Abstract

We present the results of a diagnostic study of the use of coherent four wave mixing for in situ measurement of an electric field in air or in nitrogen-containing plasmas. Static electric fields in air at a nominal pressure of 625Torr and temperature of 300K are detected using vibrational CARS of nitrogen. It is shown that the ratio of the infrared signal to the vibrational N2 CARS signal is equal to approximately 108 at 8.33kV/cm, a factor of approximately 50 less than that predicted assuming equal third-order nonlinear susceptibilities. It is also shown that the spatial resolution of a typical collinear geometry measurement is approximately 1cm. Finally, it is shown that achieving sensitivities of the order of 1kV/cm requires that the coherent Raman pumping be performed in the highly saturated and Stark broadened regime.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B.M.Penetrante and S.E.Schultheis, eds., Non-Thermal Plasma Techniques for Pollution Control: Part A—Overview, Fundamentals and Supporting Technologies (Springer-Verlag, 1993).
    [CrossRef] [PubMed]
  2. B.M.Penetrante and S.E.Schultheis, eds., Non-Thermal Plasma Techniques for Pollution Control: Part B—Electron Beam and Electrical Discharge Processing (Springer-Verlag, 1993).
    [CrossRef] [PubMed]
  3. A. Yu. Starikovskii, “Plasma supported combustion,” Proc. Comb. Inst. 30, 2405–2417 (2005).
    [CrossRef]
  4. S. M. Starikovskaya, “Plasma assisted ignition and combustion,” J. Phys. D 39, R265–R299 (2006).
    [CrossRef]
  5. D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δg) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
    [CrossRef]
  6. A. Hicks, Yu. G. Utkin, W. R. Lempert, J. W. Rich, and I. V. Adamovich, “Continuous wave operation of a non-self-sustained electric discharge pumped oxygen-iodine laser,” Appl. Phys. Lett. 89, 241131 (2006).
    [CrossRef]
  7. E. Moreau, “Airflow control by non-thermal plasma actuators,” J. Phys. D 40, 605–636 (2007).
    [CrossRef]
  8. J.-H Kim, M. Nishihara, I. V. Adamovich, M. Samimy, S. Gorvatov, and F. Pliavaka, “Development of localized arc filament rf plasma actuators for high-speed and high Reynolds number flow control,” Exp. Fluids 49, 497–511 (2010).
    [CrossRef]
  9. E. V. Barnat and G. A. Hebner, “Electric fields in a sheath near a metal–dielectric interface,” Appl. Phys. Lett. 85, 3393–3395(2004).
    [CrossRef]
  10. T. Kampschulte, J. Schulze, D. Leggenhölscher, M. D. Bowden, and U. Czarnetski, “Laser spectroscopic electric field measurement in krypton,” New J. Phys. 9, 18–18 (2007).
    [CrossRef]
  11. Y. Zuzeek, I. Choi, M. Uddi, I. V. Adomovich, and W. R. Lempert, “Pure rotational CARS thermometry studies of low-temperature oxidation kinetics in air and ethene–air nanosecond pulse discharge plasmas,” J. Phys. D 43, 124001(2010).
    [CrossRef]
  12. T. Kishimoto, N. Wenzel, H. Grosse-Wilde, G. Lüpke, and G. Marowsky, “Experimental study of a CO2 Laser plasma by coherent anti-Stokes Raman scattering (CARS),” Spectrochem. Acta B 47, 51–60 (1992).
    [CrossRef]
  13. Y. Zuzeek, S. Bowman, I. Choi, I. V. Adamovich, and W. R. Lempert, “Pure rotational CARS studies of thermal energy release and ignition in nanosecond repetitively pulsed hydrogen-air plasmas,” Proc. Comb. Inst. 33, 3225–3232 (2011).
    [CrossRef]
  14. J. P. Bonnet, D. Grésillon, and J. P. Taran, “Nonintrusive measurements for high-speed, supersonic and hypersonic flows,” Ann. Rev. Fluid Mech. 30, 231–273 (1998).
    [CrossRef]
  15. A. Montello, M. Nishihara, J. W. Rich, I. V. Adamovich, and W. R. Lempert, “Picosecond CARS measurements of vibrational distribution function in a nonequilibrium Mach 5 flow,” AIAA-2011–1322, 49th AIAA Aerospace Sciences Meeting, Orlando, Fla., 4–7 January 2011.
  16. V. P. Gavrilenko, E. B. Kupriyanova, D. P. Okolokulak, V. N. Ochkin, S. Yu. Savinov, S. N. Tskhai, and A. N. Yarashev, “Generation of coherent IR light on a dipole-forbidden molecular transition with biharmonic pumping in a static electric field,” JETP Lett. 56, 1–5 (1992).
  17. O. A. Evsin, E. B. Kupryanova, V. N. Ochkin, S. Y. Savinov, and S. N. Tskhai, “Determination of the intensities of electric fields in gases and plasmas by the CARS method,” Quantum Electron. 25, 278–282 (1995).
    [CrossRef]
  18. D. A. Akimov, A. M. Zheltikov, N. I. Koroteev, A. N. Naumov, A. Y. Serdyuchenko, S. A. Sidorov-Biryukov, A. B. Fedotov, V. N. Ochkin, and S. N. Tskhai, “Coherent Raman scattering in molecular hydrogen in a dc electric field,” JETP Lett. 70, 375–379 (1999).
    [CrossRef]
  19. T. Ito, K. Kazunobu, U. Czarnetzki, and S. Hamaguchi, “Rapid formation of electric field profiles in repetitively pulsed high-voltage high-pressure nanosecond discharges,” J. Phys D 43, 062001 (2010).
    [CrossRef]
  20. T. Ito, K. Kobayashi, S. Mueller, D. Luggenhölscher, U. Czarnetzki, and S. Hamaguchi, “Electric field measurement in an atmospheric of higher pressure gas by coherent Raman scattering of nitrogen,” J. Phys. D 42, 092003(2009).
    [CrossRef]
  21. R. E. Palmer, “The CARSFT computer code for calculating coherent anti-Stokes Raman spectra: user and programmer information,” Sandia National Laboratories, Livermore, Calif., Report SAND 89–8206. Code provided by R.E.Palmer, Sandia National Laboratories—Combustion Research Facility (1989).
  22. L. A. Rahn and R. E. Palmer, “Studies of nitrogen self-broadening at high temperature with inverse Raman spectroscopy,” J. Opt. Soc. Am. B 3, 1164–1169 (1986).
    [CrossRef]
  23. G. J. Rosasco, W. Lempert, W. S. Hurst, and A. Fein, Chem. Phys. Lett. 97, 435–440 (1983).
    [CrossRef]
  24. M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “Stark broadening and stimulated Raman pumping in high-resolution N2 coherent anti-Stokes Raman scattering spectra,” AIAA J. 40, 1078–1086 (2002).
    [CrossRef]

