C. Kohler, X. Schwab, and W. Osten,
“Optimally tuned spatial light modulators for digital
holography,” Appl. Opt. 45, 960–967 (2006).

[CrossRef]
[PubMed]

M. S. Millán, J. Otón, and E.
Pérez-Cabré, “Chromatic compensation of programmable
Fresnel lenses,” Opt. Express 14, 6226–6242
(2006).

[CrossRef]
[PubMed]

A. Márquez, C. Iemmi, J. Campos, and M. J.
Yzuel, “Achromatic diffractive lens written onto a liquid crystal
display,” Opt. Lett. 31, 392–394 (2006).

[CrossRef]
[PubMed]

M. S. Millán, J. Otón, and E.
Pérez-Cabré, “Dynamic compensation of chromatic aberration
in a programmable diffractive lens,” Opt. Express 14,
9103–9012 (2006).

[CrossRef]
[PubMed]

C. Iemmi, J. Campos, J. C. Escalera, O.
Lopez-Coronado, R. Gimeno, and M. J. Yzuel, “Depth of focus increase
by multiplexing programmable diffractive lenses,” Opt. Express 14,
10207–10217 (2006).

[CrossRef]
[PubMed]

Y. Lu, M. Inamura, and M. Valdes,
“Super-resolution of the undersampled and subpixel shifted image
sequence by a neural network,” Int. J. Imaging Syst. Technol. 14,
8–15 (2004).

[CrossRef]

S. Park, M. Park, and M. G. Kang,
“Super-resolution image reconstruction, a technical overview,”
IEEE Signal Process. Mag. 20(3), 21–36 (2003).

[CrossRef]

E. B. Eliezer, Z. Zalevsky, E. Marom, and N.
Konforti, “All optical extended depth of field imaging
system,” J. Opt. A 5, S164–S169 (2003).

[CrossRef]

Z. Zalevsky, D. Mendlovic, and E. Marom,
“Special sensor masking for exceeding system geometrical resolving
power,” Opt. Eng. 39, 1936–1942 (2000).

[CrossRef]

G. de Villiers, B. McNally, and E. Pike,
“Positive solutions to linear inverse problems,” Inverse
Probl. 15, 615–635 (1999).

[CrossRef]

V. Laude, “Twisted-nematic liquid-crystal
pixelated active lens,” Opt. Commun. 153, 134–152
(1998).

[CrossRef]

D. Mendlovic, Z. Zalevsky, and N. Konforti,
“Computing considerations and fast algorithms for calculating the
diffraction integral,” J. Mod. Opt. 44, 407–414
(1997).

[CrossRef]

J. Fortin, P. Chevrette, and R. Plante,
“Evaluation of the microscanning process,” Proc. SPIE 2269,
271–279(1994).

[CrossRef]

E. Carcolé, J. Campos, and S. Bosch,
“Diffraction theory of Fresnel lenses encoded in low-resolution
devices,” Appl. Opt. 33, 162–174 (1994).

[CrossRef]
[PubMed]

R. W. Gerchberg and W. O. Saxton, “A
practical algorithm for the determination of phase from image and
diffraction plane pictures,” Optik 35, 227–246
(1972).

R. W. Gerchberg and W. O. Saxton, “Phase
determination for image and diffraction plane pictures in the electron
microscope,” Optik 34, 275–284 (1971).

A. Tikhonov and V. Y. Arsenin, Solutions of
Ill-Posed Problems (Winston, 1977).

A. Borkowski, E. Marom, Z. Zalevsky, and B.
Javidi, “Enhanced geometrical super resolved imaging with moving
binary random mask,” J. Opt. Soc. Am. A 28, 566–575
(2011).

[CrossRef]

A. Borkowski, Z. Zalevsky, and B. Javidi,
“Geometrical superresolved imaging using nonperiodic spatial
masking,” J. Opt. Soc. Am. A 26, 589–601
(2009).

[CrossRef]

S. Borman and R. Stevenson,
“Super-resolution from image sequences—a review,” in
Proceedings of the 1998 Midwest Symposium on Circuits and Systems (IEEE
Circuits and Systems Society, 1998),
pp. 374–378.

S. Borman, “Topics in multiframe
superresolution restoration,” Ph.D. dissertation (University of Notre
Dame, 2004).

A. Márquez, C. Iemmi, J. Campos, and M. J.
Yzuel, “Achromatic diffractive lens written onto a liquid crystal
display,” Opt. Lett. 31, 392–394 (2006).

[CrossRef]
[PubMed]

C. Iemmi, J. Campos, J. C. Escalera, O.
Lopez-Coronado, R. Gimeno, and M. J. Yzuel, “Depth of focus increase
by multiplexing programmable diffractive lenses,” Opt. Express 14,
10207–10217 (2006).

[CrossRef]
[PubMed]

E. Carcolé, J. Campos, and S. Bosch,
“Diffraction theory of Fresnel lenses encoded in low-resolution
devices,” Appl. Opt. 33, 162–174 (1994).

[CrossRef]
[PubMed]

S. Chaudhur, Super Resolution Imaging (Kluwer
Academic, 2001).

A. N. Rajagopalan and S. Chaudhuri, “A
block shift-variant blur model for recovering depth from defocused
images,” in International Conference on Image Processing
(ICIP’95) (1995), pp. 636–639.

J. Fortin, P. Chevrette, and R. Plante,
“Evaluation of the microscanning process,” Proc. SPIE 2269,
271–279(1994).

[CrossRef]

G. de Villiers, B. McNally, and E. Pike,
“Positive solutions to linear inverse problems,” Inverse
Probl. 15, 615–635 (1999).

[CrossRef]

E. B. Eliezer, Z. Zalevsky, E. Marom, and N.
Konforti, “All optical extended depth of field imaging
system,” J. Opt. A 5, S164–S169 (2003).

[CrossRef]

J. Fortin, P. Chevrette, and R. Plante,
“Evaluation of the microscanning process,” Proc. SPIE 2269,
271–279(1994).

[CrossRef]

R. W. Gerchberg and W. O. Saxton, “A
practical algorithm for the determination of phase from image and
diffraction plane pictures,” Optik 35, 227–246
(1972).

R. W. Gerchberg and W. O. Saxton, “Phase
determination for image and diffraction plane pictures in the electron
microscope,” Optik 34, 275–284 (1971).

W. Goodman, Introduction to Fourier Optics, 2nd
ed. (McGraw-Hill, 1996).

J. Hadamard, Lectures on the Cauchy Problem in
Linear Partial Differential Equations (Yale Univ. Press,
1923).

C. Iemmi, J. Campos, J. C. Escalera, O.
Lopez-Coronado, R. Gimeno, and M. J. Yzuel, “Depth of focus increase
by multiplexing programmable diffractive lenses,” Opt. Express 14,
10207–10217 (2006).

[CrossRef]
[PubMed]

A. Márquez, C. Iemmi, J. Campos, and M. J.
Yzuel, “Achromatic diffractive lens written onto a liquid crystal
display,” Opt. Lett. 31, 392–394 (2006).

[CrossRef]
[PubMed]

Y. Lu, M. Inamura, and M. Valdes,
“Super-resolution of the undersampled and subpixel shifted image
sequence by a neural network,” Int. J. Imaging Syst. Technol. 14,
8–15 (2004).

[CrossRef]

A. Borkowski, E. Marom, Z. Zalevsky, and B.
Javidi, “Enhanced geometrical super resolved imaging with moving
binary random mask,” J. Opt. Soc. Am. A 28, 566–575
(2011).

[CrossRef]

A. Borkowski, Z. Zalevsky, and B. Javidi,
“Geometrical superresolved imaging using nonperiodic spatial
masking,” J. Opt. Soc. Am. A 26, 589–601
(2009).

