Abstract

A wide-angle Michelson interferometer with large air gap is proposed to effectively reduce the size of the glass arms and constraint on material. It provides a novel and practical instrument for ground based wind measurement of the upper atmosphere. The field widening conditions for the large air gap are calculated in theory. For the five spectral lines of 557.7nm, 630.0nm, 732.0nm, 834.6nm, and 865.7nm, the optimal results under ideal condition are obtained with air gaps of 1.0cm, 1.5cm, and 2.0cm, respectively. With the fixed optical path difference (OPD) of 7.495cm, three pairs of glass arms are optimized. The pair with length of 1.5cm for air gap, 5.765cm for H-ZF12, and 2.956cm for H-ZLaF54, has better effect of field widening than the other two pairs and its OPD variation is only within 0.30 wavelengths at incident angle of 3°. For developing a more practical wide-angle Michelson interferometer, the H-K9L glass with size of 4.445cm is employed as the arm material of solid interferometer. The experiment for field of view of 3° is designed and the data processing and analysis for 60 images show the agreement between experimental results and theoretical simulation. The OPD variations are only within 0.27 wavelengths for image edge. The feasibility and practicality of the wide-angle Michelson interferometer with large air gap is proved by means of theory and experiment.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, and J. M. Alunni, , “WINDII: The wind imaging interferometer on the upper atmosphere research satellite,” J. Geophys Res. 98, 10725–10750 (1993).
    [CrossRef]
  2. P. Rahnama, Y. J. Rochon, I. C. McDade, G. G. Shepherd, W. A. Gault, and A. Scott, “Satellite measurement of stratospheric winds and ozone using Doppler Michelson interferometry. Part I: Instrument model and measurement simulation,” J. Atmos. Ocean. Technol. 23, 753–769 (2006).
    [CrossRef]
  3. W. E. Ward, W. A. Gault, G. G. Shepherd, and N. Rowlands, “Waves Michelson Interferometer: a visible/near-IR interferometer for observing middle atmosphere dynamics and constituents,” Proc. SPIE 4540, 100–111 (2001).
    [CrossRef]
  4. J. C. Bird, F. Liang, B. H. Solheim, and G. G. Shepherd, “A polarizing Michelson interferometer for measuring thermospheric winds,” Meas. Sci. Technol. 6, 1368–1378 (1995).
    [CrossRef]
  5. W. A. Gault, S. Brown, A. Moise, D. Liang, G. Sellar, G. G. Shepherd, and J. Wimperis, “ERWIN: an E-region wind interferometer,” Appl. Opt. 35, 2913–2922 (1996).
    [CrossRef] [PubMed]
  6. H. C. Zhu, C. M. Zhang, and X. H. Jian, “A wide field wind image interferometer with chromatic and thermal compensation (in Chinese),” Acta Phys. Sin. 59, 893–898 (2010).
  7. Y. H. Tang, G. D. Chen, C. M. Zhang, Y. L. Lin, H. C. Liu, and K. Liu, “Optimization of the modified Sagnac imaging interferometer for full compensation,” Proc. SPIE 6279, 62791G(2007).
    [CrossRef]
  8. H. Y. Gao, Y. H. Tang, D. X. Hua, L. Qin, and C. Zhu, “Modified super-wide-angle Sagnac imaging interferometer based on LCoS for atmospheric wind measurement,” J. Quant. Spectrosc. Radiat. Transfer 112, 268–276 (2011).
    [CrossRef]
  9. W. A. Gault, S. F. Johnston, and D. J. Kendall, “Optimization of a field-widened Michelson interferometer,” Appl. Opt. 24, 1604–1608 (1985).
    [CrossRef] [PubMed]
  10. G. G. Shepherd, Spectral Imaging of the Atmosphere(Academic, 2003).
  11. CDGM Co. Glass, Ltd., “The database of optical glasses,” http://www.cdgmgd.com/en/asp/.
  12. Hubei New Huaguang Information Co. Materials, Ltd., “The database of optical glasses,” http://www.hbnhg.com/ph/webc/.
  13. “Contrast list of Chinese glass for glasses of Schott, Hoya and Ohara,” http://www.cdgmgd.com/attachments/soft/dzb.doc.
  14. G. G. Shepherd, “Application of Doppler Michelson imaging to upper atmospheric wind measurement: WINDII and beyond,” Appl. Opt. 35, 2764–2773 (1996).
    [CrossRef] [PubMed]
  15. Y. J. Rochon, “The retrieval of winds, Doppler temperatures, and emission rates for the WINDII experiment,” Ph. D. Thesis (York University (Canada), 2001).
  16. G. G. Shepherd, W. A. Gault, D. W. Miller, Z. Pasturczyk, S. F. Johnston, P. R. Kosteniuk, J. W. Haslett, D. J. W. Kendall, and J. W. Wimperis, “WAMDII: wide-angle Michelson Doppler imaging interferometer for Spacelab,” Appl. Opt. 24, 1571–1584 (1985).
    [CrossRef] [PubMed]

