy Jones, G. M. Smith, R. J. Chiffelle, R. C. Chinni, and C. Navarro-Northrup, “Standoff detection of radiological, nuclear, and related materials using a transportable LIBS instrument,” submitted to Appl. Spectrosc.
  10. V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
    [CrossRef]
  11. K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, and S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–290 (2001).
    [CrossRef]
  12. B. Le Drogoff, J. Margot, F. Vidal, S. Laville, M. Chaker, M. Sabsabi, T. W. Johnston, and O. Barthélemy, “Influence of the laser pulse duration on laser-produced plasma properties,” Plasma Sources Sci. Technol. 13, 223–230 (2004).
    [CrossRef]
  13. Ph. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and W. Wöste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
    [CrossRef]
  14. T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
    [CrossRef]
  15. M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
    [CrossRef]
  16. Y. Dikmelik, C. McEnnis, and J. B. Spicer, “Femtosecond and nanosecond laser-induced breakdown spectroscopy of trinitrotoluene,” Opt. Express 16, 5332–5337 (2008).
    [CrossRef] [PubMed]
  17. F. C. De Lucia, J. L. Gottfried, and A. W. Miziolek, “Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection,” Opt. Express 17, 419–425 (2009).
    [CrossRef] [PubMed]
  18. M. Sabsabi, “Femtosecond LIBS,” in Laser-Induced Breakdown Spectroscopy, J.P.Singh and S.N.Thakur, eds. (Elsevier, 2007), pp. 151–171.
    [CrossRef]
  19. B. A. Palmer, R. A. Keller, and R. Engleman, Jr., “An atlas of uranium emissions intensities in a hollow cathode discharge,” LASL Rep. LA-8251-MS, Los Alamos Scientific Laboratory, Los Alamos, N.M., 1980.
  20. D. W. Green, “Standard enthalpies of formation of gaseous thorium, uranium, and plutonium oxides,” Int. J. Thermophys. 1, 61–71 (1980).
    [CrossRef]
  21. M. C. Heaven, Department of Chemistry, Emory University, Atwood Hall 410, Atlanta Ga., 30322, USA (personal communication, 2009).
  22. E. Stoffels, P. van de Weijer, and J. van der Mullen, “Time-resolved emission from laser-ablated uranium,” Spectrochim. Acta B 46, 1459–1470 (1991).
    [CrossRef]
  23. S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulse,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
    [CrossRef] [PubMed]
  24. G. W. Rieger, M. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Laser-induced breakdown spectroscopy for microanalysis using submillijoule UV laser pulses,” Appl. Spectrosc. 56, 689–697(2002).
    [CrossRef]

2009 (2)

2008 (2)

2006 (2)

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

2004 (2)

B. Le Drogoff, J. Margot, F. Vidal, S. Laville, M. Chaker, M. Sabsabi, T. W. Johnston, and O. Barthélemy, “Influence of the laser pulse duration on laser-produced plasma properties,” Plasma Sources Sci. Technol. 13, 223–230 (2004).
[CrossRef]

Ph. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and W. Wöste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[CrossRef]

2002 (2)

C. A. Smith, M. A. Martinez, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B 57, 929–937 (2002).
[CrossRef]

G. W. Rieger, M. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Laser-induced breakdown spectroscopy for microanalysis using submillijoule UV laser pulses,” Appl. Spectrosc. 56, 689–697(2002).
[CrossRef]

2001 (2)

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulse,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, and S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–290 (2001).
[CrossRef]

2000 (1)

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
[CrossRef]

1999 (1)

1998 (1)

W. Pietsch, A. Petit, and A. Briand, “Isotope ratio determination of uranium by optical emission spectroscopy on a laser-produced plasma—basic investigations and analytical results,” Spectrochim. Acta B 53, 751–761 (1998).
[CrossRef]

1991 (1)

E. Stoffels, P. van de Weijer, and J. van der Mullen, “Time-resolved emission from laser-ablated uranium,” Spectrochim. Acta B 46, 1459–1470 (1991).
[CrossRef]

1980 (1)

D. W. Green, “Standard enthalpies of formation of gaseous thorium, uranium, and plutonium oxides,” Int. J. Thermophys. 1, 61–71 (1980).
[CrossRef]

1976 (1)

Aggarwal, S. K.

