Abstract

This article focuses on the 1997 Lascar halo display, during which very unusual arcs and halos were documented. Photographs have been analyzed with the aid of a specific image processing method developed by us. Using crystals of hexagonal ice with exotic (202¯3) Miller index faces, it is possible to simulate all the features of the display with constant crystal populations and oriented crystals in plate orientation. The simulations perform better than the cubic ice explanation. The existence of (202¯3) crystal faces is supported by a 1998 South Pole halo display.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Greenler, Rainbows, Halos, and Glories (Cambridge University, 1980).
  2. W. Tape and G. P. Können, “A general setting for halo theory,” Appl. Opt. 38, 1552–1625 (1999).
    [CrossRef]
  3. G. P. Können, “Symmetry in halo displays and symmetry in halomaking crystals,” Appl. Opt. 42, 318–331 (2003).
    [CrossRef] [PubMed]
  4. M. J. Buerger, Elementary Crystallography (Wiley, 1963).
  5. D. M. Dennison, “The crystal structure of ice,” Phys. Rev. 17, 20–22 (1921).
    [CrossRef]
  6. T. Kobayashi and K. Higuchi, “On the pyramidal faces of ice crystals,” Contrib. Instit. Low Temp. Sci. 12, 43–53 (1957).
  7. R. A. R. Tricker, “Arcs associated with halos of unusual radii,” J. Opt. Soc. Am. A 69, 1093–1100 (1979).
    [CrossRef]
  8. W. Tape, Atmospheric Halos (American Geophysical Union, 1994).
    [CrossRef]
  9. M. Riikonen, M. Sillanpää, L. Virta, D. Sullivan, J. Moilanen, and I. Luukkonen, “Halo observations provide evidence of airborne cubic ice in the Earth’s atmosphere,” Appl. Opt. 39, 6080–6085 (2000).
    [CrossRef]
  10. E. Whalley, “Cubic ice in nature,” J. Phys. Chem. 87, 4174–4179 (1983).
    [CrossRef]
  11. M. Riikonen (personal communication, 2010).
  12. W. Tape and J. Moilanen, Atmospheric Halos and the Search for Angle X (American Geophysical Union, 2005).
  13. M. Pekkola, M. Riikonen, J. Ruoskanen, and J. Moilanen, “Halo arcs from airborne, pyramidal, ice crystals falling with their c axes in vertical orientation,” Appl. Opt. 37, 1435–1440 (1998).
    [CrossRef]
  14. J. Ruoskanen, “Halo Point 2.0,” http://www.jukri.net/halopoint2.html
  15. F. Pattloch and E. Tränkle, “Monte Carlo simulation and analysis of halo phenomena,” J. Opt. Soc. Am. A 1, 520–526(1984).
    [CrossRef]
  16. E. Whalley, “Scheiner’s halo: evidence for ice Ic in the atmosphere,” Science 211, 389–390 (1981).
    [CrossRef] [PubMed]
  17. A. J. Weinheimer and C. A. Knight, “Scheiner’s halo: cubic ice or polycrystalline hexagonal ice?” J. Atmos. Sci. 44, 3304–3308 (1987).
    [CrossRef]
  18. C. Magono, S. Fujita, and T. Taniguchi, “Unusual types of single ice crystals originating from frozen cloud droplets,” J. Atmos. Sci. 36, 2495–2501 (1979).
    [CrossRef]

2003

2000

1999

1998

1987

A. J. Weinheimer and C. A. Knight, “Scheiner’s halo: cubic ice or polycrystalline hexagonal ice?” J. Atmos. Sci. 44, 3304–3308 (1987).
[CrossRef]

1984

1983

E. Whalley, “Cubic ice in nature,” J. Phys. Chem. 87, 4174–4179 (1983).
[CrossRef]

1981

E. Whalley, “Scheiner’s halo: evidence for ice Ic in the atmosphere,” Science 211, 389–390 (1981).
[CrossRef] [PubMed]

1979

C. Magono, S. Fujita, and T. Taniguchi, “Unusual types of single ice crystals originating from frozen cloud droplets,” J. Atmos. Sci. 36, 2495–2501 (1979).
[CrossRef]

R. A. R. Tricker, “Arcs associated with halos of unusual radii,” J. Opt. Soc. Am. A 69, 1093–1100 (1979).
[CrossRef]

1957

T. Kobayashi and K. Higuchi, “On the pyramidal faces of ice crystals,” Contrib. Instit. Low Temp. Sci. 12, 43–53 (1957).

1921

D. M. Dennison, “The crystal structure of ice,” Phys. Rev. 17, 20–22 (1921).
[CrossRef]

Buerger, M. J.

