Abstract

We report wavelength-tunable operation of a Tm-doped silica fiber laser by using a force-induced long-period fiber grating (LPFG) formed in a fiber ring resonator. The laser output wavelength is tuned by moving the transmission passband that is generated between adjacent resonance wavelengths due to the force-induced LPFG. By changing the grating period around 900μm, we control the laser output wavelength between 1845 and 1930nm.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, “High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090nm,” Opt. Lett. 27, 1989–1991 (2002).
    [CrossRef]
  2. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “High-power widely tunable Tm:fibre lasers pumped by an Er, Yb co-doped fibre laser at 1.6μm,” Opt. Express 14, 6084–6090 (2006).
    [CrossRef] [PubMed]
  3. Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm:silica fiber lasers,” Proc. SPIE 6453, 645320 (2007).
    [CrossRef]
  4. A. K. Ngo, U. Sharma, J. U. Kang, and N. M. Fried, “Laser welding of urinary tissues, ex vivo, using a tunable thulium fiber laser,” Proc. SPIE 6078, 60781B (2006).
    [CrossRef]
  5. T. F. Morse, K. Oh, and L. Reinhart, “Carbon dioxide detection using a co-doped Tm–Ho optical fiber,” Proc. SPIE 2510, 158–164 (1995).
    [CrossRef]
  6. R. J. De Young and N. P. Barnes, “Profiling atmospheric water vapor using a fiber laser lidar system,” Appl. Opt. 49, 562–567 (2010).
    [CrossRef] [PubMed]
  7. B. C. Dickinson, S. D. Jackson, and T. A. King, “10mJ total output from a gain-switched Tm-doped fibre laser,” Opt. Commun. 182, 199–203 (2000).
    [CrossRef]
  8. R. L. Shubochkin, V. A. Kozlov, A. L. G. Carter, and T. F. Morse, “Tunable thulium-doped all-fiber laser,” IEEE Photonics Technol. Lett. 10, 944–945 (1998).
    [CrossRef]
  9. H. Sakata, H. Yoshimi, and Y. Otake, “Wavelength tunability of L-band fiber ring lasers using mechanically induced long-period fiber gratings,” Opt. Commun. 282, 1179–1182 (2009).
    [CrossRef]
  10. R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perrin, S. T. Davey, and M. Louka, “A 1.6μm pumped 1.9μmthulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron. 31, 489–493 (1995).
    [CrossRef]
  11. T. Yokouchi, Y. Suzaki, K. Nakagawa, M. Yamauchi, M. Kimura, Y. Mizutani, S. Kimura, and S. Ejima, “Thermal tuning of mechanically induced long-period fiber grating,” Appl. Opt. 44, 5024–5028 (2005).
    [CrossRef] [PubMed]
  12. I. K. Hwang, S. H. Yun, and B. Y. Kim, “Long-period fiber gratings based on periodic microbends,” Opt. Lett. 24, 1263–1265(1999).
    [CrossRef]

2010 (1)

2009 (1)

H. Sakata, H. Yoshimi, and Y. Otake, “Wavelength tunability of L-band fiber ring lasers using mechanically induced long-period fiber gratings,” Opt. Commun. 282, 1179–1182 (2009).
[CrossRef]

2007 (1)

Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm:silica fiber lasers,” Proc. SPIE 6453, 645320 (2007).
[CrossRef]

2006 (2)

A. K. Ngo, U. Sharma, J. U. Kang, and N. M. Fried, “Laser welding of urinary tissues, ex vivo, using a tunable thulium fiber laser,” Proc. SPIE 6078, 60781B (2006).
[CrossRef]

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “High-power widely tunable Tm:fibre lasers pumped by an Er, Yb co-doped fibre laser at 1.6μm,” Opt. Express 14, 6084–6090 (2006).
[CrossRef] [PubMed]

2005 (1)

2002 (1)

2000 (1)

B. C. Dickinson, S. D. Jackson, and T. A. King, “10mJ total output from a gain-switched Tm-doped fibre laser,” Opt. Commun. 182, 199–203 (2000).
[CrossRef]

1999 (1)

1998 (1)

R. L. Shubochkin, V. A. Kozlov, A. L. G. Carter, and T. F. Morse, “Tunable thulium-doped all-fiber laser,” IEEE Photonics Technol. Lett. 10, 944–945 (1998).
[CrossRef]

1995 (2)

R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perrin, S. T. Davey, and M. Louka, “A 1.6μm pumped 1.9μmthulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron. 31, 489–493 (1995).
[CrossRef]

T. F. Morse, K. Oh, and L. Reinhart, “Carbon dioxide detection using a co-doped Tm–Ho optical fiber,” Proc. SPIE 2510, 158–164 (1995).
[CrossRef]

Barnes, N. P.