2011 (1)

Y. Zuzeek, S. Bowman, I. Choi, I. V. Adamovich, and W. R. Lempert, “Pure rotational CARS studies of thermal energy release and ignition in nanosecond repetitively pulsed hydrogen-air plasmas,” Proc. Comb. Inst. 33, 3225–3232 (2011).
[CrossRef]

2010 (3)

Y. Zuzeek, I. Choi, M. Uddi, I. V. Adomovich, and W. R. Lempert, “Pure rotational CARS thermometry studies of low-temperature oxidation kinetics in air and ethene–air nanosecond pulse discharge plasmas,” J. Phys. D 43, 124001(2010).
[CrossRef]

T. Ito, K. Kazunobu, U. Czarnetzki, and S. Hamaguchi, “Rapid formation of electric field profiles in repetitively pulsed high-voltage high-pressure nanosecond discharges,” J. Phys D 43, 062001 (2010).
[CrossRef]

J.-H Kim, M. Nishihara, I. V. Adamovich, M. Samimy, S. Gorvatov, and F. Pliavaka, “Development of localized arc filament rf plasma actuators for high-speed and high Reynolds number flow control,” Exp. Fluids 49, 497–511 (2010).
[CrossRef]

2009 (1)

T. Ito, K. Kobayashi, S. Mueller, D. Luggenhölscher, U. Czarnetzki, and S. Hamaguchi, “Electric field measurement in an atmospheric of higher pressure gas by coherent Raman scattering of nitrogen,” J. Phys. D 42, 092003(2009).
[CrossRef]

2007 (2)

E. Moreau, “Airflow control by non-thermal plasma actuators,” J. Phys. D 40, 605–636 (2007).
[CrossRef]

T. Kampschulte, J. Schulze, D. Leggenhölscher, M. D. Bowden, and U. Czarnetski, “Laser spectroscopic electric field measurement in krypton,” New J. Phys. 9, 18–18 (2007).
[CrossRef]

2006 (2)

S. M. Starikovskaya, “Plasma assisted ignition and combustion,” J. Phys. D 39, R265–R299 (2006).
[CrossRef]

A. Hicks, Yu. G. Utkin, W. R. Lempert, J. W. Rich, and I. V. Adamovich, “Continuous wave operation of a non-self-sustained electric discharge pumped oxygen-iodine laser,” Appl. Phys. Lett. 89, 241131 (2006).
[CrossRef]

2005 (2)

A. Yu. Starikovskii, “Plasma supported combustion,” Proc. Comb. Inst. 30, 2405–2417 (2005).
[CrossRef]

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δg) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
[CrossRef]

2004 (1)

E. V. Barnat and G. A. Hebner, “Electric fields in a sheath near a metal–dielectric interface,” Appl. Phys. Lett. 85, 3393–3395(2004).
[CrossRef]

2002 (1)

M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “Stark broadening and stimulated Raman pumping in high-resolution N2 coherent anti-Stokes Raman scattering spectra,” AIAA J. 40, 1078–1086 (2002).
[CrossRef]

1999 (1)

D. A. Akimov, A. M. Zheltikov, N. I. Koroteev, A. N. Naumov, A. Y. Serdyuchenko, S. A. Sidorov-Biryukov, A. B. Fedotov, V. N. Ochkin, and S. N. Tskhai, “Coherent Raman scattering in molecular hydrogen in a dc electric field,” JETP Lett. 70, 375–379 (1999).
[CrossRef]

1998 (1)

J. P. Bonnet, D. Grésillon, and J. P. Taran, “Nonintrusive measurements for high-speed, supersonic and hypersonic flows,” Ann. Rev. Fluid Mech. 30, 231–273 (1998).
[CrossRef]

1995 (1)

O. A. Evsin, E. B. Kupryanova, V. N. Ochkin, S. Y. Savinov, and S. N. Tskhai, “Determination of the intensities of electric fields in gases and plasmas by the CARS method,” Quantum Electron. 25, 278–282 (1995).
[CrossRef]

1992 (2)

V. P. Gavrilenko, E. B. Kupriyanova, D. P. Okolokulak, V. N. Ochkin, S. Yu. Savinov, S. N. Tskhai, and A. N. Yarashev, “Generation of coherent IR light on a dipole-forbidden molecular transition with biharmonic pumping in a static electric field,” JETP Lett. 56, 1–5 (1992).

T. Kishimoto, N. Wenzel, H. Grosse-Wilde, G. Lüpke, and G. Marowsky, “Experimental study of a CO2 Laser plasma by coherent anti-Stokes Raman scattering (CARS),” Spectrochem. Acta B 47, 51–60 (1992).
[CrossRef]

1986 (1)

1983 (1)

G. J. Rosasco, W. Lempert, W. S. Hurst, and A. Fein, Chem. Phys. Lett. 97, 435–440 (1983).
[CrossRef]

Adamovich, I. V.