Alamelu, D.

Amodeo, T.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

Angel, S. M.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulse,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, and S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–290 (2001).
[CrossRef]

Barthélemy, O.

B. Le Drogoff, J. Margot, F. Vidal, S. Laville, M. Chaker, M. Sabsabi, T. W. Johnston, and O. Barthélemy, “Influence of the laser pulse duration on laser-produced plasma properties,” Plasma Sources Sci. Technol. 13, 223–230 (2004).
[CrossRef]

Baudelet, M.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

Berg, M. A.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulse,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

Blaise, J.

Bolshov, M.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
[CrossRef]

Bostian, M.

R. C. Chinni, D. A. Cremers, L. J. Radziemski, M. Bostian, and C. Navarro-Northrup, “Detection of uranium using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 63, 1238–1250 (2009).
[CrossRef] [PubMed]

M. Bostian, D. A. Cremers, C. Randy Jones, G. M. Smith, R. J. Chiffelle, R. C. Chinni, and C. Navarro-Northrup, “Standoff detection of radiological, nuclear, and related materials using a transportable LIBS instrument,” submitted to Appl. Spectrosc.

Briand, A.

W. Pietsch, A. Petit, and A. Briand, “Isotope ratio determination of uranium by optical emission spectroscopy on a laser-produced plasma—basic investigations and analytical results,” Spectrochim. Acta B 53, 751–761 (1998).
[CrossRef]

Chaker, M.

B. Le Drogoff, J. Margot, F. Vidal, S. Laville, M. Chaker, M. Sabsabi, T. W. Johnston, and O. Barthélemy, “Influence of the laser pulse duration on laser-produced plasma properties,” Plasma Sources Sci. Technol. 13, 223–230 (2004).
[CrossRef]

Chiffelle, R. J.

M. Bostian, D. A. Cremers, C. Randy Jones, G. M. Smith, R. J. Chiffelle, R. C. Chinni, and C. Navarro-Northrup, “Standoff detection of radiological, nuclear, and related materials using a transportable LIBS instrument,” submitted to Appl. Spectrosc.

Chinni, R. C.

R. C. Chinni, D. A. Cremers, L. J. Radziemski, M. Bostian, and C. Navarro-Northrup, “Detection of uranium using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 63, 1238–1250 (2009).
[CrossRef] [PubMed]

M. Bostian, D. A. Cremers, C. Randy Jones, G. M. Smith, R. J. Chiffelle, R. C. Chinni, and C. Navarro-Northrup, “Standoff detection of radiological, nuclear, and related materials using a transportable LIBS instrument,” submitted to Appl. Spectrosc.

Cremers, D. A.

R. C. Chinni, D. A. Cremers, L. J. Radziemski, M. Bostian, and C. Navarro-Northrup, “Detection of uranium using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 63, 1238–1250 (2009).
[CrossRef] [PubMed]

C. A. Smith, M. A. Martinez, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B 57, 929–937 (2002).
[CrossRef]

M. Bostian, D. A. Cremers, C. Randy Jones, G. M. Smith, R. J. Chiffelle, R. C. Chinni, and C. Navarro-Northrup, “Standoff detection of radiological, nuclear, and related materials using a transportable LIBS instrument,” submitted to Appl. Spectrosc.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
[CrossRef]

Dantus, M.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[CrossRef]

De Lucia, F. C.

Dikmelik, Y.

Eland, K. L.

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, and S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–290 (2001).
[CrossRef]

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulse,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

Engleman, R.

B. A. Palmer, R. A. Keller, and R. Engleman, Jr., “An atlas of uranium emissions intensities in a hollow cathode discharge,” LASL Rep. LA-8251-MS, Los Alamos Scientific Laboratory, Los Alamos, N.M., 1980.

