Abstract

We are studying a form of holographic data storage with phase conjugation, and we compensated for hologram distortion due to shrinkage of photopolymer materials in the holographic medium by controlling the wavefront of the reference beam. When a high NA lens and narrow angle interval of angle multiplexing are employed to obtain a high data recording density, some wavefronts cause interpage crosstalk on the reconstructed image. We tried to determine the moving range of actuators in a deformable mirror for controlling the wavefront. As a result, we found that the distortion in the hologram could be compensated while avoiding interpage crosstalk and that the bit error rates of the reproduced data could be decreased. We also found that the optimized wavefront could compensate for distortions in several neighboring data pages. This method can ensure a high data recording density in holographic data storage.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44, 341–368 (2000).
    [CrossRef]
  2. M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, “Improvement in temperature tolerance of holographic data storage using wavelength tunable laser,” Jpn. J. Appl. Phys. 45, 1297–1304 (2006).
    [CrossRef]
  3. T. Muroi, N. Kinoshita, N. Ishii, K. Kamijo, and N. Shimidzu, “Optical compensation of distorted data image caused by interference fringe distortion in holographic data storage,” Appl. Opt. 48, 3681–3690 (2009).
    [CrossRef] [PubMed]
  4. L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
    [CrossRef]
  5. T. MuroiN. Kinoshita, N. Ishii, K. Kamijo, and N. Shimidzu, “Compensation of interference fringe distortion due to temperature variation in holographic data storage,” Jpn. J. Appl. Phys. 49, 08KD03 (2010).
    [CrossRef]
  6. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, 2000).
  7. N. Kinoshita, T. Muroi, N. Ishii, K. Kamijo, H. Kikuchi, N. Shimidzu, and O. Matoba, “Half-data-page insertion method for increasing recording density in angular multiplexing holographic memory,” Appl. Opt. 50, 2361–2369 (2011).
    [CrossRef] [PubMed]

2011 (1)

2010 (1)

T. MuroiN. Kinoshita, N. Ishii, K. Kamijo, and N. Shimidzu, “Compensation of interference fringe distortion due to temperature variation in holographic data storage,” Jpn. J. Appl. Phys. 49, 08KD03 (2010).
[CrossRef]

2009 (1)

2006 (1)

M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, “Improvement in temperature tolerance of holographic data storage using wavelength tunable laser,” Jpn. J. Appl. Phys. 45, 1297–1304 (2006).
[CrossRef]

2000 (1)

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44, 341–368 (2000).
[CrossRef]

1998 (1)

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Ashley, J.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44, 341–368 (2000).
[CrossRef]

Bair, H.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Bernal, M.-P.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44, 341–368 (2000).
[CrossRef]

Boyd, C.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Burr, G. W.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44, 341–368 (2000).
[CrossRef]

Coufal, H.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44, 341–368 (2000).
[CrossRef]

Coufal, H. J.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, 2000).

Dhar, L.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Guenther, H.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44, 341–368 (2000).
[CrossRef]

Hoffnagle, J. A.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44, 341–368 (2000).
[CrossRef]

Ishii, N.

Jefferson, C. M.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44, 341–368 (2000).
[CrossRef]

Kamijo, K.

Kikuchi, H.

Kinoshita, N.

Macfarlane, R. M.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44, 341–368 (2000).
[CrossRef]

Marcus, B.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44, 341–368 (2000).
[CrossRef]

Matoba, O.

Muroi, T.

Psaltis, D.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, 2000).

Schilling, M.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Schnoes, M. G.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Shelby, R. M.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44, 341–368 (2000).
[CrossRef]

Shimidzu, N.

Sincerbox, G. T.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44, 341–368 (2000).
[CrossRef]

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, 2000).

Sugiki, M.

M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, “Improvement in temperature tolerance of holographic data storage using wavelength tunable laser,” Jpn. J. Appl. Phys. 45, 1297–1304 (2006).
[CrossRef]

Tanaka, T.

M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, “Improvement in temperature tolerance of holographic data storage using wavelength tunable laser,” Jpn. J. Appl. Phys. 45, 1297–1304 (2006).
[CrossRef]

Toishi, M.

M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, “Improvement in temperature tolerance of holographic data storage using wavelength tunable laser,” Jpn. J. Appl. Phys. 45, 1297–1304 (2006).
[CrossRef]

Watanabe, K.