Y. Zuzeek, S. Bowman, I. Choi, I. V. Adamovich, and W. R. Lempert, “Pure rotational CARS studies of thermal energy release and ignition in nanosecond repetitively pulsed hydrogen-air plasmas,” Proc. Comb. Inst. 33, 3225–3232 (2011).
[CrossRef]

J.-H Kim, M. Nishihara, I. V. Adamovich, M. Samimy, S. Gorvatov, and F. Pliavaka, “Development of localized arc filament rf plasma actuators for high-speed and high Reynolds number flow control,” Exp. Fluids 49, 497–511 (2010).
[CrossRef]

A. Hicks, Yu. G. Utkin, W. R. Lempert, J. W. Rich, and I. V. Adamovich, “Continuous wave operation of a non-self-sustained electric discharge pumped oxygen-iodine laser,” Appl. Phys. Lett. 89, 241131 (2006).
[CrossRef]

A. Montello, M. Nishihara, J. W. Rich, I. V. Adamovich, and W. R. Lempert, “Picosecond CARS measurements of vibrational distribution function in a nonequilibrium Mach 5 flow,” AIAA-2011–1322, 49th AIAA Aerospace Sciences Meeting, Orlando, Fla., 4–7 January 2011.

Adomovich, I. V.

Y. Zuzeek, I. Choi, M. Uddi, I. V. Adomovich, and W. R. Lempert, “Pure rotational CARS thermometry studies of low-temperature oxidation kinetics in air and ethene–air nanosecond pulse discharge plasmas,” J. Phys. D 43, 124001(2010).
[CrossRef]

Akimov, D. A.

D. A. Akimov, A. M. Zheltikov, N. I. Koroteev, A. N. Naumov, A. Y. Serdyuchenko, S. A. Sidorov-Biryukov, A. B. Fedotov, V. N. Ochkin, and S. N. Tskhai, “Coherent Raman scattering in molecular hydrogen in a dc electric field,” JETP Lett. 70, 375–379 (1999).
[CrossRef]

Barnat, E. V.

E. V. Barnat and G. A. Hebner, “Electric fields in a sheath near a metal–dielectric interface,” Appl. Phys. Lett. 85, 3393–3395(2004).
[CrossRef]

Benavides, G. F.

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δg) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
[CrossRef]

Bonnet, J. P.

J. P. Bonnet, D. Grésillon, and J. P. Taran, “Nonintrusive measurements for high-speed, supersonic and hypersonic flows,” Ann. Rev. Fluid Mech. 30, 231–273 (1998).
[CrossRef]

Bowden, M. D.

T. Kampschulte, J. Schulze, D. Leggenhölscher, M. D. Bowden, and U. Czarnetski, “Laser spectroscopic electric field measurement in krypton,” New J. Phys. 9, 18–18 (2007).
[CrossRef]

Bowman, S.

Y. Zuzeek, S. Bowman, I. Choi, I. V. Adamovich, and W. R. Lempert, “Pure rotational CARS studies of thermal energy release and ignition in nanosecond repetitively pulsed hydrogen-air plasmas,” Proc. Comb. Inst. 33, 3225–3232 (2011).
[CrossRef]

Carroll, D. L.

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δg) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
[CrossRef]

Choi, I.

Y. Zuzeek, S. Bowman, I. Choi, I. V. Adamovich, and W. R. Lempert, “Pure rotational CARS studies of thermal energy release and ignition in nanosecond repetitively pulsed hydrogen-air plasmas,” Proc. Comb. Inst. 33, 3225–3232 (2011).
[CrossRef]

Y. Zuzeek, I. Choi, M. Uddi, I. V. Adomovich, and W. R. Lempert, “Pure rotational CARS thermometry studies of low-temperature oxidation kinetics in air and ethene–air nanosecond pulse discharge plasmas,” J. Phys. D 43, 124001(2010).
[CrossRef]

Czarnetski, U.

T. Kampschulte, J. Schulze, D. Leggenhölscher, M. D. Bowden, and U. Czarnetski, “Laser spectroscopic electric field measurement in krypton,” New J. Phys. 9, 18–18 (2007).
[CrossRef]

Czarnetzki, U.

T. Ito, K. Kazunobu, U. Czarnetzki, and S. Hamaguchi, “Rapid formation of electric field profiles in repetitively pulsed high-voltage high-pressure nanosecond discharges,” J. Phys D 43, 062001 (2010).
[CrossRef]

T. Ito, K. Kobayashi, S. Mueller, D. Luggenhölscher, U. Czarnetzki, and S. Hamaguchi, “Electric field measurement in an atmospheric of higher pressure gas by coherent Raman scattering of nitrogen,” J. Phys. D 42, 092003(2009).
[CrossRef]

Dutton, J. C.

M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “Stark broadening and stimulated Raman pumping in high-resolution N2 coherent anti-Stokes Raman scattering spectra,” AIAA J. 40, 1078–1086 (2002).
[CrossRef]

Evsin, O. A.

O. A. Evsin, E. B. Kupryanova, V. N. Ochkin, S. Y. Savinov, and S. N. Tskhai, “Determination of the intensities of electric fields in gases and plasmas by the CARS method,” Quantum Electron. 25, 278–282 (1995).
[CrossRef]

Fedotov, A. B.

D. A. Akimov, A. M. Zheltikov, N. I. Koroteev, A. N. Naumov, A. Y. Serdyuchenko, S. A. Sidorov-Biryukov, A. B. Fedotov, V. N. Ochkin, and S. N. Tskhai, “Coherent Raman scattering in molecular hydrogen in a dc electric field,” JETP Lett. 70, 375–379 (1999).
[CrossRef]

Fein, A.