Fedosejevs, R.

Fichet, P.

Fréjafon, E.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

Gold, D. M.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulse,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, and S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–290 (2001).
[CrossRef]

Goode, S. R.

Gottfried, J. L.

Green, D. W.

D. W. Green, “Standard enthalpies of formation of gaseous thorium, uranium, and plutonium oxides,” Int. J. Thermophys. 1, 61–71 (1980).
[CrossRef]

Gross, A.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[CrossRef]

Gunaratne, T.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[CrossRef]

Guyon, L.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

Heaven, M. C.

M. C. Heaven, Department of Chemistry, Emory University, Atwood Hall 410, Atlanta Ga., 30322, USA (personal communication, 2009).

Hergenroder, R.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
[CrossRef]

Johnston, T. W.

B. Le Drogoff, J. Margot, F. Vidal, S. Laville, M. Chaker, M. Sabsabi, T. W. Johnston, and O. Barthélemy, “Influence of the laser pulse duration on laser-produced plasma properties,” Plasma Sources Sci. Technol. 13, 223–230 (2004).
[CrossRef]

Jones, C. Randy

M. Bostian, D. A. Cremers, C. Randy Jones, G. M. Smith, R. J. Chiffelle, R. C. Chinni, and C. Navarro-Northrup, “Standoff detection of radiological, nuclear, and related materials using a transportable LIBS instrument,” submitted to Appl. Spectrosc.

Kangas, M.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[CrossRef]

Kasparian, J.

Ph. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and W. Wöste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[CrossRef]

Keller, R. A.

B. A. Palmer, R. A. Keller, and R. Engleman, Jr., “An atlas of uranium emissions intensities in a hollow cathode discharge,” LASL Rep. LA-8251-MS, Los Alamos Scientific Laboratory, Los Alamos, N.M., 1980.

Lai, T.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulse,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

Laloi, P.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

Laville, S.

B. Le Drogoff, J. Margot, F. Vidal, S. Laville, M. Chaker, M. Sabsabi, T. W. Johnston, and O. Barthélemy, “Influence of the laser pulse duration on laser-produced plasma properties,” Plasma Sources Sci. Technol. 13, 223–230 (2004).
[CrossRef]

Le Drogoff, B.

B. Le Drogoff, J. Margot, F. Vidal, S. Laville, M. Chaker, M. Sabsabi, T. W. Johnston, and O. Barthélemy, “Influence of the laser pulse duration on laser-produced plasma properties,” Plasma Sources Sci. Technol. 13, 223–230 (2004).
[CrossRef]

Loeb, C.

P. D. Zimmerman and C. Loeb, “Dirty bombs: the threat revisited” (Defense Horizons 38:1−11, Jan. 2004) available at http://www.hps.org/documents/RDD_report.pdf. accessed December 2010.

Margetic, V.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
[CrossRef]

Margot, J.

B. Le Drogoff, J. Margot, F. Vidal, S. Laville, M. Chaker, M. Sabsabi, T. W. Johnston, and O. Barthélemy, “Influence of the laser pulse duration on laser-produced plasma properties,” Plasma Sources Sci. Technol. 13, 223–230 (2004).
[CrossRef]

Martinez, M. A.

C. A. Smith, M. A. Martinez, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B 57, 929–937 (2002).
[CrossRef]

Mauchien, P.

McEnnis, C.

Méjean, G.

Ph. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and W. Wöste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[CrossRef]

Miziolek, A. W.

Moulin, C.

Navarro-Northrup, C.

R. C. Chinni, D. A. Cremers, L. J. Radziemski, M. Bostian, and C. Navarro-Northrup, “Detection of uranium using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 63, 1238–1250 (2009).
[CrossRef] [PubMed]

M. Bostian, D. A. Cremers, C. Randy Jones, G. M. Smith, R. J. Chiffelle, R. C. Chinni, and C. Navarro-Northrup, “Standoff detection of radiological, nuclear, and related materials using a transportable LIBS instrument,” submitted to Appl. Spectrosc.