M. J. Buerger, Elementary Crystallography (Wiley, 1963).

Dennison, D. M.

D. M. Dennison, “The crystal structure of ice,” Phys. Rev. 17, 20–22 (1921).
[CrossRef]

Fujita, S.

C. Magono, S. Fujita, and T. Taniguchi, “Unusual types of single ice crystals originating from frozen cloud droplets,” J. Atmos. Sci. 36, 2495–2501 (1979).
[CrossRef]

Greenler, R.

R. Greenler, Rainbows, Halos, and Glories (Cambridge University, 1980).

Higuchi, K.

T. Kobayashi and K. Higuchi, “On the pyramidal faces of ice crystals,” Contrib. Instit. Low Temp. Sci. 12, 43–53 (1957).

Knight, C. A.

A. J. Weinheimer and C. A. Knight, “Scheiner’s halo: cubic ice or polycrystalline hexagonal ice?” J. Atmos. Sci. 44, 3304–3308 (1987).
[CrossRef]

Kobayashi, T.

T. Kobayashi and K. Higuchi, “On the pyramidal faces of ice crystals,” Contrib. Instit. Low Temp. Sci. 12, 43–53 (1957).

Können, G. P.

Luukkonen, I.

Magono, C.

C. Magono, S. Fujita, and T. Taniguchi, “Unusual types of single ice crystals originating from frozen cloud droplets,” J. Atmos. Sci. 36, 2495–2501 (1979).
[CrossRef]

Moilanen, J.

Pattloch, F.

Pekkola, M.

Riikonen, M.

Ruoskanen, J.

Sillanpää, M.

Sullivan, D.

Taniguchi, T.

C. Magono, S. Fujita, and T. Taniguchi, “Unusual types of single ice crystals originating from frozen cloud droplets,” J. Atmos. Sci. 36, 2495–2501 (1979).
[CrossRef]

Tape, W.

W. Tape and G. P. Können, “A general setting for halo theory,” Appl. Opt. 38, 1552–1625 (1999).
[CrossRef]

W. Tape, Atmospheric Halos (American Geophysical Union, 1994).
[CrossRef]

W. Tape and J. Moilanen, Atmospheric Halos and the Search for Angle X (American Geophysical Union, 2005).

Tränkle, E.

Tricker, R. A. R.

R. A. R. Tricker, “Arcs associated with halos of unusual radii,” J. Opt. Soc. Am. A 69, 1093–1100 (1979).
[CrossRef]

Virta, L.

Weinheimer, A. J.

A. J. Weinheimer and C. A. Knight, “Scheiner’s halo: cubic ice or polycrystalline hexagonal ice?” J. Atmos. Sci. 44, 3304–3308 (1987).
[CrossRef]

Whalley, E.

E. Whalley, “Cubic ice in nature,” J. Phys. Chem. 87, 4174–4179 (1983).
[CrossRef]

E. Whalley, “Scheiner’s halo: evidence for ice Ic in the atmosphere,” Science 211, 389–390 (1981).
[CrossRef] [PubMed]

Appl. Opt.

Contrib. Instit. Low Temp. Sci.

