Abstract

Atmospheric lidar techniques for the measurement of wind, temperature, and optical properties of aerosols as well as nonintrusive measurement techniques for temperature, density, and bulk velocity in gas flows rely on the exact knowledge of the spectral line shape of the scattered laser light on molecules. A mathematically complex, numerical model (Tenti S6 model) is currently the best model for describing these spectra. In this paper an easy processable, alternative analytical model for describing spontaneous Rayleigh–Brillouin spectra in air at atmospheric conditions is introduced. The deviations between the analytical and Tenti S6 models are shown to be smaller than 0.85%.

© 2011 Optical Society of America

Full Article  |  PDF Article
Related Articles
Rayleigh-scattering line profiles

Andrew T. Young and George W. Kattawar
Appl. Opt. 22(23) 3668-3670 (1983)

Spontaneous Rayleigh–Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air

Benjamin Witschas, Maria O. Vieitez, Eric-Jan van Duijn, Oliver Reitebuch, Willem van de Water, and Wim Ubachs
Appl. Opt. 49(22) 4217-4227 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription