Abstract

This paper reports the development and characterization of a low-cost thin unimorph deformable mirror (DM) driven by positive voltage. The developed DM consists of both an inner actuator array and an outer ring actuator, which works two drive modes: the inner actuator array is used for aberration correction, while the outer ring actuator is used to generate an overall defocus bias. An analytical model based on the theory of plates and shells is studied for predicting the behavior of the developed DM. Measurement results indicate that dual direction maximum defocus deformations of the developed DM are 14.3 and 14.9μm, respectively, and the resonant frequency is 1.8kHz. The root-mean-square deformation of the mirror surface after correction is better than λ/20 for λ=633nm. The replication of Zernike mode shapes up to the fifth order demonstrates that this developed DM is satisfactory for low-order aberration correction.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription