Abstract

This paper reports the development and characterization of a low-cost thin unimorph deformable mirror (DM) driven by positive voltage. The developed DM consists of both an inner actuator array and an outer ring actuator, which works two drive modes: the inner actuator array is used for aberration correction, while the outer ring actuator is used to generate an overall defocus bias. An analytical model based on the theory of plates and shells is studied for predicting the behavior of the developed DM. Measurement results indicate that dual direction maximum defocus deformations of the developed DM are 14.3 and 14.9μm, respectively, and the resonant frequency is 1.8kHz. The root-mean-square deformation of the mirror surface after correction is better than λ/20 for λ=633nm. The replication of Zernike mode shapes up to the fifth order demonstrates that this developed DM is satisfactory for low-order aberration correction.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Ealey and J. T. Trauger, “High-density deformable mirrors to enable coronographic planet detection,” Proc. SPIE 5166, 172–179 (2004).
    [CrossRef]
  2. N. Doble and D. R. Williams, “The application of MEMS technology for adaptive optics in vision science,” IEEE J. Sel. Top. Quantum Electron. 10, 629–635 (2004).
    [CrossRef]
  3. N. K. Metzger, W. Lubeigt, D. Burns, M. Griffith, L. Laycock, A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, “Ultrashort-pulse laser with an intracavity phase shaping element,” Opt. Express 18, 8123–8134 (2010).
    [CrossRef] [PubMed]
  4. E. Dalimier and C. Dainty, “Comparative analysis of deformable mirrors for ocular adaptive optics,” Opt. Express 13, 4275–4285 (2005).
    [CrossRef] [PubMed]
  5. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
    [CrossRef]
  6. S. Verpoort and U. Wittrock, “Actuator patterns for unimorph and bimorph deformable mirrors,” Appl. Opt. 49, G37–G46(2010).
    [CrossRef]
  7. I. Kanno, T. Kunisawa, T. Suzuki, and H. Kotera, “Development of deformable mirror composed of piezoelectric thin films for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 13, 155–161 (2007).
    [CrossRef]
  8. G. Rodrigues, R. Bastaits, S. Roose, Y. Stockman, S. Gebhardt, and A. Schoenecker, “Modular bimorph mirrors for adaptive optics,” Opt. Eng. 48, 034001 (2009).
    [CrossRef]
  9. Y. Ning, W. H. Jiang, N. Ling, R. Changhui, and J. Wenhan, “Response function calculation and sensitivity comparison analysis of various bimorph deformable mirrors,” Opt. Express 15, 12030–12038 (2007).
    [CrossRef] [PubMed]
  10. S. Oya, A. Bouvier, O. Guyon, M. Watanabe, Y. Hayano, H. Takami, M. Iye, M. Hattori, Y. Saito, M. Itoh, S. Colley, M. Dinkins, M. Eldred, and T. Golota, “Performance of the deformable mirror for Subaru LGSAO,” Proc. SPIE 6272, 62724S (2006).
    [CrossRef]
  11. D. A. Horsley, H. Park, S. P. Laut, and J. S. Werner, “Characterization of a bimorph deformable mirror using stroboscopic phase-shifting interferometry,” Sens. Actuators A 134, 221–230 (2007).
    [CrossRef]
  12. J. C. Dainty, A. V. Koryabin, and A. V. Kudryashov, “Low-order adaptive deformable mirror,” Appl. Opt. 37, 4663–4668 (1998).
    [CrossRef]
  13. C. Boulet, M. Griffith, L. C. Laycock, and A. McCarthy, “Development of a small aperture bimorph deformable mirror for a free-space optical communications system,” Proc. SPIE 78330, 78330D (2010).
    [CrossRef]
  14. E. M. Ellis, “Low-cost bimorph mirrors in adaptive optics,” Ph.D. dissertation (Imperial College of Science, Technology and Medicine—University of London, 1999).
  15. W. G. Cady, Piezoelectricity (McGraw-Hill, 1946).
  16. X. H. Xu and J. R. Chu, “Preparation of a high-quality PZT thick film with performance comparable to those of bulk materials for applications in MEMS,” J. Micromech. Microeng. 18, 065001 (2008).
    [CrossRef]
  17. X. H. Xu, B. Q. Li, Y. Feng, and J. R. Chu, “Design, fabrication and characterization of a bulk-PZT-actuated MEMS deformable mirror,” J. Micromech. Microeng. 17, 2439–2446(2007).
    [CrossRef]
  18. M. Q. Bu, T. Melvin, G. Ensell, J. S. Wilkinson, and A. G. R. Evans, “Design and theoretical evaluation of a novel microfluidic device to be used for PCR,” J. Micromech. Microeng. 13, S125–S130 (2003).
    [CrossRef]
  19. T. Zhang and Q. M. Wang, “Performance evaluation of a valveless micropump driven by a ring-type piezoelectric actuator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 463–473 (2006).
    [CrossRef] [PubMed]
  20. H. Park and D. Horsley, “Fabrication and characterization of MEMS deformable mirrors for adaptive optics,” in 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006 (American Society of Mechanical Engineers, 2006), paper 13147.
  21. J. Q. Ma, B. Q. Li, and J. R. Chu, “Characterization of a 61 element bulk-PZT thick film deformable mirror and generation of Zernike polynomials,” Proc. SPIE 7657, 76570G (2010).
    [CrossRef]
  22. G. T. Kennedy and C. Paterson, “Correcting the ocular aberrations of a healthy adult population using microelectromechanical (MEMS) deformable mirrors,” Opt. Commun. 271, 278–284 (2007).
    [CrossRef]
  23. C. Friese and H. Zappe, “Deformable polymer adaptive optical mirrors,” J. Microelectromech. Syst. 17, 11–19 (2008).
    [CrossRef]
  24. L. J. Zhu, P. C. Sun, D. U. Bartsch, W. R. Freeman, and Y. Fainman, “Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation,” Appl. Opt. 38, 168–176 (1999).
    [CrossRef]

