Abstract

A double S-bend structure has been proposed for the reduction of coupling length of the 2×2 two mode interference (TMI) coupler. The coupling characteristics of the proposed structure are compared with those of conventional TMI structures using a simple mathematical model based on sinusoidal modes. The longitudinal beat length for the proposed TMI coupler is reduced by 15% of the beat length of a conventional TMI coupler. The effect of power imbalance on fabrication tolerance of the proposed TMI coupler is also studied and compared with other TMI couplers.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Neyer, “Integrated optical multichannel wavelength multiplexer for monomode systems,” Electron. Lett. 20, 744–746 (1984).
    [CrossRef]
  2. T.-Y. Tsai, Z.-C. Chen, C.-C. Chen, Y.-C. Fang, and M.-H. Cha, “A novel ultracompact two mode interference wavelength multiplexer for 1.5 μm operation,” IEEE J. Quantum Electron. 41, 741–746 (2005).
    [CrossRef]
  3. A. K. Das and P. P. Sahu, “Compact integrated optical devices using high index contrast waveguides,” in IEEE Wireless and Optical Communication Network Conference (2006), paper 01666673.
  4. P. P. Sahu, “Compact optical multiplexer using silicon nano-waveguides,” IEEE J. Sel. Top. Quantum Electron. 15, 1537–1541 (2009).
    [CrossRef]
  5. M. K. Chin, C. W. Lee, S. Y. Lee, and S. Darmawan, “High index contrast waveguides and devices,” Appl. Opt. 44, 3077–3086 (2005).
    [CrossRef] [PubMed]
  6. Y. Ma, S. Park, L. Wang, and S. T. Ho, “Ultra compact multimode interference 3 dB coupler with strong lateral confinement by deep dry etching,” IEEE Photon. Technol. Lett. 12, 492–494 (2000).
    [CrossRef]
  7. M. Rajarajan, B. M. A. Rahman, and K. T. V. Grattan, “A rigorous comparison of the performance of directional coupler with multimode interference devices,” J. Lightwave Technol. 17, 243–248 (1999).
    [CrossRef]
  8. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).
  9. M. R. Paiam and R. I. MacDonald, “Polarization insensitive 980/1550 nm wavelength demultiplexer using MMI couplers,” Electron. Lett. 33, 1219–1220 (1997).
    [CrossRef]
  10. P. P. Sahu, “Silicon oxinitride: a material for compact waveguide device,” Indian J. Phys. 82, 265–272 (2008).

2009 (1)

P. P. Sahu, “Compact optical multiplexer using silicon nano-waveguides,” IEEE J. Sel. Top. Quantum Electron. 15, 1537–1541 (2009).
[CrossRef]

2008 (1)

P. P. Sahu, “Silicon oxinitride: a material for compact waveguide device,” Indian J. Phys. 82, 265–272 (2008).

2005 (2)

M. K. Chin, C. W. Lee, S. Y. Lee, and S. Darmawan, “High index contrast waveguides and devices,” Appl. Opt. 44, 3077–3086 (2005).
[CrossRef] [PubMed]

T.-Y. Tsai, Z.-C. Chen, C.-C. Chen, Y.-C. Fang, and M.-H. Cha, “A novel ultracompact two mode interference wavelength multiplexer for 1.5 μm operation,” IEEE J. Quantum Electron. 41, 741–746 (2005).
[CrossRef]

2000 (1)

Y. Ma, S. Park, L. Wang, and S. T. Ho, “Ultra compact multimode interference 3 dB coupler with strong lateral confinement by deep dry etching,” IEEE Photon. Technol. Lett. 12, 492–494 (2000).
[CrossRef]

1999 (1)

1997 (1)

M. R. Paiam and R. I. MacDonald, “Polarization insensitive 980/1550 nm wavelength demultiplexer using MMI couplers,” Electron. Lett. 33, 1219–1220 (1997).
[CrossRef]

1984 (1)

A. Neyer, “Integrated optical multichannel wavelength multiplexer for monomode systems,” Electron. Lett. 20, 744–746 (1984).
[CrossRef]

Cha, M.-H.

T.-Y. Tsai, Z.-C. Chen, C.-C. Chen, Y.-C. Fang, and M.-H. Cha, “A novel ultracompact two mode interference wavelength multiplexer for 1.5 μm operation,” IEEE J. Quantum Electron. 41, 741–746 (2005).
[CrossRef]

Chen, C.-C.

T.-Y. Tsai, Z.-C. Chen, C.-C. Chen, Y.-C. Fang, and M.-H. Cha, “A novel ultracompact two mode interference wavelength multiplexer for 1.5 μm operation,” IEEE J. Quantum Electron. 41, 741–746 (2005).
[CrossRef]

Chen, Z.-C.

T.-Y. Tsai, Z.-C. Chen, C.-C. Chen, Y.-C. Fang, and M.-H. Cha, “A novel ultracompact two mode interference wavelength multiplexer for 1.5 μm operation,” IEEE J. Quantum Electron. 41, 741–746 (2005).
[CrossRef]

Chin, M. K.

Darmawan, S.

Das, A. K.

A. K. Das and P. P. Sahu, “Compact integrated optical devices using high index contrast waveguides,” in IEEE Wireless and Optical Communication Network Conference (2006), paper 01666673.

Fang, Y.-C.

T.-Y. Tsai, Z.-C. Chen, C.-C. Chen, Y.-C. Fang, and M.-H. Cha, “A novel ultracompact two mode interference wavelength multiplexer for 1.5 μm operation,” IEEE J. Quantum Electron. 41, 741–746 (2005).
[CrossRef]

Grattan, K. T. V.

Haruna, M.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).

Ho, S. T.

Y. Ma, S. Park, L. Wang, and S. T. Ho, “Ultra compact multimode interference 3 dB coupler with strong lateral confinement by deep dry etching,” IEEE Photon. Technol. Lett. 12, 492–494 (2000).
[CrossRef]

Lee, C. W.

Lee, S. Y.

Ma, Y.

Y. Ma, S. Park, L. Wang, and S. T. Ho, “Ultra compact multimode interference 3 dB coupler with strong lateral confinement by deep dry etching,” IEEE Photon. Technol. Lett. 12, 492–494 (2000).
[CrossRef]

MacDonald, R. I.

M. R. Paiam and R. I. MacDonald, “Polarization insensitive 980/1550 nm wavelength demultiplexer using MMI couplers,” Electron. Lett. 33, 1219–1220 (1997).
[CrossRef]

Neyer, A.

A. Neyer, “Integrated optical multichannel wavelength multiplexer for monomode systems,” Electron. Lett. 20, 744–746 (1984).
[CrossRef]

Nishihara, H.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).

Paiam, M. R.

M. R. Paiam and R. I. MacDonald, “Polarization insensitive 980/1550 nm wavelength demultiplexer using MMI couplers,” Electron. Lett. 33, 1219–1220 (1997).
[CrossRef]

Park, S.

Y. Ma, S. Park, L. Wang, and S. T. Ho, “Ultra compact multimode interference 3 dB coupler with strong lateral confinement by deep dry etching,” IEEE Photon. Technol. Lett. 12, 492–494 (2000).
[CrossRef]

Rahman, B. M. A.

Rajarajan, M.

Sahu, P. P.

P. P. Sahu, “Compact optical multiplexer using silicon nano-waveguides,” IEEE J. Sel. Top. Quantum Electron. 15, 1537–1541 (2009).
[CrossRef]

P. P. Sahu, “Silicon oxinitride: a material for compact waveguide device,” Indian J. Phys. 82, 265–272 (2008).

A. K. Das and P. P. Sahu, “Compact integrated optical devices using high index contrast waveguides,” in IEEE Wireless and Optical Communication Network Conference (2006), paper 01666673.

Suhara, T.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).

Tsai, T.-Y.

T.-Y. Tsai, Z.-C. Chen, C.-C. Chen, Y.-C. Fang, and M.-H. Cha, “A novel ultracompact two mode interference wavelength multiplexer for 1.5 μm operation,” IEEE J. Quantum Electron. 41, 741–746 (2005).
[CrossRef]

Wang, L.