T. Kobayashi and K. Higuchi, “On the pyramidal faces of ice crystals,” Contrib. Instit. Low Temp. Sci. 12, 43–53 (1957).

J. Atmos. Sci.

A. J. Weinheimer and C. A. Knight, “Scheiner’s halo: cubic ice or polycrystalline hexagonal ice?” J. Atmos. Sci. 44, 3304–3308 (1987).
[CrossRef]

C. Magono, S. Fujita, and T. Taniguchi, “Unusual types of single ice crystals originating from frozen cloud droplets,” J. Atmos. Sci. 36, 2495–2501 (1979).
[CrossRef]

J. Opt. Soc. Am. A

F. Pattloch and E. Tränkle, “Monte Carlo simulation and analysis of halo phenomena,” J. Opt. Soc. Am. A 1, 520–526(1984).
[CrossRef]

R. A. R. Tricker, “Arcs associated with halos of unusual radii,” J. Opt. Soc. Am. A 69, 1093–1100 (1979).
[CrossRef]

J. Phys. Chem.

E. Whalley, “Cubic ice in nature,” J. Phys. Chem. 87, 4174–4179 (1983).
[CrossRef]

Phys. Rev.

D. M. Dennison, “The crystal structure of ice,” Phys. Rev. 17, 20–22 (1921).
[CrossRef]

Science

E. Whalley, “Scheiner’s halo: evidence for ice Ic in the atmosphere,” Science 211, 389–390 (1981).
[CrossRef] [PubMed]

Other

W. Tape, Atmospheric Halos (American Geophysical Union, 1994).
[CrossRef]

J. Ruoskanen, “Halo Point 2.0,” http://www.jukri.net/halopoint2.html

R. Greenler, Rainbows, Halos, and Glories (Cambridge University, 1980).

M. J. Buerger, Elementary Crystallography (Wiley, 1963).

M. Riikonen (personal communication, 2010).

W. Tape and J. Moilanen, Atmospheric Halos and the Search for Angle X (American Geophysical Union, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Steps of the specific image processing method used. From the raw image (a), the background is removed by polynomial fitting, as well as by removing dust and pole (b). Several consecutive images are stacked to get the final image (c).

Fig. 2
Fig. 2

Steps of the specific image processing of an image on which the diffusion glow is not overexposed. Background is removed from the raw image (a), (b). Then, a computer-generated diffusion glow (c) is removed and contrast of the final image is enhanced (d).

Fig. 3
Fig. 3

Location of regular faces and exotic ( 2 0 2 ¯ 3 ) face in hexagonal ice crystal lattice.

Fig. 4
Fig. 4

Lascar display processed images (left) and labeled simulations (right) using crystal populations described in Table 3. Sun elevation varies between 66 ° and 1 ° . See the meaning of the halo labels: Table 4. The simulations and processed images of the display can be viewed at http://picasaweb.google.com/nicolas.lefaudeux/Lascar.

Fig. 5
Fig. 5

Pictures on which the diffusion glow is not overexposed after our image processing procedure (left) showing the area around the sun. The possible 3 degree mixed plate lower arc is labeled on the simulations (right). The steps of this image processing are shown in Fig. 2. See the meaning of the halo labels: Table 4.

Fig. 6
Fig. 6

Close-up view of the side of the sun (left). This area is made of several overlapped arcs identified in the simulation (right). See the meaning of the halo labels: Table 4.

Fig. 7
Fig. 7

Simulation of the display using cubic ice model. Halo features from cubic ice crystals are labeled with letter C.

Fig. 8
Fig. 8

10–11 December 1998, South Pole display. Raw picture (a), courtesy of Jarmo Moilanen, is processed with proposed method (b). Horizontal field of view is 46 ° . Simulation (c) using two randomly oriented populations of regular and exotic pyramids with prism faces (d).

Tables (5)

Tables Icon

Table 1 Drawing and Face Numbering Convention for Regular, Exotic, and Mixed Pyramids

Tables Icon

Table 2 Interfacial and Halos Angles for Usual, Exotic, and Mixed Pyramidal Crystals a

Tables Icon

Table 3 Description of Crystal Populations Used to Simulate Lascar Display a

Tables Icon

Table 4 Ray Paths and Population Responsible for the Arcs and Halos a Identified in Figs. 4, 5, 6

Tables Icon

Table 5 Interfacial and Halos Angles for Prism and Exotic Pyramidal Faces

Metrics