2010 (4)

C. Boulet, M. Griffith, L. C. Laycock, and A. McCarthy, “Development of a small aperture bimorph deformable mirror for a free-space optical communications system,” Proc. SPIE 78330, 78330D (2010).
[CrossRef]

J. Q. Ma, B. Q. Li, and J. R. Chu, “Characterization of a 61 element bulk-PZT thick film deformable mirror and generation of Zernike polynomials,” Proc. SPIE 7657, 76570G (2010).
[CrossRef]

N. K. Metzger, W. Lubeigt, D. Burns, M. Griffith, L. Laycock, A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, “Ultrashort-pulse laser with an intracavity phase shaping element,” Opt. Express 18, 8123–8134 (2010).
[CrossRef] [PubMed]

S. Verpoort and U. Wittrock, “Actuator patterns for unimorph and bimorph deformable mirrors,” Appl. Opt. 49, G37–G46(2010).
[CrossRef]

2009 (1)

G. Rodrigues, R. Bastaits, S. Roose, Y. Stockman, S. Gebhardt, and A. Schoenecker, “Modular bimorph mirrors for adaptive optics,” Opt. Eng. 48, 034001 (2009).
[CrossRef]

2008 (2)

X. H. Xu and J. R. Chu, “Preparation of a high-quality PZT thick film with performance comparable to those of bulk materials for applications in MEMS,” J. Micromech. Microeng. 18, 065001 (2008).
[CrossRef]

C. Friese and H. Zappe, “Deformable polymer adaptive optical mirrors,” J. Microelectromech. Syst. 17, 11–19 (2008).
[CrossRef]

2007 (5)

G. T. Kennedy and C. Paterson, “Correcting the ocular aberrations of a healthy adult population using microelectromechanical (MEMS) deformable mirrors,” Opt. Commun. 271, 278–284 (2007).
[CrossRef]

I. Kanno, T. Kunisawa, T. Suzuki, and H. Kotera, “Development of deformable mirror composed of piezoelectric thin films for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 13, 155–161 (2007).
[CrossRef]

D. A. Horsley, H. Park, S. P. Laut, and J. S. Werner, “Characterization of a bimorph deformable mirror using stroboscopic phase-shifting interferometry,” Sens. Actuators A 134, 221–230 (2007).
[CrossRef]

X. H. Xu, B. Q. Li, Y. Feng, and J. R. Chu, “Design, fabrication and characterization of a bulk-PZT-actuated MEMS deformable mirror,” J. Micromech. Microeng. 17, 2439–2446(2007).
[CrossRef]

Y. Ning, W. H. Jiang, N. Ling, R. Changhui, and J. Wenhan, “Response function calculation and sensitivity comparison analysis of various bimorph deformable mirrors,” Opt. Express 15, 12030–12038 (2007).
[CrossRef] [PubMed]

2006 (2)

S. Oya, A. Bouvier, O. Guyon, M. Watanabe, Y. Hayano, H. Takami, M. Iye, M. Hattori, Y. Saito, M. Itoh, S. Colley, M. Dinkins, M. Eldred, and T. Golota, “Performance of the deformable mirror for Subaru LGSAO,” Proc. SPIE 6272, 62724S (2006).
[CrossRef]

T. Zhang and Q. M. Wang, “Performance evaluation of a valveless micropump driven by a ring-type piezoelectric actuator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 463–473 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (2)

M. A. Ealey and J. T. Trauger, “High-density deformable mirrors to enable coronographic planet detection,” Proc. SPIE 5166, 172–179 (2004).
[CrossRef]

N. Doble and D. R. Williams, “The application of MEMS technology for adaptive optics in vision science,” IEEE J. Sel. Top. Quantum Electron. 10, 629–635 (2004).
[CrossRef]

2003 (1)

M. Q. Bu, T. Melvin, G. Ensell, J. S. Wilkinson, and A. G. R. Evans, “Design and theoretical evaluation of a novel microfluidic device to be used for PCR,” J. Micromech. Microeng. 13, S125–S130 (2003).
[CrossRef]

2001 (1)

1999 (1)

1998 (1)

Bartsch, D. U.

Bastaits, R.

G. Rodrigues, R. Bastaits, S. Roose, Y. Stockman, S. Gebhardt, and A. Schoenecker, “Modular bimorph mirrors for adaptive optics,” Opt. Eng. 48, 034001 (2009).
[CrossRef]

Boulet, C.

C. Boulet, M. Griffith, L. C. Laycock, and A. McCarthy, “Development of a small aperture bimorph deformable mirror for a free-space optical communications system,” Proc. SPIE 78330, 78330D (2010).
[CrossRef]

Bouvier, A.

S. Oya, A. Bouvier, O. Guyon, M. Watanabe, Y. Hayano, H. Takami, M. Iye, M. Hattori, Y. Saito, M. Itoh, S. Colley, M. Dinkins, M. Eldred, and T. Golota, “Performance of the deformable mirror for Subaru LGSAO,” Proc. SPIE 6272, 62724S (2006).
[CrossRef]

Brown, C. T. A.

Bu, M. Q.

M. Q. Bu, T. Melvin, G. Ensell, J. S. Wilkinson, and A. G. R. Evans, “Design and theoretical evaluation of a novel microfluidic device to be used for PCR,” J. Micromech. Microeng. 13, S125–S130 (2003).
[CrossRef]

Burns, D.

Cady, W. G.

W. G. Cady, Piezoelectricity (McGraw-Hill, 1946).

Changhui, R.

Chu, J. R.

J. Q. Ma, B. Q. Li, and J. R. Chu, “Characterization of a 61 element bulk-PZT thick film deformable mirror and generation of Zernike polynomials,” Proc. SPIE 7657, 76570G (2010).
[CrossRef]

X. H. Xu and J. R. Chu, “Preparation of a high-quality PZT thick film with performance comparable to those of bulk materials for applications in MEMS,” J. Micromech. Microeng. 18, 065001 (2008).
[CrossRef]

X. H. Xu, B. Q. Li, Y. Feng, and J. R. Chu, “Design, fabrication and characterization of a bulk-PZT-actuated MEMS deformable mirror,” J. Micromech. Microeng. 17, 2439–2446(2007).
[CrossRef]

Colley, S.

S. Oya, A. Bouvier, O. Guyon, M. Watanabe, Y. Hayano, H. Takami, M. Iye, M. Hattori, Y. Saito, M. Itoh, S. Colley, M. Dinkins, M. Eldred, and T. Golota, “Performance of the deformable mirror for Subaru LGSAO,” Proc. SPIE 6272, 62724S (2006).
[CrossRef]

Cox, I. G.

Dainty, C.

Dainty, J. C.

Dalimier, E.

Dinkins, M.

