Abstract

In this report, gold nanorods (GNRs) were used to enhance the sensitivity of the wavelength-modulated surface plasmon resonance (SPR) biosensor. The GNRs were designed and fabricated through seed- medicated growth and surface activation by a layer of a weak polyelectrolyte, poly(acrylic acid) for the attaching antibody. Rabbit anti-goat IgG was immobilized on GNRs, and sandwich assays were carried out to detect goat IgG using a wavelength-modulated SPR biosensor. The detection sensitivity of the nanorod-conjugated antibody is 25–100 times more sensitive than the SPR biosensor without GNRs. Drastic sensitivity enhancement, owing to the electromagnetic interaction between the nanotag and the sensing film, was maximized using the longitudinal plasmonic resonance of the GNRs. GNRs could significantly enhance the sensitivity of the SPR biosensor, and the maximum enhancement effect can be achieved when the longitudinal SPR peak wavelength of GNRs functionally matches the surface plasmon wavelength.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493(2008).
    [CrossRef] [PubMed]
  2. G. D. VanWiggeren, M. A. Bynum, J. P. Ertel, S. Jefferson, K. M. Robotti, E. P. Thrush, D. M. Baney, and K. P. Killeen, “A novel optical method providing for high-sensitivity and high-throughput biomolecular interaction analysis,” Sens. Actuators B Chem. 127, 341–349 (2007).
    [CrossRef]
  3. S. Slavik and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123, 10–12 (2007).
    [CrossRef]
  4. J. S. Mitchell, Y. Wu, C. J. Cook, and L. Main, “Sensitivity enhancement of surface plasmon resonance biosensing of small molecules,” Anal. Biochem. 343, 125–135(2005).
    [CrossRef] [PubMed]
  5. E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8–12 (2001).
    [CrossRef]
  6. W.-C. Law, K.-T. Yong, A. Baev, R. Hu, and P. N. Prasad, “Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods,” Opt. Express 17, 19041–19046 (2009).
    [CrossRef]
  7. C. Yu and J. Irudayaraj, “Multiplex biosensor using gold nanorods,” Anal. Chem. 79572–579 (2007).
    [CrossRef] [PubMed]
  8. J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzan, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2009).
    [CrossRef]
  9. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (GNRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962(2003).
    [CrossRef]
  10. T. K. Sau and C. J. Murphy, “Seeded high yield synthesis of short Au nanorods in aqueous solution,” Langmuir 20, 6414–6420 (2004).
    [CrossRef] [PubMed]
  11. A. Gole and C. J. Murphy, “Biotin–streptavidin-induced aggregation of gold nanorods: tuning rod–rod orientation,” Langmuir 21, 10756–10762 (2005).
    [CrossRef] [PubMed]

2009

W.-C. Law, K.-T. Yong, A. Baev, R. Hu, and P. N. Prasad, “Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods,” Opt. Express 17, 19041–19046 (2009).
[CrossRef]

J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzan, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2009).
[CrossRef]

2008

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493(2008).
[CrossRef] [PubMed]

2007

G. D. VanWiggeren, M. A. Bynum, J. P. Ertel, S. Jefferson, K. M. Robotti, E. P. Thrush, D. M. Baney, and K. P. Killeen, “A novel optical method providing for high-sensitivity and high-throughput biomolecular interaction analysis,” Sens. Actuators B Chem. 127, 341–349 (2007).
[CrossRef]

S. Slavik and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123, 10–12 (2007).
[CrossRef]

C. Yu and J. Irudayaraj, “Multiplex biosensor using gold nanorods,” Anal. Chem. 79572–579 (2007).
[CrossRef] [PubMed]

2005

J. S. Mitchell, Y. Wu, C. J. Cook, and L. Main, “Sensitivity enhancement of surface plasmon resonance biosensing of small molecules,” Anal. Biochem. 343, 125–135(2005).
[CrossRef] [PubMed]

A. Gole and C. J. Murphy, “Biotin–streptavidin-induced aggregation of gold nanorods: tuning rod–rod orientation,” Langmuir 21, 10756–10762 (2005).
[CrossRef] [PubMed]

2004

T. K. Sau and C. J. Murphy, “Seeded high yield synthesis of short Au nanorods in aqueous solution,” Langmuir 20, 6414–6420 (2004).
[CrossRef] [PubMed]

2003

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (GNRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962(2003).
[CrossRef]

2001

E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8–12 (2001).
[CrossRef]

Baev, A.