[CrossRef]

S. Park, M. Park, and M. G. Kang,
“Super-resolution image reconstruction, a technical overview,”
IEEE Signal Process. Mag. 20(3), 21–36 (2003).

[CrossRef]

D. C. O’Shea, T. J. Suleski, A. D.
Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and
Test (SPIE, 2003).

A. Kirsch, An Introduction to the Mathematical
Theory of Inverse Problems, Vol. 120 of Applied Mathematical Sciences
(Springer, 1996).

[CrossRef]

E. B. Eliezer, Z. Zalevsky, E. Marom, and N.
Konforti, “All optical extended depth of field imaging
system,” J. Opt. A 5, S164–S169 (2003).

[CrossRef]

D. Mendlovic, Z. Zalevsky, and N. Konforti,
“Computing considerations and fast algorithms for calculating the
diffraction integral,” J. Mod. Opt. 44, 407–414
(1997).

[CrossRef]

V. Laude, “Twisted-nematic liquid-crystal
pixelated active lens,” Opt. Commun. 153, 134–152
(1998).

[CrossRef]

Y. Lu, M. Inamura, and M. Valdes,
“Super-resolution of the undersampled and subpixel shifted image
sequence by a neural network,” Int. J. Imaging Syst. Technol. 14,
8–15 (2004).

[CrossRef]

A. Borkowski, E. Marom, Z. Zalevsky, and B.
Javidi, “Enhanced geometrical super resolved imaging with moving
binary random mask,” J. Opt. Soc. Am. A 28, 566–575
(2011).

[CrossRef]

E. B. Eliezer, Z. Zalevsky, E. Marom, and N.
Konforti, “All optical extended depth of field imaging
system,” J. Opt. A 5, S164–S169 (2003).

[CrossRef]

Z. Zalevsky, D. Mendlovic, and E. Marom,
“Special sensor masking for exceeding system geometrical resolving
power,” Opt. Eng. 39, 1936–1942 (2000).

[CrossRef]

G. de Villiers, B. McNally, and E. Pike,
“Positive solutions to linear inverse problems,” Inverse
Probl. 15, 615–635 (1999).

[CrossRef]

Z. Zalevsky and D. Mendelovic, Optical
Superresolution (Springer-Verlag, 2004).

J. Solomon, Z. Zalevsky, and D. Mendlovic,
“Geometric superresolution by code division multiplexing,”
Appl. Opt. 44, 32–40 (2005).

[CrossRef]
[PubMed]

Z. Zalevsky, D. Mendlovic, and E. Marom,
“Special sensor masking for exceeding system geometrical resolving
power,” Opt. Eng. 39, 1936–1942 (2000).

[CrossRef]

D. Mendlovic, Z. Zalevsky, and N. Konforti,
“Computing considerations and fast algorithms for calculating the
diffraction integral,” J. Mod. Opt. 44, 407–414
(1997).

[CrossRef]

Z. Zalevsky, D. Mendlovic, and R. G. Dorsch,
“Gerchberg–Saxton algorithm applied in the fractional Fourier
or the Fresnel domain,” Opt. Lett. 21, 842–844
(1996).

[CrossRef]
[PubMed]

M. S. Millán, J. Otón, and E.
Pérez-Cabré, “Chromatic compensation of programmable
Fresnel lenses,” Opt. Express 14, 6226–6242
(2006).

[CrossRef]
[PubMed]

M. S. Millán, J. Otón, and E.
Pérez-Cabré, “Dynamic compensation of chromatic aberration
in a programmable diffractive lens,” Opt. Express 14,
9103–9012 (2006).

[CrossRef]
[PubMed]

A. C. Yau and M. K. Ng, “Super-resolution
image restoration from blurred low-resolution images,” J. Math.
Imaging Vision 23, 367–378 (2005).