S. Oya, A. Bouvier, O. Guyon, M. Watanabe, Y. Hayano, H. Takami, M. Iye, M. Hattori, Y. Saito, M. Itoh, S. Colley, M. Dinkins, M. Eldred, and T. Golota, “Performance of the deformable mirror for Subaru LGSAO,” Proc. SPIE 6272, 62724S (2006).
[CrossRef]

Doble, N.

N. Doble and D. R. Williams, “The application of MEMS technology for adaptive optics in vision science,” IEEE J. Sel. Top. Quantum Electron. 10, 629–635 (2004).
[CrossRef]

Ealey, M. A.

M. A. Ealey and J. T. Trauger, “High-density deformable mirrors to enable coronographic planet detection,” Proc. SPIE 5166, 172–179 (2004).
[CrossRef]

Eldred, M.

S. Oya, A. Bouvier, O. Guyon, M. Watanabe, Y. Hayano, H. Takami, M. Iye, M. Hattori, Y. Saito, M. Itoh, S. Colley, M. Dinkins, M. Eldred, and T. Golota, “Performance of the deformable mirror for Subaru LGSAO,” Proc. SPIE 6272, 62724S (2006).
[CrossRef]

Ellis, E. M.

E. M. Ellis, “Low-cost bimorph mirrors in adaptive optics,” Ph.D. dissertation (Imperial College of Science, Technology and Medicine—University of London, 1999).

Ensell, G.

M. Q. Bu, T. Melvin, G. Ensell, J. S. Wilkinson, and A. G. R. Evans, “Design and theoretical evaluation of a novel microfluidic device to be used for PCR,” J. Micromech. Microeng. 13, S125–S130 (2003).
[CrossRef]

Evans, A. G. R.

M. Q. Bu, T. Melvin, G. Ensell, J. S. Wilkinson, and A. G. R. Evans, “Design and theoretical evaluation of a novel microfluidic device to be used for PCR,” J. Micromech. Microeng. 13, S125–S130 (2003).
[CrossRef]

Fainman, Y.

Feng, Y.

X. H. Xu, B. Q. Li, Y. Feng, and J. R. Chu, “Design, fabrication and characterization of a bulk-PZT-actuated MEMS deformable mirror,” J. Micromech. Microeng. 17, 2439–2446(2007).
[CrossRef]

Freeman, W. R.

Friese, C.

C. Friese and H. Zappe, “Deformable polymer adaptive optical mirrors,” J. Microelectromech. Syst. 17, 11–19 (2008).
[CrossRef]

Gebhardt, S.

G. Rodrigues, R. Bastaits, S. Roose, Y. Stockman, S. Gebhardt, and A. Schoenecker, “Modular bimorph mirrors for adaptive optics,” Opt. Eng. 48, 034001 (2009).
[CrossRef]

Golota, T.

S. Oya, A. Bouvier, O. Guyon, M. Watanabe, Y. Hayano, H. Takami, M. Iye, M. Hattori, Y. Saito, M. Itoh, S. Colley, M. Dinkins, M. Eldred, and T. Golota, “Performance of the deformable mirror for Subaru LGSAO,” Proc. SPIE 6272, 62724S (2006).
[CrossRef]

Griffith, M.

C. Boulet, M. Griffith, L. C. Laycock, and A. McCarthy, “Development of a small aperture bimorph deformable mirror for a free-space optical communications system,” Proc. SPIE 78330, 78330D (2010).
[CrossRef]

N. K. Metzger, W. Lubeigt, D. Burns, M. Griffith, L. Laycock, A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, “Ultrashort-pulse laser with an intracavity phase shaping element,” Opt. Express 18, 8123–8134 (2010).
[CrossRef] [PubMed]

Guirao, A.

Guyon, O.

S. Oya, A. Bouvier, O. Guyon, M. Watanabe, Y. Hayano, H. Takami, M. Iye, M. Hattori, Y. Saito, M. Itoh, S. Colley, M. Dinkins, M. Eldred, and T. Golota, “Performance of the deformable mirror for Subaru LGSAO,” Proc. SPIE 6272, 62724S (2006).
[CrossRef]

Hattori, M.

S. Oya, A. Bouvier, O. Guyon, M. Watanabe, Y. Hayano, H. Takami, M. Iye, M. Hattori, Y. Saito, M. Itoh, S. Colley, M. Dinkins, M. Eldred, and T. Golota, “Performance of the deformable mirror for Subaru LGSAO,” Proc. SPIE 6272, 62724S (2006).
[CrossRef]

Hayano, Y.

S. Oya, A. Bouvier, O. Guyon, M. Watanabe, Y. Hayano, H. Takami, M. Iye, M. Hattori, Y. Saito, M. Itoh, S. Colley, M. Dinkins, M. Eldred, and T. Golota, “Performance of the deformable mirror for Subaru LGSAO,” Proc. SPIE 6272, 62724S (2006).
[CrossRef]

Horsley, D.

H. Park and D. Horsley, “Fabrication and characterization of MEMS deformable mirrors for adaptive optics,” in 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006 (American Society of Mechanical Engineers, 2006), paper 13147.

Horsley, D. A.

D. A. Horsley, H. Park, S. P. Laut, and J. S. Werner, “Characterization of a bimorph deformable mirror using stroboscopic phase-shifting interferometry,” Sens. Actuators A 134, 221–230 (2007).
[CrossRef]

Itoh, M.

S. Oya, A. Bouvier, O. Guyon, M. Watanabe, Y. Hayano, H. Takami, M. Iye, M. Hattori, Y. Saito, M. Itoh, S. Colley, M. Dinkins, M. Eldred, and T. Golota, “Performance of the deformable mirror for Subaru LGSAO,” Proc. SPIE 6272, 62724S (2006).
[CrossRef]

Iye, M.

S. Oya, A. Bouvier, O. Guyon, M. Watanabe, Y. Hayano, H. Takami, M. Iye, M. Hattori, Y. Saito, M. Itoh, S. Colley, M. Dinkins, M. Eldred, and T. Golota, “Performance of the deformable mirror for Subaru LGSAO,” Proc. SPIE 6272, 62724S (2006).
[CrossRef]

Jiang, W. H.

Kanno, I.

I. Kanno, T. Kunisawa, T. Suzuki, and H. Kotera, “Development of deformable mirror composed of piezoelectric thin films for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 13, 155–161 (2007).
[CrossRef]

Kennedy, G. T.

G. T. Kennedy and C. Paterson, “Correcting the ocular aberrations of a healthy adult population using microelectromechanical (MEMS) deformable mirrors,” Opt. Commun. 271, 278–284 (2007).
[CrossRef]

Koryabin, A. V.

Kotera, H.

I. Kanno, T. Kunisawa, T. Suzuki, and H. Kotera, “Development of deformable mirror composed of piezoelectric thin films for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 13, 155–161 (2007).
[CrossRef]

Kudryashov, A. V.

Kunisawa, T.

I. Kanno, T. Kunisawa, T. Suzuki, and H. Kotera, “Development of deformable mirror composed of piezoelectric thin films for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 13, 155–161 (2007).
[CrossRef]

Lagatsky, A. A.

Laut, S. P.

D. A. Horsley, H. Park, S. P. Laut, and J. S. Werner, “Characterization of a bimorph deformable mirror using stroboscopic phase-shifting interferometry,” Sens. Actuators A 134, 221–230 (2007).
[CrossRef]

Laycock, L.

Laycock, L. C.

C. Boulet, M. Griffith, L. C. Laycock, and A. McCarthy, “Development of a small aperture bimorph deformable mirror for a free-space optical communications system,” Proc. SPIE 78330, 78330D (2010).
[CrossRef]

Li, B. Q.

J. Q. Ma, B. Q. Li, and J. R. Chu, “Characterization of a 61 element bulk-PZT thick film deformable mirror and generation of Zernike polynomials,” Proc. SPIE 7657, 76570G (2010).
[CrossRef]

X. H. Xu, B. Q. Li, Y. Feng, and J. R. Chu, “Design, fabrication and characterization of a bulk-PZT-actuated MEMS deformable mirror,” J. Micromech. Microeng. 17, 2439–2446(2007).
[CrossRef]

Ling, N.

Lubeigt, W.

Ma, J. Q.

J. Q. Ma, B. Q. Li, and J. R. Chu, “Characterization of a 61 element bulk-PZT thick film deformable mirror and generation of Zernike polynomials,” Proc. SPIE 7657, 76570G (2010).
[CrossRef]

McCarthy, A.

C. Boulet, M. Griffith, L. C. Laycock, and A. McCarthy, “Development of a small aperture bimorph deformable mirror for a free-space optical communications system,” Proc. SPIE 78330, 78330D (2010).
[CrossRef]

Melvin, T.

M. Q. Bu, T. Melvin, G. Ensell, J. S. Wilkinson, and A. G. R. Evans, “Design and theoretical evaluation of a novel microfluidic device to be used for PCR,” J. Micromech. Microeng. 13, S125–S130 (2003).
[CrossRef]

Metzger, N. K.

Ning, Y.

Oya, S.

S. Oya, A. Bouvier, O. Guyon, M. Watanabe, Y. Hayano, H. Takami, M. Iye, M. Hattori, Y. Saito, M. Itoh, S. Colley, M. Dinkins, M. Eldred, and T. Golota, “Performance of the deformable mirror for Subaru LGSAO,” Proc. SPIE 6272, 62724S (2006).
[CrossRef]

Park, H.

D. A. Horsley, H. Park, S. P. Laut, and J. S. Werner, “Characterization of a bimorph deformable mirror using stroboscopic phase-shifting interferometry,” Sens. Actuators A 134, 221–230 (2007).
[CrossRef]

H. Park and D. Horsley, “Fabrication and characterization of MEMS deformable mirrors for adaptive optics,” in 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006 (American Society of Mechanical Engineers, 2006), paper 13147.

Paterson, C.

G. T. Kennedy and C. Paterson, “Correcting the ocular aberrations of a healthy adult population using microelectromechanical (MEMS) deformable mirrors,” Opt. Commun. 271, 278–284 (2007).
[CrossRef]

Porter, J.

Rodrigues, G.

G. Rodrigues, R. Bastaits, S. Roose, Y. Stockman, S. Gebhardt, and A. Schoenecker, “Modular bimorph mirrors for adaptive optics,” Opt. Eng. 48, 034001 (2009).
[CrossRef]

Roose, S.

G. Rodrigues, R. Bastaits, S. Roose, Y. Stockman, S. Gebhardt, and A. Schoenecker, “Modular bimorph mirrors for adaptive optics,” Opt. Eng. 48, 034001 (2009).
[CrossRef]

Saito, Y.

S. Oya, A. Bouvier, O. Guyon, M. Watanabe, Y. Hayano, H. Takami, M. Iye, M. Hattori, Y. Saito, M. Itoh, S. Colley, M. Dinkins, M. Eldred, and T. Golota, “Performance of the deformable mirror for Subaru LGSAO,” Proc. SPIE 6272, 62724S (2006).
[CrossRef]

Schoenecker, A.

G. Rodrigues, R. Bastaits, S. Roose, Y. Stockman, S. Gebhardt, and A. Schoenecker, “Modular bimorph mirrors for adaptive optics,” Opt. Eng. 48, 034001 (2009).
[CrossRef]

Sibbett, W.

Stockman, Y.

G. Rodrigues, R. Bastaits, S. Roose, Y. Stockman, S. Gebhardt, and A. Schoenecker, “Modular bimorph mirrors for adaptive optics,” Opt. Eng. 48, 034001 (2009).
[CrossRef]

Sun, P. C.

Suzuki, T.

I. Kanno, T. Kunisawa, T. Suzuki, and H. Kotera, “Development of deformable mirror composed of piezoelectric thin films for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 13, 155–161 (2007).
[CrossRef]

Takami, H.

S. Oya, A. Bouvier, O. Guyon, M. Watanabe, Y. Hayano, H. Takami, M. Iye, M. Hattori, Y. Saito, M. Itoh, S. Colley, M. Dinkins, M. Eldred, and T. Golota, “Performance of the deformable mirror for Subaru LGSAO,” Proc. SPIE 6272, 62724S (2006).
[CrossRef]

Trauger, J. T.

M. A. Ealey and J. T. Trauger, “High-density deformable mirrors to enable coronographic planet detection,” Proc. SPIE 5166, 172–179 (2004).
[CrossRef]

Verpoort, S.

Wang, Q. M.

T. Zhang and Q. M. Wang, “Performance evaluation of a valveless micropump driven by a ring-type piezoelectric actuator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 463–473 (2006).
[CrossRef] [PubMed]

Watanabe, M.

S. Oya, A. Bouvier, O. Guyon, M. Watanabe, Y. Hayano, H. Takami, M. Iye, M. Hattori, Y. Saito, M. Itoh, S. Colley, M. Dinkins, M. Eldred, and T. Golota, “Performance of the deformable mirror for Subaru LGSAO,” Proc. SPIE 6272, 62724S (2006).
[CrossRef]

Wenhan, J.

Werner, J. S.

D. A. Horsley, H. Park, S. P. Laut, and J. S. Werner, “Characterization of a bimorph deformable mirror using stroboscopic phase-shifting interferometry,” Sens. Actuators A 134, 221–230 (2007).
[CrossRef]

Wilkinson, J. S.

M. Q. Bu, T. Melvin, G. Ensell, J. S. Wilkinson, and A. G. R. Evans, “Design and theoretical evaluation of a novel microfluidic device to be used for PCR,” J. Micromech. Microeng. 13, S125–S130 (2003).
[CrossRef]

Williams, D. R.

N. Doble and D. R. Williams, “The application of MEMS technology for adaptive optics in vision science,” IEEE J. Sel. Top. Quantum Electron. 10, 629–635 (2004).
[CrossRef]

J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
[CrossRef]

Wittrock, U.

Xu, X. H.

X. H. Xu and J. R. Chu, “Preparation of a high-quality PZT thick film with performance comparable to those of bulk materials for applications in MEMS,” J. Micromech. Microeng. 18, 065001 (2008).
[CrossRef]

X. H. Xu, B. Q. Li, Y. Feng, and J. R. Chu, “Design, fabrication and characterization of a bulk-PZT-actuated MEMS deformable mirror,” J. Micromech. Microeng. 17, 2439–2446(2007).
[CrossRef]

Zappe, H.

C. Friese and H. Zappe, “Deformable polymer adaptive optical mirrors,” J. Microelectromech. Syst. 17, 11–19 (2008).
[CrossRef]

Zhang, T.

T. Zhang and Q. M. Wang, “Performance evaluation of a valveless micropump driven by a ring-type piezoelectric actuator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 463–473 (2006).
[CrossRef] [PubMed]

Zhu, L. J.

Appl. Opt. (3)

IEEE J. Sel. Top. Quantum Electron. (2)

N. Doble and D. R. Williams, “The application of MEMS technology for adaptive optics in vision science,” IEEE J. Sel. Top. Quantum Electron. 10, 629–635 (2004).
[CrossRef]

I. Kanno, T. Kunisawa, T. Suzuki, and H. Kotera, “Development of deformable mirror composed of piezoelectric thin films for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 13, 155–161 (2007).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

T. Zhang and Q. M. Wang, “Performance evaluation of a valveless micropump driven by a ring-type piezoelectric actuator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 463–473 (2006).
[CrossRef] [PubMed]

J. Microelectromech. Syst. (1)

C. Friese and H. Zappe, “Deformable polymer adaptive optical mirrors,” J. Microelectromech. Syst. 17, 11–19 (2008).
[CrossRef]

J. Micromech. Microeng. (3)

X. H. Xu and J. R. Chu, “Preparation of a high-quality PZT thick film with performance comparable to those of bulk materials for applications in MEMS,” J. Micromech. Microeng. 18, 065001 (2008).
[CrossRef]

X. H. Xu, B. Q. Li, Y. Feng, and J. R. Chu, “Design, fabrication and characterization of a bulk-PZT-actuated MEMS deformable mirror,” J. Micromech. Microeng. 17, 2439–2446(2007).
[CrossRef]

M. Q. Bu, T. Melvin, G. Ensell, J. S. Wilkinson, and A. G. R. Evans, “Design and theoretical evaluation of a novel microfluidic device to be used for PCR,” J. Micromech. Microeng. 13, S125–S130 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

G. T. Kennedy and C. Paterson, “Correcting the ocular aberrations of a healthy adult population using microelectromechanical (MEMS) deformable mirrors,” Opt. Commun. 271, 278–284 (2007).
[CrossRef]

Opt. Eng. (1)

G. Rodrigues, R. Bastaits, S. Roose, Y. Stockman, S. Gebhardt, and A. Schoenecker, “Modular bimorph mirrors for adaptive optics,” Opt. Eng. 48, 034001 (2009).
[CrossRef]

Opt. Express (3)

Proc. SPIE (4)

M. A. Ealey and J. T. Trauger, “High-density deformable mirrors to enable coronographic planet detection,” Proc. SPIE 5166, 172–179 (2004).
[CrossRef]