Carter, A. L. G.

R. L. Shubochkin, V. A. Kozlov, A. L. G. Carter, and T. F. Morse, “Tunable thulium-doped all-fiber laser,” IEEE Photonics Technol. Lett. 10, 944–945 (1998).
[CrossRef]

Clarkson, W. A.

Davey, S. T.

R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perrin, S. T. Davey, and M. Louka, “A 1.6μm pumped 1.9μmthulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron. 31, 489–493 (1995).
[CrossRef]

David, D.

Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm:silica fiber lasers,” Proc. SPIE 6453, 645320 (2007).
[CrossRef]

De Young, R. J.

Dickinson, B. C.

B. C. Dickinson, S. D. Jackson, and T. A. King, “10mJ total output from a gain-switched Tm-doped fibre laser,” Opt. Commun. 182, 199–203 (2000).
[CrossRef]

Ejima, S.

Fried, N. M.

A. K. Ngo, U. Sharma, J. U. Kang, and N. M. Fried, “Laser welding of urinary tissues, ex vivo, using a tunable thulium fiber laser,” Proc. SPIE 6078, 60781B (2006).
[CrossRef]

Hanna, D. C.

Hwang, I. K.

Jackson, S. D.

B. C. Dickinson, S. D. Jackson, and T. A. King, “10mJ total output from a gain-switched Tm-doped fibre laser,” Opt. Commun. 182, 199–203 (2000).
[CrossRef]

Kang, J. U.

A. K. Ngo, U. Sharma, J. U. Kang, and N. M. Fried, “Laser welding of urinary tissues, ex vivo, using a tunable thulium fiber laser,” Proc. SPIE 6078, 60781B (2006).
[CrossRef]

Kim, B. Y.

Kimura, M.

Kimura, S.

King, T. A.

B. C. Dickinson, S. D. Jackson, and T. A. King, “10mJ total output from a gain-switched Tm-doped fibre laser,” Opt. Commun. 182, 199–203 (2000).
[CrossRef]

Kozlov, V. A.

R. L. Shubochkin, V. A. Kozlov, A. L. G. Carter, and T. F. Morse, “Tunable thulium-doped all-fiber laser,” IEEE Photonics Technol. Lett. 10, 944–945 (1998).
[CrossRef]

Louka, M.

R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perrin, S. T. Davey, and M. Louka, “A 1.6μm pumped 1.9μmthulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron. 31, 489–493 (1995).
[CrossRef]

Mizutani, Y.

Morse, T. F.

R. L. Shubochkin, V. A. Kozlov, A. L. G. Carter, and T. F. Morse, “Tunable thulium-doped all-fiber laser,” IEEE Photonics Technol. Lett. 10, 944–945 (1998).
[CrossRef]

T. F. Morse, K. Oh, and L. Reinhart, “Carbon dioxide detection using a co-doped Tm–Ho optical fiber,” Proc. SPIE 2510, 158–164 (1995).
[CrossRef]

Nakagawa, K.

Ngo, A. K.

A. K. Ngo, U. Sharma, J. U. Kang, and N. M. Fried, “Laser welding of urinary tissues, ex vivo, using a tunable thulium fiber laser,” Proc. SPIE 6078, 60781B (2006).
[CrossRef]

Nilsson, J.

Oh, K.

T. F. Morse, K. Oh, and L. Reinhart, “Carbon dioxide detection using a co-doped Tm–Ho optical fiber,” Proc. SPIE 2510, 158–164 (1995).
[CrossRef]

Otake, Y.

H. Sakata, H. Yoshimi, and Y. Otake, “Wavelength tunability of L-band fiber ring lasers using mechanically induced long-period fiber gratings,” Opt. Commun. 282, 1179–1182 (2009).
[CrossRef]

Percival, R. M.

R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perrin, S. T. Davey, and M. Louka, “A 1.6μm pumped 1.9μmthulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron. 31, 489–493 (1995).
[CrossRef]

Perrin, S. D.

R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perrin, S. T. Davey, and M. Louka, “A 1.6μm pumped 1.9μmthulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron. 31, 489–493 (1995).
[CrossRef]

Reinhart, L.