[CrossRef]

D. C. O’Shea, T. J. Suleski, A. D.
Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and
Test (SPIE, 2003).

M. S. Millán, J. Otón, and E.
Pérez-Cabré, “Dynamic compensation of chromatic aberration
in a programmable diffractive lens,” Opt. Express 14,
9103–9012 (2006).

[CrossRef]
[PubMed]

M. S. Millán, J. Otón, and E.
Pérez-Cabré, “Chromatic compensation of programmable
Fresnel lenses,” Opt. Express 14, 6226–6242
(2006).

[CrossRef]
[PubMed]

S. Park, M. Park, and M. G. Kang,
“Super-resolution image reconstruction, a technical overview,”
IEEE Signal Process. Mag. 20(3), 21–36 (2003).

[CrossRef]

S. Park, M. Park, and M. G. Kang,
“Super-resolution image reconstruction, a technical overview,”
IEEE Signal Process. Mag. 20(3), 21–36 (2003).

[CrossRef]

M. S. Millán, J. Otón, and E.
Pérez-Cabré, “Chromatic compensation of programmable
Fresnel lenses,” Opt. Express 14, 6226–6242
(2006).

[CrossRef]
[PubMed]

M. S. Millán, J. Otón, and E.
Pérez-Cabré, “Dynamic compensation of chromatic aberration
in a programmable diffractive lens,” Opt. Express 14,
9103–9012 (2006).

[CrossRef]
[PubMed]

G. de Villiers, B. McNally, and E. Pike,
“Positive solutions to linear inverse problems,” Inverse
Probl. 15, 615–635 (1999).

[CrossRef]

J. Fortin, P. Chevrette, and R. Plante,
“Evaluation of the microscanning process,” Proc. SPIE 2269,
271–279(1994).

[CrossRef]

D. C. O’Shea, T. J. Suleski, A. D.
Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and
Test (SPIE, 2003).

A. N. Rajagopalan and S. Chaudhuri, “A
block shift-variant blur model for recovering depth from defocused
images,” in International Conference on Image Processing
(ICIP’95) (1995), pp. 636–639.

R. W. Gerchberg and W. O. Saxton, “A
practical algorithm for the determination of phase from image and
diffraction plane pictures,” Optik 35, 227–246
(1972).

R. W. Gerchberg and W. O. Saxton, “Phase
determination for image and diffraction plane pictures in the electron
microscope,” Optik 34, 275–284 (1971).

S. Borman and R. Stevenson,
“Super-resolution from image sequences—a review,” in
Proceedings of the 1998 Midwest Symposium on Circuits and Systems (IEEE
Circuits and Systems Society, 1998),
pp. 374–378.

D. C. O’Shea, T. J. Suleski, A. D.
Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and
Test (SPIE, 2003).

A. Tikhonov and V. Y. Arsenin, Solutions of
Ill-Posed Problems (Winston, 1977).

Y. Lu, M. Inamura, and M. Valdes,
“Super-resolution of the undersampled and subpixel shifted image
sequence by a neural network,” Int. J. Imaging Syst. Technol. 14,
8–15 (2004).

[CrossRef]

A. C. Yau and M. K. Ng, “Super-resolution
image restoration from blurred low-resolution images,” J. Math.
Imaging Vision 23, 367–378 (2005).

[CrossRef]

C. Iemmi, J. Campos, J. C. Escalera, O.
Lopez-Coronado, R. Gimeno, and M. J. Yzuel, “Depth of focus increase
by multiplexing programmable diffractive lenses,” Opt. Express 14,
10207–10217 (2006).

[CrossRef]
[PubMed]

A. Márquez, C. Iemmi, J. Campos, and M. J.
Yzuel, “Achromatic diffractive lens written onto a liquid crystal
display,” Opt. Lett. 31, 392–394 (2006).

[CrossRef]
[PubMed]

A. Borkowski, E. Marom, Z. Zalevsky, and B.
Javidi, “Enhanced geometrical super resolved imaging with moving
binary random mask,” J. Opt. Soc. Am. A 28, 566–575
(2011).