Niemax, K.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
[CrossRef]

Pakulev, A.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
[CrossRef]

Palmer, B. A.

B. A. Palmer, R. A. Keller, and R. Engleman, Jr., “An atlas of uranium emissions intensities in a hollow cathode discharge,” LASL Rep. LA-8251-MS, Los Alamos Scientific Laboratory, Los Alamos, N.M., 1980.

Petit, A.

W. Pietsch, A. Petit, and A. Briand, “Isotope ratio determination of uranium by optical emission spectroscopy on a laser-produced plasma—basic investigations and analytical results,” Spectrochim. Acta B 53, 751–761 (1998).
[CrossRef]

Pietsch, W.

W. Pietsch, A. Petit, and A. Briand, “Isotope ratio determination of uranium by optical emission spectroscopy on a laser-produced plasma—basic investigations and analytical results,” Spectrochim. Acta B 53, 751–761 (1998).
[CrossRef]

Radziemski, L. J.

Rieger, G. W.

Rohwetter, Ph.

Ph. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and W. Wöste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[CrossRef]

Sabsabi, M.

B. Le Drogoff, J. Margot, F. Vidal, S. Laville, M. Chaker, M. Sabsabi, T. W. Johnston, and O. Barthélemy, “Influence of the laser pulse duration on laser-produced plasma properties,” Plasma Sources Sci. Technol. 13, 223–230 (2004).
[CrossRef]

M. Sabsabi, “Femtosecond LIBS,” in Laser-Induced Breakdown Spectroscopy, J.P.Singh and S.N.Thakur, eds. (Elsevier, 2007), pp. 151–171.
[CrossRef]

Salmon, E.

Ph. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and W. Wöste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[CrossRef]

Sarkar, A.

Singh, S.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[CrossRef]

Smith, C. A.

C. A. Smith, M. A. Martinez, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B 57, 929–937 (2002).
[CrossRef]

Smith, G. M.

M. Bostian, D. A. Cremers, C. Randy Jones, G. M. Smith, R. J. Chiffelle, R. C. Chinni, and C. Navarro-Northrup, “Standoff detection of radiological, nuclear, and related materials using a transportable LIBS instrument,” submitted to Appl. Spectrosc.

Spicer, J. B.

Stelmaszczyk, K.

Ph. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and W. Wöste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[CrossRef]

Stockhaus, A.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
[CrossRef]

Stoffels, E.

E. Stoffels, P. van de Weijer, and J. van der Mullen, “Time-resolved emission from laser-ablated uranium,” Spectrochim. Acta B 46, 1459–1470 (1991).
[CrossRef]

Stratis, D. N.

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, and S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–290 (2001).
[CrossRef]

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulse,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

Taschuk, M.

Tsui, Y. Y.

van de Weijer, P.

E. Stoffels, P. van de Weijer, and J. van der Mullen, “Time-resolved emission from laser-ablated uranium,” Spectrochim. Acta B 46, 1459–1470 (1991).
[CrossRef]

van der Mullen, J.

E. Stoffels, P. van de Weijer, and J. van der Mullen, “Time-resolved emission from laser-ablated uranium,” Spectrochim. Acta B 46, 1459–1470 (1991).
[CrossRef]

Veirs, D. K.

C. A. Smith, M. A. Martinez, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B 57, 929–937 (2002).
[CrossRef]

Vidal, F.

B. Le Drogoff, J. Margot, F. Vidal, S. Laville, M. Chaker, M. Sabsabi, T. W. Johnston, and O. Barthélemy, “Influence of the laser pulse duration on laser-produced plasma properties,” Plasma Sources Sci. Technol. 13, 223–230 (2004).
[CrossRef]

Wolf, J.-P.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

Ph. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and W. Wöste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[CrossRef]

Wöste, W.

Ph. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and W. Wöste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[CrossRef]

Yu, J.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

Ph. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and W. Wöste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[CrossRef]

Zimmerman, P. D.