G. J. Rosasco, W. Lempert, W. S. Hurst, and A. Fein, Chem. Phys. Lett. 97, 435–440 (1983).
[CrossRef]

Gavrilenko, V. P.

V. P. Gavrilenko, E. B. Kupriyanova, D. P. Okolokulak, V. N. Ochkin, S. Yu. Savinov, S. N. Tskhai, and A. N. Yarashev, “Generation of coherent IR light on a dipole-forbidden molecular transition with biharmonic pumping in a static electric field,” JETP Lett. 56, 1–5 (1992).

Gorvatov, S.

J.-H Kim, M. Nishihara, I. V. Adamovich, M. Samimy, S. Gorvatov, and F. Pliavaka, “Development of localized arc filament rf plasma actuators for high-speed and high Reynolds number flow control,” Exp. Fluids 49, 497–511 (2010).
[CrossRef]

Grésillon, D.

J. P. Bonnet, D. Grésillon, and J. P. Taran, “Nonintrusive measurements for high-speed, supersonic and hypersonic flows,” Ann. Rev. Fluid Mech. 30, 231–273 (1998).
[CrossRef]

Grosse-Wilde, H.

T. Kishimoto, N. Wenzel, H. Grosse-Wilde, G. Lüpke, and G. Marowsky, “Experimental study of a CO2 Laser plasma by coherent anti-Stokes Raman scattering (CARS),” Spectrochem. Acta B 47, 51–60 (1992).
[CrossRef]

Hamaguchi, S.

T. Ito, K. Kazunobu, U. Czarnetzki, and S. Hamaguchi, “Rapid formation of electric field profiles in repetitively pulsed high-voltage high-pressure nanosecond discharges,” J. Phys D 43, 062001 (2010).
[CrossRef]

T. Ito, K. Kobayashi, S. Mueller, D. Luggenhölscher, U. Czarnetzki, and S. Hamaguchi, “Electric field measurement in an atmospheric of higher pressure gas by coherent Raman scattering of nitrogen,” J. Phys. D 42, 092003(2009).
[CrossRef]

Hebner, G. A.

E. V. Barnat and G. A. Hebner, “Electric fields in a sheath near a metal–dielectric interface,” Appl. Phys. Lett. 85, 3393–3395(2004).
[CrossRef]

Hicks, A.

A. Hicks, Yu. G. Utkin, W. R. Lempert, J. W. Rich, and I. V. Adamovich, “Continuous wave operation of a non-self-sustained electric discharge pumped oxygen-iodine laser,” Appl. Phys. Lett. 89, 241131 (2006).
[CrossRef]

Hurst, W. S.

G. J. Rosasco, W. Lempert, W. S. Hurst, and A. Fein, Chem. Phys. Lett. 97, 435–440 (1983).
[CrossRef]

Ito, T.

T. Ito, K. Kazunobu, U. Czarnetzki, and S. Hamaguchi, “Rapid formation of electric field profiles in repetitively pulsed high-voltage high-pressure nanosecond discharges,” J. Phys D 43, 062001 (2010).
[CrossRef]

T. Ito, K. Kobayashi, S. Mueller, D. Luggenhölscher, U. Czarnetzki, and S. Hamaguchi, “Electric field measurement in an atmospheric of higher pressure gas by coherent Raman scattering of nitrogen,” J. Phys. D 42, 092003(2009).
[CrossRef]

Kampschulte, T.

T. Kampschulte, J. Schulze, D. Leggenhölscher, M. D. Bowden, and U. Czarnetski, “Laser spectroscopic electric field measurement in krypton,” New J. Phys. 9, 18–18 (2007).
[CrossRef]

Kazunobu, K.

T. Ito, K. Kazunobu, U. Czarnetzki, and S. Hamaguchi, “Rapid formation of electric field profiles in repetitively pulsed high-voltage high-pressure nanosecond discharges,” J. Phys D 43, 062001 (2010).
[CrossRef]

Kim, J.-H

J.-H Kim, M. Nishihara, I. V. Adamovich, M. Samimy, S. Gorvatov, and F. Pliavaka, “Development of localized arc filament rf plasma actuators for high-speed and high Reynolds number flow control,” Exp. Fluids 49, 497–511 (2010).
[CrossRef]

King, D. M.

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δg) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
[CrossRef]

Kishimoto, T.

T. Kishimoto, N. Wenzel, H. Grosse-Wilde, G. Lüpke, and G. Marowsky, “Experimental study of a CO2 Laser plasma by coherent anti-Stokes Raman scattering (CARS),” Spectrochem. Acta B 47, 51–60 (1992).
[CrossRef]

Kittell, K.

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δg) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
[CrossRef]

Kobayashi, K.

T. Ito, K. Kobayashi, S. Mueller, D. Luggenhölscher, U. Czarnetzki, and S. Hamaguchi, “Electric field measurement in an atmospheric of higher pressure gas by coherent Raman scattering of nitrogen,” J. Phys. D 42, 092003(2009).
[CrossRef]

Koroteev, N. I.

D. A. Akimov, A. M. Zheltikov, N. I. Koroteev, A. N. Naumov, A. Y. Serdyuchenko, S. A. Sidorov-Biryukov, A. B. Fedotov, V. N. Ochkin, and S. N. Tskhai, “Coherent Raman scattering in molecular hydrogen in a dc electric field,” JETP Lett. 70, 375–379 (1999).
[CrossRef]

Kupriyanova, E. B.

V. P. Gavrilenko, E. B. Kupriyanova, D. P. Okolokulak, V. N. Ochkin, S. Yu. Savinov, S. N. Tskhai, and A. N. Yarashev, “Generation of coherent IR light on a dipole-forbidden molecular transition with biharmonic pumping in a static electric field,” JETP Lett. 56, 1–5 (1992).

Kupryanova, E. B.

O. A. Evsin, E. B. Kupryanova, V. N. Ochkin, S. Y. Savinov, and S. N. Tskhai, “Determination of the intensities of electric fields in gases and plasmas by the CARS method,” Quantum Electron. 25, 278–282 (1995).
[CrossRef]

Kushner, M. J.

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δg) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
[CrossRef]

Laystrom, J. K.

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δg) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
[CrossRef]

Leggenhölscher, D.

T. Kampschulte, J. Schulze, D. Leggenhölscher, M. D. Bowden, and U. Czarnetski, “Laser spectroscopic electric field measurement in krypton,” New J. Phys. 9, 18–18 (2007).
[CrossRef]

Lempert, W.

G. J. Rosasco, W. Lempert, W. S. Hurst, and A. Fein, Chem. Phys. Lett. 97, 435–440 (1983).
[CrossRef]

Lempert, W. R.

Y. Zuzeek, S. Bowman, I. Choi, I. V. Adamovich, and W. R. Lempert, “Pure rotational CARS studies of thermal energy release and ignition in nanosecond repetitively pulsed hydrogen-air plasmas,” Proc. Comb. Inst. 33, 3225–3232 (2011).
[CrossRef]

Y. Zuzeek, I. Choi, M. Uddi, I. V. Adomovich, and W. R. Lempert, “Pure rotational CARS thermometry studies of low-temperature oxidation kinetics in air and ethene–air nanosecond pulse discharge plasmas,” J. Phys. D 43, 124001(2010).
[CrossRef]

A. Hicks, Yu. G. Utkin, W. R. Lempert, J. W. Rich, and I. V. Adamovich, “Continuous wave operation of a non-self-sustained electric discharge pumped oxygen-iodine laser,” Appl. Phys. Lett. 89, 241131 (2006).
[CrossRef]

A. Montello, M. Nishihara, J. W. Rich, I. V. Adamovich, and W. R. Lempert, “Picosecond CARS measurements of vibrational distribution function in a nonequilibrium Mach 5 flow,” AIAA-2011–1322, 49th AIAA Aerospace Sciences Meeting, Orlando, Fla., 4–7 January 2011.

Lucht, R. P.

M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “Stark broadening and stimulated Raman pumping in high-resolution N2 coherent anti-Stokes Raman scattering spectra,” AIAA J. 40, 1078–1086 (2002).
[CrossRef]

Luggenhölscher, D.

T. Ito, K. Kobayashi, S. Mueller, D. Luggenhölscher, U. Czarnetzki, and S. Hamaguchi, “Electric field measurement in an atmospheric of higher pressure gas by coherent Raman scattering of nitrogen,” J. Phys. D 42, 092003(2009).
[CrossRef]

Lüpke, G.

T. Kishimoto, N. Wenzel, H. Grosse-Wilde, G. Lüpke, and G. Marowsky, “Experimental study of a CO2 Laser plasma by coherent anti-Stokes Raman scattering (CARS),” Spectrochem. Acta B 47, 51–60 (1992).
[CrossRef]

Marowsky, G.

T. Kishimoto, N. Wenzel, H. Grosse-Wilde, G. Lüpke, and G. Marowsky, “Experimental study of a CO2 Laser plasma by coherent anti-Stokes Raman scattering (CARS),” Spectrochem. Acta B 47, 51–60 (1992).
[CrossRef]

Montello, A.

A. Montello, M. Nishihara, J. W. Rich, I. V. Adamovich, and W. R. Lempert, “Picosecond CARS measurements of vibrational distribution function in a nonequilibrium Mach 5 flow,” AIAA-2011–1322, 49th AIAA Aerospace Sciences Meeting, Orlando, Fla., 4–7 January 2011.

Moreau, E.

E. Moreau, “Airflow control by non-thermal plasma actuators,” J. Phys. D 40, 605–636 (2007).
[CrossRef]

Mueller, S.

T. Ito, K. Kobayashi, S. Mueller, D. Luggenhölscher, U. Czarnetzki, and S. Hamaguchi, “Electric field measurement in an atmospheric of higher pressure gas by coherent Raman scattering of nitrogen,” J. Phys. D 42, 092003(2009).
[CrossRef]

Naumov, A. N.

D. A. Akimov, A. M. Zheltikov, N. I. Koroteev, A. N. Naumov, A. Y. Serdyuchenko, S. A. Sidorov-Biryukov, A. B. Fedotov, V. N. Ochkin, and S. N. Tskhai, “Coherent Raman scattering in molecular hydrogen in a dc electric field,” JETP Lett. 70, 375–379 (1999).
[CrossRef]

Nishihara, M.

J.-H Kim, M. Nishihara, I. V. Adamovich, M. Samimy, S. Gorvatov, and F. Pliavaka, “Development of localized arc filament rf plasma actuators for high-speed and high Reynolds number flow control,” Exp. Fluids 49, 497–511 (2010).
[CrossRef]

A. Montello, M. Nishihara, J. W. Rich, I. V. Adamovich, and W. R. Lempert, “Picosecond CARS measurements of vibrational distribution function in a nonequilibrium Mach 5 flow,” AIAA-2011–1322, 49th AIAA Aerospace Sciences Meeting, Orlando, Fla., 4–7 January 2011.

Ochkin, V. N.