[CrossRef]

A. Borkowski, Z. Zalevsky, and B. Javidi,
“Geometrical superresolved imaging using nonperiodic spatial
masking,” J. Opt. Soc. Am. A 26, 589–601
(2009).

[CrossRef]

J. Solomon, Z. Zalevsky, and D. Mendlovic,
“Geometric superresolution by code division multiplexing,”
Appl. Opt. 44, 32–40 (2005).

[CrossRef]
[PubMed]

E. B. Eliezer, Z. Zalevsky, E. Marom, and N.
Konforti, “All optical extended depth of field imaging
system,” J. Opt. A 5, S164–S169 (2003).

[CrossRef]

Z. Zalevsky, D. Mendlovic, and E. Marom,
“Special sensor masking for exceeding system geometrical resolving
power,” Opt. Eng. 39, 1936–1942 (2000).

[CrossRef]

D. Mendlovic, Z. Zalevsky, and N. Konforti,
“Computing considerations and fast algorithms for calculating the
diffraction integral,” J. Mod. Opt. 44, 407–414
(1997).

[CrossRef]

Z. Zalevsky, D. Mendlovic, and R. G. Dorsch,
“Gerchberg–Saxton algorithm applied in the fractional Fourier
or the Fresnel domain,” Opt. Lett. 21, 842–844
(1996).

[CrossRef]
[PubMed]

Z. Zalevsky and D. Mendelovic, Optical
Superresolution (Springer-Verlag, 2004).

J. Solomon, Z. Zalevsky, and D. Mendlovic,
“Geometric superresolution by code division multiplexing,”
Appl. Opt. 44, 32–40 (2005).

[CrossRef]
[PubMed]

C. Kohler, X. Schwab, and W. Osten,
“Optimally tuned spatial light modulators for digital
holography,” Appl. Opt. 45, 960–967 (2006).

[CrossRef]
[PubMed]

E. Carcolé, J. Campos, and S. Bosch,
“Diffraction theory of Fresnel lenses encoded in low-resolution
devices,” Appl. Opt. 33, 162–174 (1994).

[CrossRef]
[PubMed]

D. M. Cottrell, J. A. Davis, T. R. Hedman, and R.
A. Lilly, “Multiple imaging phase-encoded optical elements written as
programmable spatial light modulators,” Appl. Opt. 29,
2505–2509 (1990).

[CrossRef]
[PubMed]

J. A. Jordan, Jr., P. M. Hirsch, L. B. Lesem, and
D. L. Van Rooy, “Kinoform lenses,” Appl. Opt. 9,
1883–1887 (1970).

[CrossRef]
[PubMed]

S. Park, M. Park, and M. G. Kang,
“Super-resolution image reconstruction, a technical overview,”
IEEE Signal Process. Mag. 20(3), 21–36 (2003).

[CrossRef]

Y. Lu, M. Inamura, and M. Valdes,
“Super-resolution of the undersampled and subpixel shifted image
sequence by a neural network,” Int. J. Imaging Syst. Technol. 14,
8–15 (2004).

[CrossRef]

G. de Villiers, B. McNally, and E. Pike,
“Positive solutions to linear inverse problems,” Inverse
Probl. 15, 615–635 (1999).

[CrossRef]

A. C. Yau and M. K. Ng, “Super-resolution
image restoration from blurred low-resolution images,” J. Math.
Imaging Vision 23, 367–378 (2005).

[CrossRef]

D. Mendlovic, Z. Zalevsky, and N. Konforti,
“Computing considerations and fast algorithms for calculating the
diffraction integral,” J. Mod. Opt. 44, 407–414
(1997).

[CrossRef]

E. B. Eliezer, Z. Zalevsky, E. Marom, and N.
Konforti, “All optical extended depth of field imaging
system,” J. Opt. A 5, S164–S169 (2003).

