Abstract

It has only recently been realized that solar corona can be generated by dispersions of tree pollen grains suspended in the atmosphere, and these studies have come almost exclusively from Scandinavia. Using corona photographic and surface pollen analyses, it is shown here that paper birch trees in the interior of Alaska regularly generate solar corona during the boreal green-out in mid-May. Although near-spherical in shape, these 27μm average diameter particles have three surface protrusions involved in germination that are indicated to aid in the generation of elliptical corona, for which a strong preferential particle orientation is needed. For observations at solar elevation angles of 35°40°, an axis ratio of about 1.2 and average radius of 2.5° (for the second-order red band) are found. Because oriented particles of a particular shape tend to fall slower than randomly oriented ones, this microdesign promotes the lateral spread of pollen and enhances tree reproductive opportunities, an especially important trait for pioneering species.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Lock and L. Yang, “Mie theory model of the corona,” Appl. Opt. 30, 3408–3414 (1991).
    [Crossref] [PubMed]
  2. K. Sassen, “Corona producing cirrus cloud properties derived from polarization lidar and photographic analyses,” Appl. Opt. 30, 3421–3428 (1991).
    [Crossref] [PubMed]
  3. W. J. Humphries, Physics of the Air (McGraw-Hill, 1929).
  4. K. Sassen, G. G. Mace, J. Hallett, and M. R. Poellot, “Corona-producing ice clouds: a case study of a cold cirrus layer,” Appl. Opt. 37, 1477–1485 (1998).
    [Crossref]
  5. M. Riikonen and J. Ruoskanen, “Observations of vertically elliptical halos,” Appl. Opt. 33, 4537–4538 (1994).
    [Crossref] [PubMed]
  6. P. Parviainen, C. F. Bohren, and V. Mäkelä, “Vertical elliptical coronas caused by pollen,” Appl. Opt. 33, 4548–4551 (1994).
    [Crossref] [PubMed]
  7. E. Tränkle and B. Mielke, “Simulation and analysis of pollen corona,” Appl. Opt. 33, 4552–4562 (1994).
    [Crossref] [PubMed]
  8. K. Sassen, “Boreal tree pollen sensed by polarization lidar: depolarizing biogenic chaff,” Geophys. Res. Lett. 35, L18810, doi:10.1029/2008GL035085 (2008).
    [Crossref]
  9. K. Sassen, “Identifying atmospheric aerosols with polarization lidar,” in Advanced Environmental Monitoring,” Y.J.Kim and U.Platt, eds. (Springer-Verlag, 2008), 136–142.
    [Crossref]
  10. R. O. Kapp, How to Know Pollen and Spores (Brown, 1969).
  11. G. Erdtman, Handbook of Palynology (Hafner, 1969).
  12. P. M. Anderson, P. J. Bartlein, L. B. Brubaker, K. Gajewski, and J. C. Ritchie, “Vegetation–pollen–climate relationships for the arcto-boreal region of North America and Greenland,” J. Biogeogr. 18, 565–582 (1991).
    [Crossref]
  13. K. DiehlS. Matthias-Maser, R. Jaenicke, and S. K. Mitra, “The ice nucleating ability of pollen: Part II. Laboratory studies in immersion and contact freezing modes,” Atmos. Res. 61, 125–133 (2002).
    [Crossref]
  14. H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation (Kluwer Academic, 1997).
  15. P. R. Crane, “Form and function in wind dispersed pollen,” in Pollen and Spores Form and Function, S.Blackmore and I.K.Ferguson, eds. (Academic, 1986), pp. 179–202.
  16. K. Sassen, “Remote sensing of planar ice crystal fall attitudes,” J. Meteorol. Soc. Jpn. 58, 422–429 (1980).
  17. K. Sassen, “Polarization and Brewster angle properties of light pillars,” J. Opt. Soc. Am. A 4, 570–580 (1987).
    [Crossref]
  18. R. Greenler, Rainbows, Halos, and Glories (Cambridge University Press, 1980).
  19. W. Tape, Atmospheric Halos, Vol.  64 of Antarctic Research Series (American Geophysical Union, 1994).
    [Crossref]
  20. R. P. Wodehouse, Pollen Grains (Hafner, 1959).

2008 (1)

K. Sassen, “Boreal tree pollen sensed by polarization lidar: depolarizing biogenic chaff,” Geophys. Res. Lett. 35, L18810, doi:10.1029/2008GL035085 (2008).
[Crossref]

2002 (1)

K. DiehlS. Matthias-Maser, R. Jaenicke, and S. K. Mitra, “The ice nucleating ability of pollen: Part II. Laboratory studies in immersion and contact freezing modes,” Atmos. Res. 61, 125–133 (2002).
[Crossref]

1998 (1)

1994 (3)

1991 (3)

P. M. Anderson, P. J. Bartlein, L. B. Brubaker, K. Gajewski, and J. C. Ritchie, “Vegetation–pollen–climate relationships for the arcto-boreal region of North America and Greenland,” J. Biogeogr. 18, 565–582 (1991).
[Crossref]

J. E. Lock and L. Yang, “Mie theory model of the corona,” Appl. Opt. 30, 3408–3414 (1991).
[Crossref] [PubMed]

K. Sassen, “Corona producing cirrus cloud properties derived from polarization lidar and photographic analyses,” Appl. Opt. 30, 3421–3428 (1991).
[Crossref] [PubMed]

1987 (1)

1980 (1)

K. Sassen, “Remote sensing of planar ice crystal fall attitudes,” J. Meteorol. Soc. Jpn. 58, 422–429 (1980).

Anderson, P. M.

P. M. Anderson, P. J. Bartlein, L. B. Brubaker, K. Gajewski, and J. C. Ritchie, “Vegetation–pollen–climate relationships for the arcto-boreal region of North America and Greenland,” J. Biogeogr. 18, 565–582 (1991).
[Crossref]

Bartlein, P. J.

P. M. Anderson, P. J. Bartlein, L. B. Brubaker, K. Gajewski, and J. C. Ritchie, “Vegetation–pollen–climate relationships for the arcto-boreal region of North America and Greenland,” J. Biogeogr. 18, 565–582 (1991).
[Crossref]

Bohren, C. F.

Brubaker, L. B.

P. M. Anderson, P. J. Bartlein, L. B. Brubaker, K. Gajewski, and J. C. Ritchie, “Vegetation–pollen–climate relationships for the arcto-boreal region of North America and Greenland,” J. Biogeogr. 18, 565–582 (1991).
[Crossref]

Crane, P. R.

P. R. Crane, “Form and function in wind dispersed pollen,” in Pollen and Spores Form and Function, S.Blackmore and I.K.Ferguson, eds. (Academic, 1986), pp. 179–202.

Diehl, K.

K. DiehlS. Matthias-Maser, R. Jaenicke, and S. K. Mitra, “The ice nucleating ability of pollen: Part II. Laboratory studies in immersion and contact freezing modes,” Atmos. Res. 61, 125–133 (2002).
[Crossref]

Erdtman, G.

G. Erdtman, Handbook of Palynology (Hafner, 1969).

Gajewski, K.

P. M. Anderson, P. J. Bartlein, L. B. Brubaker, K. Gajewski, and J. C. Ritchie, “Vegetation–pollen–climate relationships for the arcto-boreal region of North America and Greenland,” J. Biogeogr. 18, 565–582 (1991).
[Crossref]

Greenler, R.

R. Greenler, Rainbows, Halos, and Glories (Cambridge University Press, 1980).

Hallett, J.

Humphries, W. J.

W. J. Humphries, Physics of the Air (McGraw-Hill, 1929).

Jaenicke, R.

K. DiehlS. Matthias-Maser, R. Jaenicke, and S. K. Mitra, “The ice nucleating ability of pollen: Part II. Laboratory studies in immersion and contact freezing modes,” Atmos. Res. 61, 125–133 (2002).
[Crossref]

Kapp, R. O.

R. O. Kapp, How to Know Pollen and Spores (Brown, 1969).

Klett, J. D.

H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation (Kluwer Academic, 1997).

Lock, J. E.

Mace, G. G.

Mäkelä, V.

Matthias-Maser, S.

K. DiehlS. Matthias-Maser, R. Jaenicke, and S. K. Mitra, “The ice nucleating ability of pollen: Part II. Laboratory studies in immersion and contact freezing modes,” Atmos. Res. 61, 125–133 (2002).
[Crossref]

Mielke, B.

Mitra, S. K.

K. DiehlS. Matthias-Maser, R. Jaenicke, and S. K. Mitra, “The ice nucleating ability of pollen: Part II. Laboratory studies in immersion and contact freezing modes,” Atmos. Res. 61, 125–133 (2002).
[Crossref]

Parviainen, P.

Poellot, M. R.

Pruppacher, H. R.

H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation (Kluwer Academic, 1997).

Riikonen, M.

Ritchie, J. C.

P. M. Anderson, P. J. Bartlein, L. B. Brubaker, K. Gajewski, and J. C. Ritchie, “Vegetation–pollen–climate relationships for the arcto-boreal region of North America and Greenland,” J. Biogeogr. 18, 565–582 (1991).
[Crossref]

Ruoskanen, J.

Sassen, K.