M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, “Improvement in temperature tolerance of holographic data storage using wavelength tunable laser,” Jpn. J. Appl. Phys. 45, 1297–1304 (2006).
[CrossRef]

Wysocki, T. L.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

IBM J. Res. Develop. (1)

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Develop. 44, 341–368 (2000).
[CrossRef]

Jpn. J. Appl. Phys. (2)

M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, “Improvement in temperature tolerance of holographic data storage using wavelength tunable laser,” Jpn. J. Appl. Phys. 45, 1297–1304 (2006).
[CrossRef]

T. MuroiN. Kinoshita, N. Ishii, K. Kamijo, and N. Shimidzu, “Compensation of interference fringe distortion due to temperature variation in holographic data storage,” Jpn. J. Appl. Phys. 49, 08KD03 (2010).
[CrossRef]

Other (1)

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Definition of the signal beam divided into plane waves and interference fringes due to plane waves in a medium without shrinkage.

Fig. 2
Fig. 2

Distortion of interference fringes in a medium due to shrinkage.

Fig. 3
Fig. 3

Interference fringe angle gap before and after shrinkage as a function of the signal beam angle.

Fig. 4
Fig. 4

Reference beam angle while reconstructing as a function of the signal beam angle when the interference fringe is distorted due to shrinkage.

Fig. 5
Fig. 5

Reconstruction of angle-multiplexed hologram with low NA object lens and broad angle interval: (a) compensation using optimized wavefront, (b) compensation using wavefront with angle range wider than that in (a).

Fig. 6
Fig. 6

Reconstruction of angle-multiplexed hologram with high NA object lens and narrow angle interval: (a) appearance of crosstalk, (b) reconstruction with avoidance of crosstalk.

Fig. 7
Fig. 7

Cross-sectional view of a deformable mirror.

Fig. 8
Fig. 8

Optical configuration of holographic data storage with phase conjugation.

Fig. 9
Fig. 9

Reconstructed image using original wavefront: (a) entire image, (b) enlarged view of upper right side.

Fig. 10
Fig. 10

Reconstructed image with crosstalk on upper left (maximum value of actuators in the DM is 1.1 μm ): (a) entire image, (b) enlarged view of upper left, (c) enlarged view of upper right.

Fig. 11
Fig. 11

Reconstructed image avoiding crosstalk (maximum value of actuators in the DM is 0.7 μm ): (a) entire image, (b) enlarged view of upper left, (c) enlarged view of upper right.

Fig. 12
Fig. 12

Reconstructed images before compensation of 53 data pages of angle-multiplexed holograms: (a) first data page, (b) thirtieth data page.

Fig. 13
Fig. 13

bERs in angle-multiplexed holograms; reconstructions with original wavefront and optimized wavefront for first data page.

Fig. 14
Fig. 14

Reconstructed images with optimized wavefront for thirtieth of 53 data pages of angle-multiplexed holograms: (a) first data page, (b) thirtieth data page.

Fig. 15
Fig. 15

bERs in angle-multiplexed holograms; reconstructions with original wavefront and optimized wavefront for thirtieth data page.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

θ s = sin 1 sin Θ s n
θ r = sin 1 sin Θ r n ,
θ K = θ s + θ r 2 .
Λ = λ 2 sin θ h ,
θ read = θ K + sin 1 λ 2 Λ .
Θ read = sin 1 { n sin ( θ K + sin 1 λ 2 Λ ) } .
ϕ K = tan 1 tan θ K 1 a .
M = Λ cos ϕ K cos θ K .
ϕ read = ϕ K + sin 1 λ 2 M .
ϕ read = tan 1 tan θ K 1 a + sin 1 λ 2 Λ cos θ K cos ( tan 1 tan θ K 1 a ) .
Φ read = sin 1 { n sin { tan 1 tan θ K 1 a + sin 1 λ 2 Λ cos θ K cos ( tan 1 tan θ K 1 a ) } } .
α 2 < β < α 2 .
ω = tan 1 h d ,
α 2 < 2 ω < α 2 .
d tan ( α 4 ) < h < d tan α 4 .
Fit min ( μ 1 μ 0 c 1 2 + c 0 2 ) m ,

Metrics