J. Q. Ma, B. Q. Li, and J. R. Chu, “Characterization of a 61 element bulk-PZT thick film deformable mirror and generation of Zernike polynomials,” Proc. SPIE 7657, 76570G (2010).
[CrossRef]

S. Oya, A. Bouvier, O. Guyon, M. Watanabe, Y. Hayano, H. Takami, M. Iye, M. Hattori, Y. Saito, M. Itoh, S. Colley, M. Dinkins, M. Eldred, and T. Golota, “Performance of the deformable mirror for Subaru LGSAO,” Proc. SPIE 6272, 62724S (2006).
[CrossRef]

C. Boulet, M. Griffith, L. C. Laycock, and A. McCarthy, “Development of a small aperture bimorph deformable mirror for a free-space optical communications system,” Proc. SPIE 78330, 78330D (2010).
[CrossRef]

Sens. Actuators A (1)

D. A. Horsley, H. Park, S. P. Laut, and J. S. Werner, “Characterization of a bimorph deformable mirror using stroboscopic phase-shifting interferometry,” Sens. Actuators A 134, 221–230 (2007).
[CrossRef]

Other (3)

E. M. Ellis, “Low-cost bimorph mirrors in adaptive optics,” Ph.D. dissertation (Imperial College of Science, Technology and Medicine—University of London, 1999).

W. G. Cady, Piezoelectricity (McGraw-Hill, 1946).

H. Park and D. Horsley, “Fabrication and characterization of MEMS deformable mirrors for adaptive optics,” in 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006 (American Society of Mechanical Engineers, 2006), paper 13147.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Layout of unimorph DM: plan view of electrodes (top) and cross-sectional view of the DM (bottom).

Fig. 2
Fig. 2

Deflection of PZT disk unimorph actuator. The actuator radius is b and the top electrode radius is a. M 0 , moment caused by actuation of PZT; M 1 , moment between two parts; M 2 , equivalent moment applied on the central part.

Fig. 3
Fig. 3

Simulation deflection of central actuator in function of PZT thickness at different mirror thicknesses.

Fig. 4
Fig. 4

Simulation deformations of central actuator at 100 V and outer ring actuator at 10 V .

Fig. 5
Fig. 5

Optical photographs of fabricated unimorph DM. Mirror face with 15 mm active aperture (left) and electrodes patterns on the backside (right).

Fig. 6
Fig. 6

Experimental setup used for characteri zation of the unimorph DM. RM, reference mirror; DM, deform able mirror; PBS, polarizing beam splitter; HVA, high-voltage amplifier.

Fig. 7
Fig. 7

Deformation of single actuator. (a) Measured deformation profiles of typical inner actuators at 100 V . (b) Cross sections of these deformations.

Fig. 8
Fig. 8

Maximum stroke. (a) Thirty-seven inner actuators at 100 V and (b) ring actuator at 150 V .

Fig. 9
Fig. 9

Frequency response of the DM.

Fig. 10
Fig. 10

Step response of the DM (a) when connected directly to power and (b) with a 200 series resistor.

Fig. 11
Fig. 11

Mirror surface quality. Reconstructed surface profiles (a) before and (b) after correction. Decomposed Zernike coefficients before the 60th term of mirror profiles (c) before and (d) after correction (tip/tilt removed).

Fig. 12
Fig. 12

Replication of Zernike mode shapes using the open-loop control method. The maximum PV amplitude and RMS residual error (ER) are indicated for each mode.

Fig. 13
Fig. 13

RMS value and RMS residual error of replicated Zernike mode shapes. The inset figure shows the normalized wavefront error.

Tables (1)

Tables Icon

Table 1 Material Parameters Used for Analysis

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

w 1 ( r ) = M 0 ( b 2 a 2 ) ( a 2 r 2 ) / ( 4 D e b 2 ) ( 0 r a ) ,
w 2 ( r ) = M 0 a 2 [ ( r 2 b 2 ) 2 b 2 ln ( r / b ) ] / ( 4 D e b 2 ) ( a < r b ) ,
M 0 = D e d 31 U / h p z t h 2 + 2 h ( 1 E p z t h p z t + 1 E s i h s i ) ( D p z t + D s i ) ,
ϕ = M v .
v = M 1 ϕ ,

Metrics