Abstract

We design and manufacture a Fresnel axicon (fraxicon) that generates a quasi-diffraction-free/Bessel beam with a large depth of field. The novel optical element is characterized with both coherent and incoherent light, and its behavior is compared with that of a classical axicon. While the fraxicon exhibits a strong interference pattern in the on-axis intensity distribution, it can be smoothed out when using broadband light, partial spatial coherence light, or by period randomization. As inexpensive, compact/lightweight, and low-absorption elements, fraxicons may find applications in imaging, illumination, and situations where low absorption and dispersion are important.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592–597 (1954).
    [CrossRef]
  2. Z. Jaroszewicz, Axicons: Design and Propagation Properties, Research and Development Treatises (SPIE Polish Chapter, 1997), Vol. 5.
  3. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1451 (1987).
    [CrossRef] [PubMed]
  4. For a recent review on axicons and their applications, see Z. Jaroszewicz, A. Burvall, and T. Friberg, “Axicon—the most important optical element,” Opt. Photon. News 16(4), 34–39 (2005).
    [CrossRef]
  5. J. Sochacki, A. Kolodziejczyk, Z. Jaroszewicz, and S. Bara, “Nonparaxial design of generalized axicons,” Appl. Opt. 31, 5326–5330 (1992).
    [CrossRef] [PubMed]
  6. I. Golub and T. Mirtchev, “Absorption-free beam generated by a phase-engineered optical element,” Opt. Lett. 34, 1528–1530 (2009).
    [CrossRef] [PubMed]
  7. I. Golub, “Solid immersion axicon: maximizing nondiffracting or Bessel beam resolution,” Opt. Lett. 32, 2161–2163 (2007).
    [CrossRef] [PubMed]
  8. I. Golub, “Fresnel axicon,” Opt. Lett. 31, 1890–1892 (2006).
    [CrossRef] [PubMed]
  9. K. Gourley, I. Golub, and B. Chebbi, “First experimental demonstration of a Fresnel axicon,” Proc. SPIE 7099, 70990D(2009).
    [CrossRef]
  10. J. Lin, J. Tan, J. Liu, and S. Liu, “Rigorous electromagnetic analysis of two dimensional micro-axicon by boundary integral equation,” Opt. Express 17, 1466–1471 (2009).
    [CrossRef] [PubMed]
  11. D. A. Gregory and G. Peng, “Random facet Fresnel lenses and mirrors,” Opt. Eng. 40, 713–719 (2001).
    [CrossRef]
  12. S. Y. Popov and A. T. Friberg, “Design of diffractive axicons for partially coherent light,” Opt. Lett. 23, 1639–1641 (1998).
    [CrossRef]
  13. Z. Jaroszewicz, J. F. Roman Dopazo, and C. Gomez-Reino, “Uniformization of the axial intensity of diffraction axicons by polychromatic illumination,” Appl. Opt. 35, 1025–1031(1996).
    [CrossRef] [PubMed]
  14. I. Golub, B. Chebbi, D. Shaw, and D. Nowacki, “Characterization of a refractive logarithmic axicon,” Opt. Lett. 35, 2828–2830 (2010).
    [CrossRef] [PubMed]
  15. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243–235 (2002).
    [CrossRef]
  16. G. Druart, J. Taboury, N. Guerineau, R. Haidar, A. Kattnig, and J. Primot, “Demonstration of image-zooming capability for diffractive axicons,” Opt. Lett. 33, 366–368(2008).
    [CrossRef] [PubMed]
  17. J. A. García, S. Bará, M. G. García, Z. Jaroszewicz, A. Kolodziejczyk, and K. Petelczyc, “Imaging with extended focal depth by means of the refractive light sword optical element,” Opt. Express 16, 18371–18378 (2008).
    [CrossRef]
  18. M. Rioux, R. Tremblay, and P.-A. Belanger, “Linear, annular, and radial focusing with axicons and applications to laser machining,” Appl. Opt. 17, 1532–1536 (1978).
    [CrossRef] [PubMed]
  19. H. Sõnajalg, M. Rätsep, and P. Saari, “Demonstration of the Bessel-X pulse propagating with strong lateral and longitudinal localization in a dispersive medium,” Opt. Lett. 22, 310–312 (1997).
    [CrossRef] [PubMed]
  20. B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283, 1678–1683 (2010).
    [CrossRef]

2010 (2)

B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283, 1678–1683 (2010).
[CrossRef]

I. Golub, B. Chebbi, D. Shaw, and D. Nowacki, “Characterization of a refractive logarithmic axicon,” Opt. Lett. 35, 2828–2830 (2010).
[CrossRef] [PubMed]

2009 (3)

2008 (2)

2007 (1)

2006 (1)

2005 (1)

For a recent review on axicons and their applications, see Z. Jaroszewicz, A. Burvall, and T. Friberg, “Axicon—the most important optical element,” Opt. Photon. News 16(4), 34–39 (2005).
[CrossRef]

2002 (1)

2001 (1)

D. A. Gregory and G. Peng, “Random facet Fresnel lenses and mirrors,” Opt. Eng. 40, 713–719 (2001).
[CrossRef]

1998 (1)

1997 (1)

1996 (1)

1992 (1)

1987 (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1451 (1987).
[CrossRef] [PubMed]

1978 (1)

1954 (1)

Al-Akwaa, N.