D. A. Akimov, A. M. Zheltikov, N. I. Koroteev, A. N. Naumov, A. Y. Serdyuchenko, S. A. Sidorov-Biryukov, A. B. Fedotov, V. N. Ochkin, and S. N. Tskhai, “Coherent Raman scattering in molecular hydrogen in a dc electric field,” JETP Lett. 70, 375–379 (1999).
[CrossRef]

O. A. Evsin, E. B. Kupryanova, V. N. Ochkin, S. Y. Savinov, and S. N. Tskhai, “Determination of the intensities of electric fields in gases and plasmas by the CARS method,” Quantum Electron. 25, 278–282 (1995).
[CrossRef]

V. P. Gavrilenko, E. B. Kupriyanova, D. P. Okolokulak, V. N. Ochkin, S. Yu. Savinov, S. N. Tskhai, and A. N. Yarashev, “Generation of coherent IR light on a dipole-forbidden molecular transition with biharmonic pumping in a static electric field,” JETP Lett. 56, 1–5 (1992).

Okolokulak, D. P.

V. P. Gavrilenko, E. B. Kupriyanova, D. P. Okolokulak, V. N. Ochkin, S. Yu. Savinov, S. N. Tskhai, and A. N. Yarashev, “Generation of coherent IR light on a dipole-forbidden molecular transition with biharmonic pumping in a static electric field,” JETP Lett. 56, 1–5 (1992).

Palmer, R. E.

L. A. Rahn and R. E. Palmer, “Studies of nitrogen self-broadening at high temperature with inverse Raman spectroscopy,” J. Opt. Soc. Am. B 3, 1164–1169 (1986).
[CrossRef]

R. E. Palmer, “The CARSFT computer code for calculating coherent anti-Stokes Raman spectra: user and programmer information,” Sandia National Laboratories, Livermore, Calif., Report SAND 89–8206. Code provided by R.E.Palmer, Sandia National Laboratories—Combustion Research Facility (1989).

Pliavaka, F.

J.-H Kim, M. Nishihara, I. V. Adamovich, M. Samimy, S. Gorvatov, and F. Pliavaka, “Development of localized arc filament rf plasma actuators for high-speed and high Reynolds number flow control,” Exp. Fluids 49, 497–511 (2010).
[CrossRef]

Rahn, L. A.

Rich, J. W.

A. Hicks, Yu. G. Utkin, W. R. Lempert, J. W. Rich, and I. V. Adamovich, “Continuous wave operation of a non-self-sustained electric discharge pumped oxygen-iodine laser,” Appl. Phys. Lett. 89, 241131 (2006).
[CrossRef]

A. Montello, M. Nishihara, J. W. Rich, I. V. Adamovich, and W. R. Lempert, “Picosecond CARS measurements of vibrational distribution function in a nonequilibrium Mach 5 flow,” AIAA-2011–1322, 49th AIAA Aerospace Sciences Meeting, Orlando, Fla., 4–7 January 2011.

Rosasco, G. J.

G. J. Rosasco, W. Lempert, W. S. Hurst, and A. Fein, Chem. Phys. Lett. 97, 435–440 (1983).
[CrossRef]

Samimy, M.

J.-H Kim, M. Nishihara, I. V. Adamovich, M. Samimy, S. Gorvatov, and F. Pliavaka, “Development of localized arc filament rf plasma actuators for high-speed and high Reynolds number flow control,” Exp. Fluids 49, 497–511 (2010).
[CrossRef]

Savinov, S. Y.

O. A. Evsin, E. B. Kupryanova, V. N. Ochkin, S. Y. Savinov, and S. N. Tskhai, “Determination of the intensities of electric fields in gases and plasmas by the CARS method,” Quantum Electron. 25, 278–282 (1995).
[CrossRef]

Savinov, S. Yu.

V. P. Gavrilenko, E. B. Kupriyanova, D. P. Okolokulak, V. N. Ochkin, S. Yu. Savinov, S. N. Tskhai, and A. N. Yarashev, “Generation of coherent IR light on a dipole-forbidden molecular transition with biharmonic pumping in a static electric field,” JETP Lett. 56, 1–5 (1992).

Schulze, J.

T. Kampschulte, J. Schulze, D. Leggenhölscher, M. D. Bowden, and U. Czarnetski, “Laser spectroscopic electric field measurement in krypton,” New J. Phys. 9, 18–18 (2007).
[CrossRef]

Serdyuchenko, A. Y.

D. A. Akimov, A. M. Zheltikov, N. I. Koroteev, A. N. Naumov, A. Y. Serdyuchenko, S. A. Sidorov-Biryukov, A. B. Fedotov, V. N. Ochkin, and S. N. Tskhai, “Coherent Raman scattering in molecular hydrogen in a dc electric field,” JETP Lett. 70, 375–379 (1999).
[CrossRef]

Sidorov-Biryukov, S. A.

D. A. Akimov, A. M. Zheltikov, N. I. Koroteev, A. N. Naumov, A. Y. Serdyuchenko, S. A. Sidorov-Biryukov, A. B. Fedotov, V. N. Ochkin, and S. N. Tskhai, “Coherent Raman scattering in molecular hydrogen in a dc electric field,” JETP Lett. 70, 375–379 (1999).
[CrossRef]

Solomon, W. C.

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δg) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
[CrossRef]

Stafford, D. S.

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δg) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
[CrossRef]

Starikovskaya, S. M.

S. M. Starikovskaya, “Plasma assisted ignition and combustion,” J. Phys. D 39, R265–R299 (2006).
[CrossRef]

Starikovskii, A. Yu.

A. Yu. Starikovskii, “Plasma supported combustion,” Proc. Comb. Inst. 30, 2405–2417 (2005).
[CrossRef]

Taran, J. P.

J. P. Bonnet, D. Grésillon, and J. P. Taran, “Nonintrusive measurements for high-speed, supersonic and hypersonic flows,” Ann. Rev. Fluid Mech. 30, 231–273 (1998).
[CrossRef]

Tskhai, S. N.