P. D. Zimmerman and C. Loeb, “Dirty bombs: the threat revisited” (Defense Horizons 38:1−11, Jan. 2004) available at http://www.hps.org/documents/RDD_report.pdf. accessed December 2010.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

Appl. Spectrosc. (4)

Chem. Phys. Lett. (1)

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[CrossRef]

Fresenius J. Anal. Chem. (1)

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulse,” Fresenius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef] [PubMed]

Int. J. Thermophys. (1)

D. W. Green, “Standard enthalpies of formation of gaseous thorium, uranium, and plutonium oxides,” Int. J. Thermophys. 1, 61–71 (1980).
[CrossRef]

J. Anal. At. Spectrom. (1)

Ph. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and W. Wöste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (2)

Plasma Sources Sci. Technol. (1)

B. Le Drogoff, J. Margot, F. Vidal, S. Laville, M. Chaker, M. Sabsabi, T. W. Johnston, and O. Barthélemy, “Influence of the laser pulse duration on laser-produced plasma properties,” Plasma Sources Sci. Technol. 13, 223–230 (2004).
[CrossRef]

Spectrochim. Acta B (4)

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
[CrossRef]

W. Pietsch, A. Petit, and A. Briand, “Isotope ratio determination of uranium by optical emission spectroscopy on a laser-produced plasma—basic investigations and analytical results,” Spectrochim. Acta B 53, 751–761 (1998).
[CrossRef]

C. A. Smith, M. A. Martinez, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B 57, 929–937 (2002).
[CrossRef]

E. Stoffels, P. van de Weijer, and J. van der Mullen, “Time-resolved emission from laser-ablated uranium,” Spectrochim. Acta B 46, 1459–1470 (1991).
[CrossRef]

Other (6)

M. C. Heaven, Department of Chemistry, Emory University, Atwood Hall 410, Atlanta Ga., 30322, USA (personal communication, 2009).

M. Bostian, D. A. Cremers, C. Randy Jones, G. M. Smith, R. J. Chiffelle, R. C. Chinni, and C. Navarro-Northrup, “Standoff detection of radiological, nuclear, and related materials using a transportable LIBS instrument,” submitted to Appl. Spectrosc.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
[CrossRef]

P. D. Zimmerman and C. Loeb, “Dirty bombs: the threat revisited” (Defense Horizons 38:1−11, Jan. 2004) available at http://www.hps.org/documents/RDD_report.pdf. accessed December 2010.

M. Sabsabi, “Femtosecond LIBS,” in Laser-Induced Breakdown Spectroscopy, J.P.Singh and S.N.Thakur, eds. (Elsevier, 2007), pp. 151–171.
[CrossRef]

B. A. Palmer, R. A. Keller, and R. Engleman, Jr., “An atlas of uranium emissions intensities in a hollow cathode discharge,” LASL Rep. LA-8251-MS, Los Alamos Scientific Laboratory, Los Alamos, N.M., 1980.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Layout of the fs-LIBS system with trigger diagram: DU, depleted uranium metal sample.

Fig. 2
Fig. 2

Example (a) ns-LIBS and (b) fs-LIBS spectra from depleted uranium around the U(I) line at 591.54 nm for different ICCD gate delays and gate widths relative to the arrival of the laser pulse at the target.

Fig. 3
Fig. 3

Using a 10 ns gate centered on the laser pulse, four characteristic lines of copper (510.6, 515.4, 521.8, and 578.2 nm ) are observed with only a minor plasma background.

Fig. 4
Fig. 4

Region around 777 nm oxygen [O(I)]) feature for ns-LIBS and fs-LIBS.

Fig. 5
Fig. 5

Spectral intensity for fs-LIBS of depleted uranium for unchirped ( 36 fs ) and positively chirped ( 500 fs ) pulses. The values are normalized to the 462.04 nm line. On the right is an energy level diagram of the corresponding transitions, labeled (a) to (d), from [19].

Metrics