Abstract

UV optical properties of thin film layers of compound and mixed oxide materials deposited by different processes are presented. Japan Electron Optics Laboratory plasma ion assisted deposition (JEOL PIAD), electron beam with and without IAD, and pulsed DC magnetron sputtering were used. Comparisons are made with published deposition process data. Refractive indices and absorption values to as short as 145nm were measured by spectroscopic ellipsometry (SE). Electronic interband defect states are detected that are deposition-process dependent. SE might be effective in identifying UV optical film quality, especially in defining processes and material composition beneficial for high-energy excimer laser applications and environments requiring stable optical properties.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Rainer, W. Howard Lowdermilk, D. Milam, C. K. Carniglia, T. Tuttle Hart, and T. L. Lichtenstein, “Materials for optical coatings in the ultraviolet,” Appl. Opt. 24, 496–500 (1985).
    [CrossRef] [PubMed]
  2. M. Friz and F. Waibel, “Coating materials,” in Optical Interference Coatings Norbert Kaiser and Hans, Vol. 88 of Springer Series in Optical Sciences, K.Pulker, ed. (Springer Verlag, 2003).
  3. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85 (2011).
    [CrossRef] [PubMed]
  4. N. Kaiser, “Review of the fundamentals of thin-film growth,” Appl. Opt. 41, 3053–3060 (2002).
    [CrossRef] [PubMed]
  5. R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410, 86–93 (2002).
    [CrossRef]
  6. J. Wang, R. L. Maier, and H. Schreiber, “Wavefront control of SiO2-based ultraviolet narrow-bandpass filters prepared by plasma ion-assisted deposition,” Appl. Opt. 46, 175–179(2007).
    [CrossRef] [PubMed]
  7. P. Torcino, A. Gatto, M. Alvisi, G. Albrand, N. Kaiser, and C. Amra, “High-reflectivity HfO2/SiO2 ultraviolet mirrors,” Appl. Opt. 41, 3256–3261 (2002).
    [CrossRef]
  8. O. Buiu, Y. Lu, I. Z. Mitrovic, S. Hall, P. Chalker, and R. J. Potter, “Spectroellipsometric assessment of HfO2 thin films,” Thin Solid Films 515, 623–626 (2006).
    [CrossRef]
  9. H. Takeuchi, D. Ha, and T. King, “Observation of bulk HfO2 defects by spectroscopic ellipsometry,” J. Vac. Sci. Technol. A 22, 1337–1341 (2004).
    [CrossRef]
  10. A. Zuber, N. Kaiser, and J. L. Stehle, “Variable angle spectroscopic ellipsometry for deep UV characterization of dielectric coatings,” Proc. SPIE 2253, 969–975 (1994).
    [CrossRef]
  11. Final Report: “Radiation resistant solar cell coverglass,” prepared by S.F.Pellicori and C.L.Martinez, SBIR Phase II project: “Radiation Resistant Solar Cell”. Coverglass FA9453-06-C-0045. AFRL Kirtland AFB (2008).
  12. L. Gallais, J. Capoulade, J. Natoli, M. Commandré, M. Cathelinaud, C. Koc, and M. Lequime, “Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering,” Appl. Opt. 47, C107–C113 (2008).
    [CrossRef] [PubMed]
  13. B. von Blanckenhagen, D. Tonova, and J. Ullmann, “Application of the Tauc-Lorentz formulation to the interband absorption of optical coating materials,” Appl. Opt. 41, 3137–3141 (2002).
    [CrossRef] [PubMed]
  14. O. Stenzel, S. Wilbrandt, M. Schürmann, N. Kaiser, H. Ehlers, M. Mende, D. Ristau, S. Bruns, M. Vergöhl, M. Stolze, M. Held, H. Niederwald, T. Koch, W. Riggers, P. Burdack, G. Mark, R. Schäfer, S. Mewes, M. Bischoff, M. Arntzen, F. Eisenkrämer, M. Lappschies, S. Jakobs, S. Koch, B. Baumgarten, and A. Tünnermann, “Mixed oxide coatings for optics,” Appl. Opt. 50C69 (2011).
    [CrossRef] [PubMed]
  15. R. E. Klinger and C. K. Carniglia, “Optical and crystalline inhomogeneity in evaporated zirconia films,” Appl. Opt. 24, 3184–3187 (1985).
    [CrossRef] [PubMed]
  16. Compound formulation, Materion (formerly CERAC); http://materion.com.

2011

2008

2007

2006

O. Buiu, Y. Lu, I. Z. Mitrovic, S. Hall, P. Chalker, and R. J. Potter, “Spectroellipsometric assessment of HfO2 thin films,” Thin Solid Films 515, 623–626 (2006).
[CrossRef]

2004

H. Takeuchi, D. Ha, and T. King, “Observation of bulk HfO2 defects by spectroscopic ellipsometry,” J. Vac. Sci. Technol. A 22, 1337–1341 (2004).
[CrossRef]

2002

1994

A. Zuber, N. Kaiser, and J. L. Stehle, “Variable angle spectroscopic ellipsometry for deep UV characterization of dielectric coatings,” Proc. SPIE 2253, 969–975 (1994).
[CrossRef]

1985

Albrand, G.

Alvisi, M.

Amotchkina, T. V.

Amra, C.

Arntzen, M.

Baumgarten, B.

Bischoff, M.

Bruns, S.

Buiu, O.

O. Buiu, Y. Lu, I. Z. Mitrovic, S. Hall, P. Chalker, and R. J. Potter, “Spectroellipsometric assessment of HfO2 thin films,” Thin Solid Films 515, 623–626 (2006).
[CrossRef]

Burdack, P.

Capoulade, J.

Carniglia, C. K.

Cathelinaud, M.

Chalker, P.

O. Buiu, Y. Lu, I. Z. Mitrovic, S. Hall, P. Chalker, and R. J. Potter, “Spectroellipsometric assessment of HfO2 thin films,” Thin Solid Films 515, 623–626 (2006).
[CrossRef]

Commandré, M.

DeBell, G.

Ehlers, H.

Eisenkrämer, F.

Friz, M.

M. Friz and F. Waibel, “Coating materials,” in Optical Interference Coatings Norbert Kaiser and Hans, Vol. 88 of Springer Series in Optical Sciences, K.Pulker, ed. (Springer Verlag, 2003).

Gallais, L.

Gatto, A.

P. Torcino, A. Gatto, M. Alvisi, G. Albrand, N. Kaiser, and C. Amra, “High-reflectivity HfO2/SiO2 ultraviolet mirrors,” Appl. Opt. 41, 3256–3261 (2002).
[CrossRef]

R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410, 86–93 (2002).
[CrossRef]

Grilli, M. L.

Ha, D.

H. Takeuchi, D. Ha, and T. King, “Observation of bulk HfO2 defects by spectroscopic ellipsometry,” J. Vac. Sci. Technol. A 22, 1337–1341 (2004).
[CrossRef]

Hall, S.

O. Buiu, Y. Lu, I. Z. Mitrovic, S. Hall, P. Chalker, and R. J. Potter, “Spectroellipsometric assessment of HfO2 thin films,” Thin Solid Films 515, 623–626 (2006).
[CrossRef]

Hart, T. Tuttle

Heber, J.

R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410, 86–93 (2002).
[CrossRef]

Held, M.

Jakobs, S.

Kaiser, N.

King, T.

H. Takeuchi, D. Ha, and T. King, “Observation of bulk HfO2 defects by spectroscopic ellipsometry,” J. Vac. Sci. Technol. A 22, 1337–1341 (2004).
[CrossRef]

Klinger, R. E.

Koc, C.

Koch, S.

Koch, T.

Lappschies, M.

Lequime, M.

Lichtenstein, T. L.

Lowdermilk, W. Howard

Lu, Y.

O. Buiu, Y. Lu, I. Z. Mitrovic, S. Hall, P. Chalker, and R. J. Potter, “Spectroellipsometric assessment of HfO2 thin films,” Thin Solid Films 515, 623–626 (2006).
[CrossRef]

Maier, R. L.

Mark, G.

Mende, M.

Mewes, S.

Milam, D.

Mitrovic, I. Z.

O. Buiu, Y. Lu, I. Z. Mitrovic, S. Hall, P. Chalker, and R. J. Potter, “Spectroellipsometric assessment of HfO2 thin films,” Thin Solid Films 515, 623–626 (2006).
[CrossRef]

Natoli, J.

Niederwald, H.

Pervak, V.

Potter, R. J.

O. Buiu, Y. Lu, I. Z. Mitrovic, S. Hall, P. Chalker, and R. J. Potter, “Spectroellipsometric assessment of HfO2 thin films,” Thin Solid Films 515, 623–626 (2006).
[CrossRef]

Rainer, F.

Riggers, W.

Ristau, D.

Schäfer, R.

Schreiber, H.

Schürmann, M.

Stehle, J. L.

A. Zuber, N. Kaiser, and J. L. Stehle, “Variable angle spectroscopic ellipsometry for deep UV characterization of dielectric coatings,” Proc. SPIE 2253, 969–975 (1994).
[CrossRef]

Stenzel, O.

Stolze, M.

Sytchkova, A. K.

Takeuchi, H.

H. Takeuchi, D. Ha, and T. King, “Observation of bulk HfO2 defects by spectroscopic ellipsometry,” J. Vac. Sci. Technol. A 22, 1337–1341 (2004).
[CrossRef]

Thielsch, R.

R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410, 86–93 (2002).
[CrossRef]

Tikhonravov, A. V.

Tonova, D.

Torcino, P.

Trubetskov, M. K.

Tünnermann, A.

Ullmann, J.

Vergöhl, M.

von Blanckenhagen, B.

Waibel, F.

M. Friz and F. Waibel, “Coating materials,” in Optical Interference Coatings Norbert Kaiser and Hans, Vol. 88 of Springer Series in Optical Sciences, K.Pulker, ed. (Springer Verlag, 2003).

Wang, J.

Wilbrandt, S.

Zuber, A.

A. Zuber, N. Kaiser, and J. L. Stehle, “Variable angle spectroscopic ellipsometry for deep UV characterization of dielectric coatings,” Proc. SPIE 2253, 969–975 (1994).
[CrossRef]

Appl. Opt.

F. Rainer, W. Howard Lowdermilk, D. Milam, C. K. Carniglia, T. Tuttle Hart, and T. L. Lichtenstein, “Materials for optical coatings in the ultraviolet,” Appl. Opt. 24, 496–500 (1985).
[CrossRef] [PubMed]

R. E. Klinger and C. K. Carniglia, “Optical and crystalline inhomogeneity in evaporated zirconia films,” Appl. Opt. 24, 3184–3187 (1985).
[CrossRef] [PubMed]

B. von Blanckenhagen, D. Tonova, and J. Ullmann, “Application of the Tauc-Lorentz formulation to the interband absorption of optical coating materials,” Appl. Opt. 41, 3137–3141 (2002).
[CrossRef] [PubMed]

P. Torcino, A. Gatto, M. Alvisi, G. Albrand, N. Kaiser, and C. Amra, “High-reflectivity HfO2/SiO2 ultraviolet mirrors,” Appl. Opt. 41, 3256–3261 (2002).
[CrossRef]

N. Kaiser, “Review of the fundamentals of thin-film growth,” Appl. Opt. 41, 3053–3060 (2002).
[CrossRef] [PubMed]

J. Wang, R. L. Maier, and H. Schreiber, “Wavefront control of SiO2-based ultraviolet narrow-bandpass filters prepared by plasma ion-assisted deposition,” Appl. Opt. 46, 175–179(2007).
[CrossRef] [PubMed]

L. Gallais, J. Capoulade, J. Natoli, M. Commandré, M. Cathelinaud, C. Koc, and M. Lequime, “Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering,” Appl. Opt. 47, C107–C113 (2008).
[CrossRef] [PubMed]

O. Stenzel, S. Wilbrandt, M. Schürmann, N. Kaiser, H. Ehlers, M. Mende, D. Ristau, S. Bruns, M. Vergöhl, M. Stolze, M. Held, H. Niederwald, T. Koch, W. Riggers, P. Burdack, G. Mark, R. Schäfer, S. Mewes, M. Bischoff, M. Arntzen, F. Eisenkrämer, M. Lappschies, S. Jakobs, S. Koch, B. Baumgarten, and A. Tünnermann, “Mixed oxide coatings for optics,” Appl. Opt. 50C69 (2011).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85 (2011).
[CrossRef] [PubMed]