D. A. Akimov, A. M. Zheltikov, N. I. Koroteev, A. N. Naumov, A. Y. Serdyuchenko, S. A. Sidorov-Biryukov, A. B. Fedotov, V. N. Ochkin, and S. N. Tskhai, “Coherent Raman scattering in molecular hydrogen in a dc electric field,” JETP Lett. 70, 375–379 (1999).
[CrossRef]

O. A. Evsin, E. B. Kupryanova, V. N. Ochkin, S. Y. Savinov, and S. N. Tskhai, “Determination of the intensities of electric fields in gases and plasmas by the CARS method,” Quantum Electron. 25, 278–282 (1995).
[CrossRef]

V. P. Gavrilenko, E. B. Kupriyanova, D. P. Okolokulak, V. N. Ochkin, S. Yu. Savinov, S. N. Tskhai, and A. N. Yarashev, “Generation of coherent IR light on a dipole-forbidden molecular transition with biharmonic pumping in a static electric field,” JETP Lett. 56, 1–5 (1992).

Uddi, M.

Y. Zuzeek, I. Choi, M. Uddi, I. V. Adomovich, and W. R. Lempert, “Pure rotational CARS thermometry studies of low-temperature oxidation kinetics in air and ethene–air nanosecond pulse discharge plasmas,” J. Phys. D 43, 124001(2010).
[CrossRef]

Utkin, Yu. G.

A. Hicks, Yu. G. Utkin, W. R. Lempert, J. W. Rich, and I. V. Adamovich, “Continuous wave operation of a non-self-sustained electric discharge pumped oxygen-iodine laser,” Appl. Phys. Lett. 89, 241131 (2006).
[CrossRef]

Verdeyen, J. T.

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δg) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
[CrossRef]

Wenzel, N.

T. Kishimoto, N. Wenzel, H. Grosse-Wilde, G. Lüpke, and G. Marowsky, “Experimental study of a CO2 Laser plasma by coherent anti-Stokes Raman scattering (CARS),” Spectrochem. Acta B 47, 51–60 (1992).
[CrossRef]

Woodard, B. S.

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δg) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
[CrossRef]

Woodmansee, M. A.

M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “Stark broadening and stimulated Raman pumping in high-resolution N2 coherent anti-Stokes Raman scattering spectra,” AIAA J. 40, 1078–1086 (2002).
[CrossRef]

Yarashev, A. N.

V. P. Gavrilenko, E. B. Kupriyanova, D. P. Okolokulak, V. N. Ochkin, S. Yu. Savinov, S. N. Tskhai, and A. N. Yarashev, “Generation of coherent IR light on a dipole-forbidden molecular transition with biharmonic pumping in a static electric field,” JETP Lett. 56, 1–5 (1992).

Zheltikov, A. M.

D. A. Akimov, A. M. Zheltikov, N. I. Koroteev, A. N. Naumov, A. Y. Serdyuchenko, S. A. Sidorov-Biryukov, A. B. Fedotov, V. N. Ochkin, and S. N. Tskhai, “Coherent Raman scattering in molecular hydrogen in a dc electric field,” JETP Lett. 70, 375–379 (1999).
[CrossRef]

Zimmerman, J. W.

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δg) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
[CrossRef]

Zuzeek, Y.

Y. Zuzeek, S. Bowman, I. Choi, I. V. Adamovich, and W. R. Lempert, “Pure rotational CARS studies of thermal energy release and ignition in nanosecond repetitively pulsed hydrogen-air plasmas,” Proc. Comb. Inst. 33, 3225–3232 (2011).
[CrossRef]

Y. Zuzeek, I. Choi, M. Uddi, I. V. Adomovich, and W. R. Lempert, “Pure rotational CARS thermometry studies of low-temperature oxidation kinetics in air and ethene–air nanosecond pulse discharge plasmas,” J. Phys. D 43, 124001(2010).
[CrossRef]

AIAA J. (1)

M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “Stark broadening and stimulated Raman pumping in high-resolution N2 coherent anti-Stokes Raman scattering spectra,” AIAA J. 40, 1078–1086 (2002).
[CrossRef]

Ann. Rev. Fluid Mech. (1)

J. P. Bonnet, D. Grésillon, and J. P. Taran, “Nonintrusive measurements for high-speed, supersonic and hypersonic flows,” Ann. Rev. Fluid Mech. 30, 231–273 (1998).
[CrossRef]

Appl. Phys. Lett. (3)

D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δg) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005).
[CrossRef]

A. Hicks, Yu. G. Utkin, W. R. Lempert, J. W. Rich, and I. V. Adamovich, “Continuous wave operation of a non-self-sustained electric discharge pumped oxygen-iodine laser,” Appl. Phys. Lett. 89, 241131 (2006).
[CrossRef]

E. V. Barnat and G. A. Hebner, “Electric fields in a sheath near a metal–dielectric interface,” Appl. Phys. Lett. 85, 3393–3395(2004).
[CrossRef]

Chem. Phys. Lett. (1)

G. J. Rosasco, W. Lempert, W. S. Hurst, and A. Fein, Chem. Phys. Lett. 97, 435–440 (1983).
[CrossRef]

Exp. Fluids (1)

J.-H Kim, M. Nishihara, I. V. Adamovich, M. Samimy, S. Gorvatov, and F. Pliavaka, “Development of localized arc filament rf plasma actuators for high-speed and high Reynolds number flow control,” Exp. Fluids 49, 497–511 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys D (1)

T. Ito, K. Kazunobu, U. Czarnetzki, and S. Hamaguchi, “Rapid formation of electric field profiles in repetitively pulsed high-voltage high-pressure nanosecond discharges,” J. Phys D 43, 062001 (2010).
[CrossRef]

J. Phys. D (4)

T. Ito, K. Kobayashi, S. Mueller, D. Luggenhölscher, U. Czarnetzki, and S. Hamaguchi, “Electric field measurement in an atmospheric of higher pressure gas by coherent Raman scattering of nitrogen,” J. Phys. D 42, 092003(2009).
[CrossRef]