[CrossRef]

A. Borkowski, Z. Zalevsky, and B. Javidi,
“Geometrical superresolved imaging using nonperiodic spatial
masking,” J. Opt. Soc. Am. A 26, 589–601
(2009).

[CrossRef]

A. Borkowski, E. Marom, Z. Zalevsky, and B.
Javidi, “Enhanced geometrical super resolved imaging with moving
binary random mask,” J. Opt. Soc. Am. A 28, 566–575
(2011).

[CrossRef]

V. Laude, “Twisted-nematic liquid-crystal
pixelated active lens,” Opt. Commun. 153, 134–152
(1998).

[CrossRef]

Z. Zalevsky, D. Mendlovic, and E. Marom,
“Special sensor masking for exceeding system geometrical resolving
power,” Opt. Eng. 39, 1936–1942 (2000).

[CrossRef]

M. S. Millán, J. Otón, and E.
Pérez-Cabré, “Chromatic compensation of programmable
Fresnel lenses,” Opt. Express 14, 6226–6242
(2006).

[CrossRef]
[PubMed]

M. S. Millán, J. Otón, and E.
Pérez-Cabré, “Dynamic compensation of chromatic aberration
in a programmable diffractive lens,” Opt. Express 14,
9103–9012 (2006).

[CrossRef]
[PubMed]

C. Iemmi, J. Campos, J. C. Escalera, O.
Lopez-Coronado, R. Gimeno, and M. J. Yzuel, “Depth of focus increase
by multiplexing programmable diffractive lenses,” Opt. Express 14,
10207–10217 (2006).

[CrossRef]
[PubMed]

A. Márquez, C. Iemmi, J. Campos, and M. J.
Yzuel, “Achromatic diffractive lens written onto a liquid crystal
display,” Opt. Lett. 31, 392–394 (2006).

[CrossRef]
[PubMed]

Z. Zalevsky, D. Mendlovic, and R. G. Dorsch,
“Gerchberg–Saxton algorithm applied in the fractional Fourier
or the Fresnel domain,” Opt. Lett. 21, 842–844
(1996).

[CrossRef]
[PubMed]

R. W. Gerchberg and W. O. Saxton, “Phase
determination for image and diffraction plane pictures in the electron
microscope,” Optik 34, 275–284 (1971).

R. W. Gerchberg and W. O. Saxton, “A
practical algorithm for the determination of phase from image and
diffraction plane pictures,” Optik 35, 227–246
(1972).

J. Fortin, P. Chevrette, and R. Plante,
“Evaluation of the microscanning process,” Proc. SPIE 2269,
271–279(1994).

[CrossRef]

Z. Zalevsky and D. Mendelovic, Optical
Superresolution (Springer-Verlag, 2004).

W. Goodman, Introduction to Fourier Optics, 2nd
ed. (McGraw-Hill, 1996).

D. C. O’Shea, T. J. Suleski, A. D.
Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and
Test (SPIE, 2003).

S. Chaudhur, Super Resolution Imaging (Kluwer
Academic, 2001).

S. Borman and R. Stevenson,
“Super-resolution from image sequences—a review,” in
Proceedings of the 1998 Midwest Symposium on Circuits and Systems (IEEE
Circuits and Systems Society, 1998),
pp. 374–378.

S. Borman, “Topics in multiframe
superresolution restoration,” Ph.D. dissertation (University of Notre
Dame, 2004).

A. N. Rajagopalan and S. Chaudhuri, “A
block shift-variant blur model for recovering depth from defocused
images,” in International Conference on Image Processing
(ICIP’95) (1995), pp. 636–639.

J. Hadamard, Lectures on the Cauchy Problem in
Linear Partial Differential Equations (Yale Univ. Press,
1923).

A. Kirsch, An Introduction to the Mathematical
Theory of Inverse Problems, Vol. 120 of Applied Mathematical Sciences
(Springer, 1996).

[CrossRef]

A. Tikhonov and V. Y. Arsenin, Solutions of
Ill-Posed Problems (Winston, 1977).