B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283, 1678–1683 (2010).
[CrossRef]

Bara, S.

Bará, S.

Belanger, P.-A.

Burvall, A.

For a recent review on axicons and their applications, see Z. Jaroszewicz, A. Burvall, and T. Friberg, “Axicon—the most important optical element,” Opt. Photon. News 16(4), 34–39 (2005).
[CrossRef]

Chebbi, B.

I. Golub, B. Chebbi, D. Shaw, and D. Nowacki, “Characterization of a refractive logarithmic axicon,” Opt. Lett. 35, 2828–2830 (2010).
[CrossRef] [PubMed]

B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283, 1678–1683 (2010).
[CrossRef]

K. Gourley, I. Golub, and B. Chebbi, “First experimental demonstration of a Fresnel axicon,” Proc. SPIE 7099, 70990D(2009).
[CrossRef]

Chen, Z.

Ding, Z.

Druart, G.

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1451 (1987).
[CrossRef] [PubMed]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1451 (1987).
[CrossRef] [PubMed]

Friberg, A. T.

Friberg, T.

For a recent review on axicons and their applications, see Z. Jaroszewicz, A. Burvall, and T. Friberg, “Axicon—the most important optical element,” Opt. Photon. News 16(4), 34–39 (2005).
[CrossRef]

García, J. A.

García, M. G.

Golub, I.

Gomez-Reino, C.

Gourley, K.

K. Gourley, I. Golub, and B. Chebbi, “First experimental demonstration of a Fresnel axicon,” Proc. SPIE 7099, 70990D(2009).
[CrossRef]

Gregory, D. A.

D. A. Gregory and G. Peng, “Random facet Fresnel lenses and mirrors,” Opt. Eng. 40, 713–719 (2001).
[CrossRef]

Guerineau, N.

Haidar, R.

Jaroszewicz, Z.

Kattnig, A.

Kolodziejczyk, A.

Lin, J.

Liu, J.

Liu, S.

McLeod, J. H.

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1451 (1987).
[CrossRef] [PubMed]

Minko, S.

B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283, 1678–1683 (2010).
[CrossRef]

Mirtchev, T.

Nelson, J. S.

Nowacki, D.

Peng, G.

D. A. Gregory and G. Peng, “Random facet Fresnel lenses and mirrors,” Opt. Eng. 40, 713–719 (2001).
[CrossRef]

Petelczyc, K.

Popov, S. Y.

Primot, J.

Rätsep, M.

Ren, H.

Rioux, M.

Roman Dopazo, J. F.

Saari, P.

Shaw, D.

Sochacki, J.

Sõnajalg, H.

Taboury, J.

Tan, J.

Tremblay, R.

Zhao, Y.

Appl. Opt. (3)

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283, 1678–1683 (2010).
[CrossRef]

Opt. Eng. (1)

D. A. Gregory and G. Peng, “Random facet Fresnel lenses and mirrors,” Opt. Eng. 40, 713–719 (2001).
[CrossRef]

Opt. Express (2)

Opt. Lett. (8)

Opt. Photon. News (1)

For a recent review on axicons and their applications, see Z. Jaroszewicz, A. Burvall, and T. Friberg, “Axicon—the most important optical element,” Opt. Photon. News 16(4), 34–39 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1451 (1987).
[CrossRef] [PubMed]

Proc. SPIE (1)

K. Gourley, I. Golub, and B. Chebbi, “First experimental demonstration of a Fresnel axicon,” Proc. SPIE 7099, 70990D(2009).
[CrossRef]

Other (1)

Z. Jaroszewicz, Axicons: Design and Propagation Properties, Research and Development Treatises (SPIE Polish Chapter, 1997), Vol. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Bulk axicon and an equivalent fraxicon.

Fig. 2
Fig. 2

Photographs of quasi-Bessel-type beams produced by (a) classical axicon and (b) fraxicon with a calibration scale.

Fig. 3
Fig. 3

Transverse intensity distributions of beams produced by (a) classical axicon and (b) fraxicon at three different positions on the optical axis of 1 cm (top), 4 cm (middle) and 8 cm (bottom).

Fig. 4
Fig. 4

Measured on-axis intensity distributions of beams produced by an axicon and a fraxicon for a laser source.

Fig. 5
Fig. 5

Measured on-axis intensity distributions of beams produced by a fraxicon and an axicon for a white light source.

Fig. 6
Fig. 6

Ring pattern and ring profile in the vicinity of the focal ring generated by combinations of (a) lens-axicon and (b) lens-fraxicon.

Fig. 7
Fig. 7

Fraxicon-lens combination generated ring pattern with a calibration scale.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r 0 = 1.22 λ π sin β ,

Metrics