Y. Ma, S. Park, L. Wang, and S. T. Ho, “Ultra compact multimode interference 3 dB coupler with strong lateral confinement by deep dry etching,” IEEE Photon. Technol. Lett. 12, 492–494 (2000).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (2)

M. R. Paiam and R. I. MacDonald, “Polarization insensitive 980/1550 nm wavelength demultiplexer using MMI couplers,” Electron. Lett. 33, 1219–1220 (1997).
[CrossRef]

A. Neyer, “Integrated optical multichannel wavelength multiplexer for monomode systems,” Electron. Lett. 20, 744–746 (1984).
[CrossRef]

IEEE J. Quantum Electron. (1)

T.-Y. Tsai, Z.-C. Chen, C.-C. Chen, Y.-C. Fang, and M.-H. Cha, “A novel ultracompact two mode interference wavelength multiplexer for 1.5 μm operation,” IEEE J. Quantum Electron. 41, 741–746 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

P. P. Sahu, “Compact optical multiplexer using silicon nano-waveguides,” IEEE J. Sel. Top. Quantum Electron. 15, 1537–1541 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Ma, S. Park, L. Wang, and S. T. Ho, “Ultra compact multimode interference 3 dB coupler with strong lateral confinement by deep dry etching,” IEEE Photon. Technol. Lett. 12, 492–494 (2000).
[CrossRef]

Indian J. Phys. (1)

P. P. Sahu, “Silicon oxinitride: a material for compact waveguide device,” Indian J. Phys. 82, 265–272 (2008).

J. Lightwave Technol. (1)

Other (2)

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).

A. K. Das and P. P. Sahu, “Compact integrated optical devices using high index contrast waveguides,” in IEEE Wireless and Optical Communication Network Conference (2006), paper 01666673.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

2 × 2 double S-bend TMI structure of bending angle A and TMI width 2 w at the input end and 2 w + Δ W at the output end: (a) three-dimensional view; (b) 2D TMI structure containing x and z axes.

Fig. 2
Fig. 2

Coupled power distribution of the conventional and the proposed TMI couplers with 2 w = 3 μm , cladding index 1.45 , Δ n 5 % , wavelength 1.55 μm , A = 32 ° [solid curves, simple model based on sinusoidal modes for the proposed TMI; dashed curves, simple model based sinusoidal modes for the conventional TMI; dotted curves, BPM CAD tool (optiBPM)].

Fig. 3
Fig. 3

Double S-bend loss versus h for the fundamental mode and the first-order mode of the proposed TMI coupler with 2 w 3 μm , cladding index 1.45 , Δ n 5 % , wavelength 1.55 μm , and A = 32 ° .

Fig. 4
Fig. 4

Dependence of longitudinal beat length and S-bend loss on bending angle for the proposed TMI coupler with w = 3 μm , cladding index 1.45 , Δ n 5 % , wavelength 1.55 μm , and A = 32 ° .

Fig. 5
Fig. 5

Power imbalance versus δ w with 2 w = 3 μm , cladding index 1.45 , Δ n 5 % , wavelength 1.55 μm , and A = 32 ° for the conventional MMI, the conventional TMI, the tooth-shaped TMI grating structure, and the proposed TMI structure.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R 2 = ( L T 2 ) 2 + ( R H T 2 ) 2 , L T = H T ( 4 R H T ) .
H ( x , 0 ) = i = 0 m 1 b i T H i ( x ) ,
P 3 P 1 = | H 1 ( x , L . sec A ) H 1 ( x , 0 ) | 2 , P 4 P 1 = | H 2 ( x + w , L . sec A ) H 1 ( x , 0 ) | 2 ,
H 1 ( x , L . sec A ) = i = 0 m 1 c 1 , i T H i ( x ) exp [ j ( β 0 β i ) L . sec A ] . e 2 α S , H 2 ( x + w , L . sec A ) = i = 0 m 1 c 2 , i T H i ( x + w ) exp [ j ( β 0 β i ) L . sec A ] . e 2 α S .
T S = 10 ln [ exp { 0 S α d s } ] = 4.343 α S .

Metrics