Y. Zuzeek, I. Choi, M. Uddi, I. V. Adomovich, and W. R. Lempert, “Pure rotational CARS thermometry studies of low-temperature oxidation kinetics in air and ethene–air nanosecond pulse discharge plasmas,” J. Phys. D 43, 124001(2010).
[CrossRef]

E. Moreau, “Airflow control by non-thermal plasma actuators,” J. Phys. D 40, 605–636 (2007).
[CrossRef]

S. M. Starikovskaya, “Plasma assisted ignition and combustion,” J. Phys. D 39, R265–R299 (2006).
[CrossRef]

JETP Lett. (2)

V. P. Gavrilenko, E. B. Kupriyanova, D. P. Okolokulak, V. N. Ochkin, S. Yu. Savinov, S. N. Tskhai, and A. N. Yarashev, “Generation of coherent IR light on a dipole-forbidden molecular transition with biharmonic pumping in a static electric field,” JETP Lett. 56, 1–5 (1992).

D. A. Akimov, A. M. Zheltikov, N. I. Koroteev, A. N. Naumov, A. Y. Serdyuchenko, S. A. Sidorov-Biryukov, A. B. Fedotov, V. N. Ochkin, and S. N. Tskhai, “Coherent Raman scattering in molecular hydrogen in a dc electric field,” JETP Lett. 70, 375–379 (1999).
[CrossRef]

New J. Phys. (1)

T. Kampschulte, J. Schulze, D. Leggenhölscher, M. D. Bowden, and U. Czarnetski, “Laser spectroscopic electric field measurement in krypton,” New J. Phys. 9, 18–18 (2007).
[CrossRef]

Proc. Comb. Inst. (2)

A. Yu. Starikovskii, “Plasma supported combustion,” Proc. Comb. Inst. 30, 2405–2417 (2005).
[CrossRef]

Y. Zuzeek, S. Bowman, I. Choi, I. V. Adamovich, and W. R. Lempert, “Pure rotational CARS studies of thermal energy release and ignition in nanosecond repetitively pulsed hydrogen-air plasmas,” Proc. Comb. Inst. 33, 3225–3232 (2011).
[CrossRef]

Quantum Electron. (1)

O. A. Evsin, E. B. Kupryanova, V. N. Ochkin, S. Y. Savinov, and S. N. Tskhai, “Determination of the intensities of electric fields in gases and plasmas by the CARS method,” Quantum Electron. 25, 278–282 (1995).
[CrossRef]

Spectrochem. Acta B (1)

T. Kishimoto, N. Wenzel, H. Grosse-Wilde, G. Lüpke, and G. Marowsky, “Experimental study of a CO2 Laser plasma by coherent anti-Stokes Raman scattering (CARS),” Spectrochem. Acta B 47, 51–60 (1992).
[CrossRef]

Other (4)

A. Montello, M. Nishihara, J. W. Rich, I. V. Adamovich, and W. R. Lempert, “Picosecond CARS measurements of vibrational distribution function in a nonequilibrium Mach 5 flow,” AIAA-2011–1322, 49th AIAA Aerospace Sciences Meeting, Orlando, Fla., 4–7 January 2011.

B.M.Penetrante and S.E.Schultheis, eds., Non-Thermal Plasma Techniques for Pollution Control: Part A—Overview, Fundamentals and Supporting Technologies (Springer-Verlag, 1993).
[CrossRef] [PubMed]

B.M.Penetrante and S.E.Schultheis, eds., Non-Thermal Plasma Techniques for Pollution Control: Part B—Electron Beam and Electrical Discharge Processing (Springer-Verlag, 1993).
[CrossRef] [PubMed]

R. E. Palmer, “The CARSFT computer code for calculating coherent anti-Stokes Raman spectra: user and programmer information,” Sandia National Laboratories, Livermore, Calif., Report SAND 89–8206. Code provided by R.E.Palmer, Sandia National Laboratories—Combustion Research Facility (1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental schematic for CARS detection of the electric field.

Fig. 2
Fig. 2

Energy level diagram for CARS detection of the electric field.

Fig. 3
Fig. 3

Sample oscilloscope traces of IR CARS pulses at various electric-field strengths.

Fig. 4
Fig. 4

Dependence of IR CARS intensity in air on the applied electric field.

Fig. 5
Fig. 5

Vibrational CARS signal obtained under identical conditions to those of Fig. 3, except that the signal is attenuated, using neutral density filters, by a factor of 10 5 .

Fig. 6
Fig. 6

Nonresonant CARS signal versus axial location relative to the beam waist. The resulting spatial resolution in the beam propagation direction is approximately 1 cm .

Fig. 7
Fig. 7

(a) Scanning CARS N 2 Q-branch spectrum obtained at relatively low pump/Stokes laser energies. (b) Simulated spectrum assuming temperature and pressure of 300 K and 0.8 bar , respectively. (c) Scanning N 2 Q-branch CARS spectrum corresponding to pump/Stokes laser powers used to obtain data in Fig. 2.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I E χ E 2 I p I s E 2 ,
I N χ N 2 I p 2 I s ,
E 2 = const . I p ( I E I N ) .
I E I N E 2 I p ,
I = 1 2 ε c | E | 2 ,
V pk = S tot * QE * q e * g Δ t ,
S Tot , IR S Tot , CARS = ( V pk , IR V pk , CARS ) * ( QE CARS QE IR ) * ( g CARS g IR ) * ( Δ t IR Δ t CARS ) = ( 0.11 0.58 ) * ( 0.3 1 ) * ( 50 × 10 5 10 6 ) * ( 4 × 10 6 10 × 10 9 ) 1.1 × 10 8 ,

Metrics