2011 (1)

H. Y. Gao, Y. H. Tang, D. X. Hua, L. Qin, and C. Zhu, “Modified super-wide-angle Sagnac imaging interferometer based on LCoS for atmospheric wind measurement,” J. Quant. Spectrosc. Radiat. Transfer 112, 268–276 (2011).
[CrossRef]

2010 (1)

H. C. Zhu, C. M. Zhang, and X. H. Jian, “A wide field wind image interferometer with chromatic and thermal compensation (in Chinese),” Acta Phys. Sin. 59, 893–898 (2010).

2007 (1)

Y. H. Tang, G. D. Chen, C. M. Zhang, Y. L. Lin, H. C. Liu, and K. Liu, “Optimization of the modified Sagnac imaging interferometer for full compensation,” Proc. SPIE 6279, 62791G(2007).
[CrossRef]

2006 (1)

P. Rahnama, Y. J. Rochon, I. C. McDade, G. G. Shepherd, W. A. Gault, and A. Scott, “Satellite measurement of stratospheric winds and ozone using Doppler Michelson interferometry. Part I: Instrument model and measurement simulation,” J. Atmos. Ocean. Technol. 23, 753–769 (2006).
[CrossRef]

2001 (1)

W. E. Ward, W. A. Gault, G. G. Shepherd, and N. Rowlands, “Waves Michelson Interferometer: a visible/near-IR interferometer for observing middle atmosphere dynamics and constituents,” Proc. SPIE 4540, 100–111 (2001).
[CrossRef]

1996 (2)

1995 (1)

J. C. Bird, F. Liang, B. H. Solheim, and G. G. Shepherd, “A polarizing Michelson interferometer for measuring thermospheric winds,” Meas. Sci. Technol. 6, 1368–1378 (1995).
[CrossRef]

1993 (1)

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, and J. M. Alunni, , “WINDII: The wind imaging interferometer on the upper atmosphere research satellite,” J. Geophys Res. 98, 10725–10750 (1993).
[CrossRef]

1985 (2)

Alunni, J. M.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, and J. M. Alunni, , “WINDII: The wind imaging interferometer on the upper atmosphere research satellite,” J. Geophys Res. 98, 10725–10750 (1993).
[CrossRef]

Bird, J. C.

J. C. Bird, F. Liang, B. H. Solheim, and G. G. Shepherd, “A polarizing Michelson interferometer for measuring thermospheric winds,” Meas. Sci. Technol. 6, 1368–1378 (1995).
[CrossRef]

Brown, S.

Chen, G. D.

Y. H. Tang, G. D. Chen, C. M. Zhang, Y. L. Lin, H. C. Liu, and K. Liu, “Optimization of the modified Sagnac imaging interferometer for full compensation,” Proc. SPIE 6279, 62791G(2007).
[CrossRef]

Gao, H. Y.

H. Y. Gao, Y. H. Tang, D. X. Hua, L. Qin, and C. Zhu, “Modified super-wide-angle Sagnac imaging interferometer based on LCoS for atmospheric wind measurement,” J. Quant. Spectrosc. Radiat. Transfer 112, 268–276 (2011).
[CrossRef]

Gault, W. A.

P. Rahnama, Y. J. Rochon, I. C. McDade, G. G. Shepherd, W. A. Gault, and A. Scott, “Satellite measurement of stratospheric winds and ozone using Doppler Michelson interferometry. Part I: Instrument model and measurement simulation,” J. Atmos. Ocean. Technol. 23, 753–769 (2006).
[CrossRef]

W. E. Ward, W. A. Gault, G. G. Shepherd, and N. Rowlands, “Waves Michelson Interferometer: a visible/near-IR interferometer for observing middle atmosphere dynamics and constituents,” Proc. SPIE 4540, 100–111 (2001).
[CrossRef]

W. A. Gault, S. Brown, A. Moise, D. Liang, G. Sellar, G. G. Shepherd, and J. Wimperis, “ERWIN: an E-region wind interferometer,” Appl. Opt. 35, 2913–2922 (1996).
[CrossRef] [PubMed]

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, and J. M. Alunni, , “WINDII: The wind imaging interferometer on the upper atmosphere research satellite,” J. Geophys Res. 98, 10725–10750 (1993).
[CrossRef]

W. A. Gault, S. F. Johnston, and D. J. Kendall, “Optimization of a field-widened Michelson interferometer,” Appl. Opt. 24, 1604–1608 (1985).
[CrossRef] [PubMed]

G. G. Shepherd, W. A. Gault, D. W. Miller, Z. Pasturczyk, S. F. Johnston, P. R. Kosteniuk, J. W. Haslett, D. J. W. Kendall, and J. W. Wimperis, “WAMDII: wide-angle Michelson Doppler imaging interferometer for Spacelab,” Appl. Opt. 24, 1571–1584 (1985).
[CrossRef] [PubMed]

Haslett, J. W.

Hersom, C.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, and J. M. Alunni, , “WINDII: The wind imaging interferometer on the upper atmosphere research satellite,” J. Geophys Res. 98, 10725–10750 (1993).
[CrossRef]

Hua, D. X.

H. Y. Gao, Y. H. Tang, D. X. Hua, L. Qin, and C. Zhu, “Modified super-wide-angle Sagnac imaging interferometer based on LCoS for atmospheric wind measurement,” J. Quant. Spectrosc. Radiat. Transfer 112, 268–276 (2011).
[CrossRef]

Jian, X. H.

H. C. Zhu, C. M. Zhang, and X. H. Jian, “A wide field wind image interferometer with chromatic and thermal compensation (in Chinese),” Acta Phys. Sin. 59, 893–898 (2010).

Johnston, S. F.

Kendall, D. J.

Kendall, D. J. W.

Kosteniuk, P. R.

Liang, D.

Liang, F.

J. C. Bird, F. Liang, B. H. Solheim, and G. G. Shepherd, “A polarizing Michelson interferometer for measuring thermospheric winds,” Meas. Sci. Technol. 6, 1368–1378 (1995).
[CrossRef]

Lin, Y. L.

Y. H. Tang, G. D. Chen, C. M. Zhang, Y. L. Lin, H. C. Liu, and K. Liu, “Optimization of the modified Sagnac imaging interferometer for full compensation,” Proc. SPIE 6279, 62791G(2007).
[CrossRef]

Liu, H. C.

Y. H. Tang, G. D. Chen, C. M. Zhang, Y. L. Lin, H. C. Liu, and K. Liu, “Optimization of the modified Sagnac imaging interferometer for full compensation,” Proc. SPIE 6279, 62791G(2007).
[CrossRef]

Liu, K.

Y. H. Tang, G. D. Chen, C. M. Zhang, Y. L. Lin, H. C. Liu, and K. Liu, “Optimization of the modified Sagnac imaging interferometer for full compensation,” Proc. SPIE 6279, 62791G(2007).
[CrossRef]

McDade, I. C.

P. Rahnama, Y. J. Rochon, I. C. McDade, G. G. Shepherd, W. A. Gault, and A. Scott, “Satellite measurement of stratospheric winds and ozone using Doppler Michelson interferometry. Part I: Instrument model and measurement simulation,” J. Atmos. Ocean. Technol. 23, 753–769 (2006).
[CrossRef]

Miller, D. W.

Moise, A.