K. Sassen, “Boreal tree pollen sensed by polarization lidar: depolarizing biogenic chaff,” Geophys. Res. Lett. 35, L18810, doi:10.1029/2008GL035085 (2008).
[Crossref]

K. Sassen, G. G. Mace, J. Hallett, and M. R. Poellot, “Corona-producing ice clouds: a case study of a cold cirrus layer,” Appl. Opt. 37, 1477–1485 (1998).
[Crossref]

K. Sassen, “Corona producing cirrus cloud properties derived from polarization lidar and photographic analyses,” Appl. Opt. 30, 3421–3428 (1991).
[Crossref] [PubMed]

K. Sassen, “Polarization and Brewster angle properties of light pillars,” J. Opt. Soc. Am. A 4, 570–580 (1987).
[Crossref]

K. Sassen, “Remote sensing of planar ice crystal fall attitudes,” J. Meteorol. Soc. Jpn. 58, 422–429 (1980).

K. Sassen, “Identifying atmospheric aerosols with polarization lidar,” in Advanced Environmental Monitoring,” Y.J.Kim and U.Platt, eds. (Springer-Verlag, 2008), 136–142.
[Crossref]

Tape, W.

W. Tape, Atmospheric Halos, Vol.  64 of Antarctic Research Series (American Geophysical Union, 1994).
[Crossref]

Tränkle, E.

Wodehouse, R. P.

R. P. Wodehouse, Pollen Grains (Hafner, 1959).

Yang, L.

Appl. Opt. (6)

Atmos. Res. (1)

K. DiehlS. Matthias-Maser, R. Jaenicke, and S. K. Mitra, “The ice nucleating ability of pollen: Part II. Laboratory studies in immersion and contact freezing modes,” Atmos. Res. 61, 125–133 (2002).
[Crossref]

Geophys. Res. Lett. (1)

K. Sassen, “Boreal tree pollen sensed by polarization lidar: depolarizing biogenic chaff,” Geophys. Res. Lett. 35, L18810, doi:10.1029/2008GL035085 (2008).
[Crossref]

J. Biogeogr. (1)

P. M. Anderson, P. J. Bartlein, L. B. Brubaker, K. Gajewski, and J. C. Ritchie, “Vegetation–pollen–climate relationships for the arcto-boreal region of North America and Greenland,” J. Biogeogr. 18, 565–582 (1991).
[Crossref]

J. Meteorol. Soc. Jpn. (1)

K. Sassen, “Remote sensing of planar ice crystal fall attitudes,” J. Meteorol. Soc. Jpn. 58, 422–429 (1980).

J. Opt. Soc. Am. A (1)

Other (9)

R. Greenler, Rainbows, Halos, and Glories (Cambridge University Press, 1980).

W. Tape, Atmospheric Halos, Vol.  64 of Antarctic Research Series (American Geophysical Union, 1994).
[Crossref]

R. P. Wodehouse, Pollen Grains (Hafner, 1959).

H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation (Kluwer Academic, 1997).

P. R. Crane, “Form and function in wind dispersed pollen,” in Pollen and Spores Form and Function, S.Blackmore and I.K.Ferguson, eds. (Academic, 1986), pp. 179–202.

W. J. Humphries, Physics of the Air (McGraw-Hill, 1929).

K. Sassen, “Identifying atmospheric aerosols with polarization lidar,” in Advanced Environmental Monitoring,” Y.J.Kim and U.Platt, eds. (Springer-Verlag, 2008), 136–142.
[Crossref]

R. O. Kapp, How to Know Pollen and Spores (Brown, 1969).

G. Erdtman, Handbook of Palynology (Hafner, 1969).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Elliptical birch tree pollen corona photographed on the afternoon of 8 May 2010 using a 70 mm telephoto lens setting. Corresponding lidar data and pollen samples are unavailable for this date.

Fig. 2
Fig. 2

Photomicrograph of predominantly paper birch pollen collected on 14 May 2008 during an elliptical corona display (see [8]). Note the three craterlike protrusions on the dominant 27 μm diameter Betula papyrifera pollen.

Fig. 3
Fig. 3

An enlarged image ( × 1500 ) of the Betula pollen design from Erdtman [11].

Fig. 4
Fig. 4

AFARS polarization ruby lidar displays of linear depolarization ratios (δ, see color scale at top) and relative returned energy (based on a logarithmic gray scale) for the indicated times on 11 May 2010. Shown are a strongly attenuating altostratus cloud composed of ice crystals above 3.0 km above mean sea level (MSL), relatively clean air ( δ < 0.05 ) just below, and a depolarizing pollen layer extending below 2.0 km MSL in the boundary layer. The site elevation is 218 m MSL, and lidar data below 1.0 km MSL (not shown) suffer from incomplete transmitter/receiver beam overlap.

Metrics