T. F. Morse, K. Oh, and L. Reinhart, “Carbon dioxide detection using a co-doped Tm–Ho optical fiber,” Proc. SPIE 2510, 158–164 (1995).
[CrossRef]

Sacks, Z. S.

Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm:silica fiber lasers,” Proc. SPIE 6453, 645320 (2007).
[CrossRef]

Sahu, J. K.

Sakata, H.

H. Sakata, H. Yoshimi, and Y. Otake, “Wavelength tunability of L-band fiber ring lasers using mechanically induced long-period fiber gratings,” Opt. Commun. 282, 1179–1182 (2009).
[CrossRef]

Schiffer, Z.

Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm:silica fiber lasers,” Proc. SPIE 6453, 645320 (2007).
[CrossRef]

Seltzer, C. P.

R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perrin, S. T. Davey, and M. Louka, “A 1.6μm pumped 1.9μmthulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron. 31, 489–493 (1995).
[CrossRef]

Sharma, U.

A. K. Ngo, U. Sharma, J. U. Kang, and N. M. Fried, “Laser welding of urinary tissues, ex vivo, using a tunable thulium fiber laser,” Proc. SPIE 6078, 60781B (2006).
[CrossRef]

Shen, D. Y.

Shubochkin, R. L.

R. L. Shubochkin, V. A. Kozlov, A. L. G. Carter, and T. F. Morse, “Tunable thulium-doped all-fiber laser,” IEEE Photonics Technol. Lett. 10, 944–945 (1998).
[CrossRef]

Suzaki, Y.

Szebesta, D.

R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perrin, S. T. Davey, and M. Louka, “A 1.6μm pumped 1.9μmthulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron. 31, 489–493 (1995).
[CrossRef]

Turner, P. W.

Yamauchi, M.

Yokouchi, T.

Yoshimi, H.

H. Sakata, H. Yoshimi, and Y. Otake, “Wavelength tunability of L-band fiber ring lasers using mechanically induced long-period fiber gratings,” Opt. Commun. 282, 1179–1182 (2009).
[CrossRef]

Yun, S. H.

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perrin, S. T. Davey, and M. Louka, “A 1.6μm pumped 1.9μmthulium-doped fluoride fiber laser and amplifier of very high efficiency,” IEEE J. Quantum Electron. 31, 489–493 (1995).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

R. L. Shubochkin, V. A. Kozlov, A. L. G. Carter, and T. F. Morse, “Tunable thulium-doped all-fiber laser,” IEEE Photonics Technol. Lett. 10, 944–945 (1998).
[CrossRef]

Opt. Commun. (2)

H. Sakata, H. Yoshimi, and Y. Otake, “Wavelength tunability of L-band fiber ring lasers using mechanically induced long-period fiber gratings,” Opt. Commun. 282, 1179–1182 (2009).
[CrossRef]

B. C. Dickinson, S. D. Jackson, and T. A. King, “10mJ total output from a gain-switched Tm-doped fibre laser,” Opt. Commun. 182, 199–203 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (3)

Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm:silica fiber lasers,” Proc. SPIE 6453, 645320 (2007).
[CrossRef]

A. K. Ngo, U. Sharma, J. U. Kang, and N. M. Fried, “Laser welding of urinary tissues, ex vivo, using a tunable thulium fiber laser,” Proc. SPIE 6078, 60781B (2006).
[CrossRef]

T. F. Morse, K. Oh, and L. Reinhart, “Carbon dioxide detection using a co-doped Tm–Ho optical fiber,” Proc. SPIE 2510, 158–164 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the Tm-doped fiber ring laser using a force-induced LPFG to provide wavelength tuning operation.

Fig. 2
Fig. 2

Emission spectra of the Tm-doped fiber modified by the force-induced LPFG with various grating periods.

Fig. 3
Fig. 3

Resonance wavelength due to the force-induced LPFG as a function of grating period. Solid lines are linear fittings of experimental data shown by symbols.

Fig. 4
Fig. 4

Temporal profiles of the laser emission from the fiber ring laser: the pulse duration of LD 1 is 1 ms , while those of LD 2 are (a) 1 ms and (b) 30 μs .

Fig. 5
Fig. 5

Pulsed peak power of the fiber ring laser as a function of the launched optical power of the pump LDs.

Fig. 6
Fig. 6

Laser emission spectra at various grating periods from 808 to 934 μm .

Fig. 7
Fig. 7

Relation between the grating period and the oscillation wavelength of the fiber ring laser: The grating lengths of the force-induced LPFGs are (a) 15 mm and (b) 8 mm .

Metrics