J. Vac. Sci. Technol. A

H. Takeuchi, D. Ha, and T. King, “Observation of bulk HfO2 defects by spectroscopic ellipsometry,” J. Vac. Sci. Technol. A 22, 1337–1341 (2004).
[CrossRef]

Proc. SPIE

A. Zuber, N. Kaiser, and J. L. Stehle, “Variable angle spectroscopic ellipsometry for deep UV characterization of dielectric coatings,” Proc. SPIE 2253, 969–975 (1994).
[CrossRef]

Thin Solid Films

O. Buiu, Y. Lu, I. Z. Mitrovic, S. Hall, P. Chalker, and R. J. Potter, “Spectroellipsometric assessment of HfO2 thin films,” Thin Solid Films 515, 623–626 (2006).
[CrossRef]

R. Thielsch, A. Gatto, J. Heber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410, 86–93 (2002).
[CrossRef]

Other

Compound formulation, Materion (formerly CERAC); http://materion.com.

M. Friz and F. Waibel, “Coating materials,” in Optical Interference Coatings Norbert Kaiser and Hans, Vol. 88 of Springer Series in Optical Sciences, K.Pulker, ed. (Springer Verlag, 2003).

Final Report: “Radiation resistant solar cell coverglass,” prepared by S.F.Pellicori and C.L.Martinez, SBIR Phase II project: “Radiation Resistant Solar Cell”. Coverglass FA9453-06-C-0045. AFRL Kirtland AFB (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Refractive indices of SiO 2 produced by the three deposition processes. PIAD1 and PIAD2 are a repeated deposition.

Fig. 2
Fig. 2

Extinction coefficients of SiO 2 produced by the three deposition processes.

Fig. 3
Fig. 3

Refractive indices of Lima produced by the three deposition processes. Results overlap for IAD and PIAD and differ when IAD is not applied.

Fig. 4
Fig. 4

Extinction coefficient of Lima produced by the three deposition processes.

Fig. 5
Fig. 5

Indices for Ta 2 O 5 produced by sputtering, electron beam ion assisted deposition, and PIAD.

Fig. 6
Fig. 6

Extinction coefficients for Ta 2 O 5 .

Fig. 7
Fig. 7

ZrO 2 indices as deposited by E-beam IAD, PDCMS, and PIAD.

Fig. 8
Fig. 8

ZrO 2 extinction coefficients as deposited by E-beam IAD, PDCMS, and PIAD.

Fig. 9
Fig. 9

ZrO 2 E beam indices deposited with and without IAD.

Fig. 10
Fig. 10

ZrO 2 E beam k values deposited with and without IAD.

Fig. 11
Fig. 11

Index values for ZrO 2 - Y 2 O 3 mixture with thicknesses: 675 nm (PIAD) and 350 nm (IAD).

Fig. 12
Fig. 12

As for Fig. 11, but plotting k values.

Fig. 13
Fig. 13

Indices for HfO 2 compound starting material, with IAD2 and without IAD.

Fig. 14
Fig. 14

Extinction coefficients for HfO 2 with IAD2 and without IAD.

Fig. 15
Fig. 15

Indices for HfO 2 deposited by IAD from the metal, and for the oxide compound starting materials by PIAD.

Fig. 16
Fig. 16

Extinction coefficients for HfO 2 deposited by IAD from the metal, and for the oxide compound starting materials by PIAD.

Fig. 17
Fig. 17

Index data for ZrO 2 - TiO 2 mixture.

Fig. 18
Fig. 18

Extinction coefficient data for ZrO 2 - TiO 2 mixture.

Fig. 19
Fig. 19

Index data for LaTiO 3 .

Fig. 20
Fig. 20

Extinction coefficient data for LaTiO 3 .

Tables (4)

Tables Icon

Table 1 Deposition Process Parameters

Tables Icon

Table 2 Materials (Starting) and Properties for Deposition Processes: EB with and without IAD, PDCMS, and PIAD

Tables Icon

Table 3 Comparison at Important UV Wavelengths of SiO 2 Index, Extinction Coefficient Properties Produced by Different Deposition Processes

Tables Icon

Table 4 Comparison at Important UV Wavelengths of HfO 2 Index, Extinction Coefficient Properties Produced by Different Deposition Processes

Metrics