Pasturczyk, Z.

Qin, L.

H. Y. Gao, Y. H. Tang, D. X. Hua, L. Qin, and C. Zhu, “Modified super-wide-angle Sagnac imaging interferometer based on LCoS for atmospheric wind measurement,” J. Quant. Spectrosc. Radiat. Transfer 112, 268–276 (2011).
[CrossRef]

Rahnama, P.

P. Rahnama, Y. J. Rochon, I. C. McDade, G. G. Shepherd, W. A. Gault, and A. Scott, “Satellite measurement of stratospheric winds and ozone using Doppler Michelson interferometry. Part I: Instrument model and measurement simulation,” J. Atmos. Ocean. Technol. 23, 753–769 (2006).
[CrossRef]

Rochon, Y. J.

P. Rahnama, Y. J. Rochon, I. C. McDade, G. G. Shepherd, W. A. Gault, and A. Scott, “Satellite measurement of stratospheric winds and ozone using Doppler Michelson interferometry. Part I: Instrument model and measurement simulation,” J. Atmos. Ocean. Technol. 23, 753–769 (2006).
[CrossRef]

Y. J. Rochon, “The retrieval of winds, Doppler temperatures, and emission rates for the WINDII experiment,” Ph. D. Thesis (York University (Canada), 2001).

Rowlands, N.

W. E. Ward, W. A. Gault, G. G. Shepherd, and N. Rowlands, “Waves Michelson Interferometer: a visible/near-IR interferometer for observing middle atmosphere dynamics and constituents,” Proc. SPIE 4540, 100–111 (2001).
[CrossRef]

Scott, A.

P. Rahnama, Y. J. Rochon, I. C. McDade, G. G. Shepherd, W. A. Gault, and A. Scott, “Satellite measurement of stratospheric winds and ozone using Doppler Michelson interferometry. Part I: Instrument model and measurement simulation,” J. Atmos. Ocean. Technol. 23, 753–769 (2006).
[CrossRef]

Sellar, G.

Shepherd, G. G.

P. Rahnama, Y. J. Rochon, I. C. McDade, G. G. Shepherd, W. A. Gault, and A. Scott, “Satellite measurement of stratospheric winds and ozone using Doppler Michelson interferometry. Part I: Instrument model and measurement simulation,” J. Atmos. Ocean. Technol. 23, 753–769 (2006).
[CrossRef]

W. E. Ward, W. A. Gault, G. G. Shepherd, and N. Rowlands, “Waves Michelson Interferometer: a visible/near-IR interferometer for observing middle atmosphere dynamics and constituents,” Proc. SPIE 4540, 100–111 (2001).
[CrossRef]

W. A. Gault, S. Brown, A. Moise, D. Liang, G. Sellar, G. G. Shepherd, and J. Wimperis, “ERWIN: an E-region wind interferometer,” Appl. Opt. 35, 2913–2922 (1996).
[CrossRef] [PubMed]

G. G. Shepherd, “Application of Doppler Michelson imaging to upper atmospheric wind measurement: WINDII and beyond,” Appl. Opt. 35, 2764–2773 (1996).
[CrossRef] [PubMed]

J. C. Bird, F. Liang, B. H. Solheim, and G. G. Shepherd, “A polarizing Michelson interferometer for measuring thermospheric winds,” Meas. Sci. Technol. 6, 1368–1378 (1995).
[CrossRef]

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, and J. M. Alunni, , “WINDII: The wind imaging interferometer on the upper atmosphere research satellite,” J. Geophys Res. 98, 10725–10750 (1993).
[CrossRef]

G. G. Shepherd, W. A. Gault, D. W. Miller, Z. Pasturczyk, S. F. Johnston, P. R. Kosteniuk, J. W. Haslett, D. J. W. Kendall, and J. W. Wimperis, “WAMDII: wide-angle Michelson Doppler imaging interferometer for Spacelab,” Appl. Opt. 24, 1571–1584 (1985).
[CrossRef] [PubMed]

G. G. Shepherd, Spectral Imaging of the Atmosphere(Academic, 2003).

Solheim, B. H.

J. C. Bird, F. Liang, B. H. Solheim, and G. G. Shepherd, “A polarizing Michelson interferometer for measuring thermospheric winds,” Meas. Sci. Technol. 6, 1368–1378 (1995).
[CrossRef]

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, and J. M. Alunni, , “WINDII: The wind imaging interferometer on the upper atmosphere research satellite,” J. Geophys Res. 98, 10725–10750 (1993).
[CrossRef]

Tang, Y. H.

H. Y. Gao, Y. H. Tang, D. X. Hua, L. Qin, and C. Zhu, “Modified super-wide-angle Sagnac imaging interferometer based on LCoS for atmospheric wind measurement,” J. Quant. Spectrosc. Radiat. Transfer 112, 268–276 (2011).
[CrossRef]

Y. H. Tang, G. D. Chen, C. M. Zhang, Y. L. Lin, H. C. Liu, and K. Liu, “Optimization of the modified Sagnac imaging interferometer for full compensation,” Proc. SPIE 6279, 62791G(2007).
[CrossRef]

Thuillier, G.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, and J. M. Alunni, , “WINDII: The wind imaging interferometer on the upper atmosphere research satellite,” J. Geophys Res. 98, 10725–10750 (1993).
[CrossRef]

Ward, W. E.

W. E. Ward, W. A. Gault, G. G. Shepherd, and N. Rowlands, “Waves Michelson Interferometer: a visible/near-IR interferometer for observing middle atmosphere dynamics and constituents,” Proc. SPIE 4540, 100–111 (2001).
[CrossRef]

Wimperis, J.

Wimperis, J. W.

Zhang, C. M.

H. C. Zhu, C. M. Zhang, and X. H. Jian, “A wide field wind image interferometer with chromatic and thermal compensation (in Chinese),” Acta Phys. Sin. 59, 893–898 (2010).

Y. H. Tang, G. D. Chen, C. M. Zhang, Y. L. Lin, H. C. Liu, and K. Liu, “Optimization of the modified Sagnac imaging interferometer for full compensation,” Proc. SPIE 6279, 62791G(2007).
[CrossRef]

Zhu, C.

H. Y. Gao, Y. H. Tang, D. X. Hua, L. Qin, and C. Zhu, “Modified super-wide-angle Sagnac imaging interferometer based on LCoS for atmospheric wind measurement,” J. Quant. Spectrosc. Radiat. Transfer 112, 268–276 (2011).
[CrossRef]

Zhu, H. C.

H. C. Zhu, C. M. Zhang, and X. H. Jian, “A wide field wind image interferometer with chromatic and thermal compensation (in Chinese),” Acta Phys. Sin. 59, 893–898 (2010).

Acta Phys. Sin. (1)

H. C. Zhu, C. M. Zhang, and X. H. Jian, “A wide field wind image interferometer with chromatic and thermal compensation (in Chinese),” Acta Phys. Sin. 59, 893–898 (2010).

Appl. Opt. (4)

J. Atmos. Ocean. Technol. (1)

P. Rahnama, Y. J. Rochon, I. C. McDade, G. G. Shepherd, W. A. Gault, and A. Scott, “Satellite measurement of stratospheric winds and ozone using Doppler Michelson interferometry. Part I: Instrument model and measurement simulation,” J. Atmos. Ocean. Technol. 23, 753–769 (2006).
[CrossRef]

J. Geophys Res. (1)

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, and J. M. Alunni, , “WINDII: The wind imaging interferometer on the upper atmosphere research satellite,” J. Geophys Res. 98, 10725–10750 (1993).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

H. Y. Gao, Y. H. Tang, D. X. Hua, L. Qin, and C. Zhu, “Modified super-wide-angle Sagnac imaging interferometer based on LCoS for atmospheric wind measurement,” J. Quant. Spectrosc. Radiat. Transfer 112, 268–276 (2011).
[CrossRef]

Meas. Sci. Technol. (1)

J. C. Bird, F. Liang, B. H. Solheim, and G. G. Shepherd, “A polarizing Michelson interferometer for measuring thermospheric winds,” Meas. Sci. Technol. 6, 1368–1378 (1995).
[CrossRef]

Proc. SPIE (2)

W. E. Ward, W. A. Gault, G. G. Shepherd, and N. Rowlands, “Waves Michelson Interferometer: a visible/near-IR interferometer for observing middle atmosphere dynamics and constituents,” Proc. SPIE 4540, 100–111 (2001).
[CrossRef]

Y. H. Tang, G. D. Chen, C. M. Zhang, Y. L. Lin, H. C. Liu, and K. Liu, “Optimization of the modified Sagnac imaging interferometer for full compensation,” Proc. SPIE 6279, 62791G(2007).
[CrossRef]

Other (5)

Y. J. Rochon, “The retrieval of winds, Doppler temperatures, and emission rates for the WINDII experiment,” Ph. D. Thesis (York University (Canada), 2001).

G. G. Shepherd, Spectral Imaging of the Atmosphere(Academic, 2003).

CDGM Co. Glass, Ltd., “The database of optical glasses,” http://www.cdgmgd.com/en/asp/.

Hubei New Huaguang Information Co. Materials, Ltd., “The database of optical glasses,” http://www.hbnhg.com/ph/webc/.

“Contrast list of Chinese glass for glasses of Schott, Hoya and Ohara,” http://www.cdgmgd.com/attachments/soft/dzb.doc.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The optical pathway diagram and structure of the wide-angle Michelson interferometer with large air gap.

Fig. 2
Fig. 2

Four pairs of glass MI arms optimized by the ideal condition. The optimized results for air gaps of 1.0 cm , 1.5 cm , and 2.0 cm are shown in Figs. 2a, 2b, 2c, respectively. The result of chromatic compensation for d 3 = 1.5 cm is significantly better than the other two since the five curves are closer with each other. Figure 2d shows the result with K9L of Chinese glass type as glass arm for d 3 = 1.5 cm . The acceptable chromatic compensation is benefitted from that an adjustment of 0.05 cm has been added to d 3 between calculations for the curves for the different wavelengths.

Fig. 3
Fig. 3

Optical pathway diagram of experiment (left) and lab installation (right).

Fig. 4
Fig. 4

Sine calibration curve according to the relationship between gray value and phase (up), and four images—15th, 25th, 35th, and 45th (down).

Fig. 5
Fig. 5

Experimental results and theoretical simulation for field widening of MI with large air gap.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ = 2 ( n 1 d 1 cos θ 1 n 2 d 2 cos θ 2 n 3 d 3 cos θ 3 ) ,
Δ θ = 2 ( n 1 d 1 n 2 d 2 n 3 d 3 ) ( d 1 n 1 d 2 n 2 d 3 n 3 ) sin 2 θ 1 4 ( d 1 n 1 3 d 2 n 2 3 d 3 n 3 3 ) sin 4 θ ... ...
Δ 0 = 2 ( n 1 d 1 n 2 d 2 n 3 d 3 ) .
d 1 n 1 d 2 n 2 d 3 n 3 = 0.
ω = d 1 n 1 d 2 n 2 d 3 n 3 .
n 1 n 2 λ ( Δ 0 2 n 1 2 n 3 2 n 3 d 3 ) = n 2 n 1 λ ( Δ 0 2 n 2 2 n 3 2 n 3 d 3 ) .
D i f Chromatic = ( n 1 n 2 λ n 2 n 1 λ ) Δ 0 + [ n 2 n 3 n 1 λ ( n 2 2 n 3 2 ) n 1 n 3 n 2 λ ( n 1 2 n 3 2 ) ] d 3 .
D i f Thermal = ( n 1 d 1 T + d 1 n 1 T ) ( n 2 d 2 T + d 2 n 2 T ) ( n 3 d 3 T + d 3 n 3 T ) = n 1 ( n 1 α 1 + β 1 ) [ n 3 Δ 0 ( n 2 2 n 3 2 ) d 3 ] n 2 ( n 2 α 2 + β 2 ) [ n 3 Δ 0 ( n 1 2 n 3 2 ) d 3 ] n 3 d 3 ( n 3 α 3 + β 3 ) ( n 1 2 n 2 2 ) .
y = A sin [ π ( x B ) / C ] + D ,

Metrics