Baney, D. M.

G. D. VanWiggeren, M. A. Bynum, J. P. Ertel, S. Jefferson, K. M. Robotti, E. P. Thrush, D. M. Baney, and K. P. Killeen, “A novel optical method providing for high-sensitivity and high-throughput biomolecular interaction analysis,” Sens. Actuators B Chem. 127, 341–349 (2007).
[CrossRef]

Bynum, M. A.

G. D. VanWiggeren, M. A. Bynum, J. P. Ertel, S. Jefferson, K. M. Robotti, E. P. Thrush, D. M. Baney, and K. P. Killeen, “A novel optical method providing for high-sensitivity and high-throughput biomolecular interaction analysis,” Sens. Actuators B Chem. 127, 341–349 (2007).
[CrossRef]

Cha, S.

E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8–12 (2001).
[CrossRef]

Cook, C. J.

J. S. Mitchell, Y. Wu, C. J. Cook, and L. Main, “Sensitivity enhancement of surface plasmon resonance biosensing of small molecules,” Anal. Biochem. 343, 125–135(2005).
[CrossRef] [PubMed]

El-Sayed, M. A.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (GNRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962(2003).
[CrossRef]

Ertel, J. P.

G. D. VanWiggeren, M. A. Bynum, J. P. Ertel, S. Jefferson, K. M. Robotti, E. P. Thrush, D. M. Baney, and K. P. Killeen, “A novel optical method providing for high-sensitivity and high-throughput biomolecular interaction analysis,” Sens. Actuators B Chem. 127, 341–349 (2007).
[CrossRef]

Fendler, J. H.

E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8–12 (2001).
[CrossRef]

Gole, A.

A. Gole and C. J. Murphy, “Biotin–streptavidin-induced aggregation of gold nanorods: tuning rod–rod orientation,” Langmuir 21, 10756–10762 (2005).
[CrossRef] [PubMed]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493(2008).
[CrossRef] [PubMed]

S. Slavik and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123, 10–12 (2007).
[CrossRef]

Hu, R.

Hutter, E.

E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8–12 (2001).
[CrossRef]

Irudayaraj, J.

C. Yu and J. Irudayaraj, “Multiplex biosensor using gold nanorods,” Anal. Chem. 79572–579 (2007).
[CrossRef] [PubMed]

Jefferson, S.

G. D. VanWiggeren, M. A. Bynum, J. P. Ertel, S. Jefferson, K. M. Robotti, E. P. Thrush, D. M. Baney, and K. P. Killeen, “A novel optical method providing for high-sensitivity and high-throughput biomolecular interaction analysis,” Sens. Actuators B Chem. 127, 341–349 (2007).
[CrossRef]

Killeen, K. P.

G. D. VanWiggeren, M. A. Bynum, J. P. Ertel, S. Jefferson, K. M. Robotti, E. P. Thrush, D. M. Baney, and K. P. Killeen, “A novel optical method providing for high-sensitivity and high-throughput biomolecular interaction analysis,” Sens. Actuators B Chem. 127, 341–349 (2007).
[CrossRef]

Law, W.-C.

Liu, J. F.

E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8–12 (2001).
[CrossRef]

Liz-Marzan, L. M.

J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzan, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2009).
[CrossRef]

Main, L.

J. S. Mitchell, Y. Wu, C. J. Cook, and L. Main, “Sensitivity enhancement of surface plasmon resonance biosensing of small molecules,” Anal. Biochem. 343, 125–135(2005).
[CrossRef] [PubMed]

Mitchell, J. S.

J. S. Mitchell, Y. Wu, C. J. Cook, and L. Main, “Sensitivity enhancement of surface plasmon resonance biosensing of small molecules,” Anal. Biochem. 343, 125–135(2005).
[CrossRef] [PubMed]

Murphy, C. J.

A. Gole and C. J. Murphy, “Biotin–streptavidin-induced aggregation of gold nanorods: tuning rod–rod orientation,” Langmuir 21, 10756–10762 (2005).
[CrossRef] [PubMed]

T. K. Sau and C. J. Murphy, “Seeded high yield synthesis of short Au nanorods in aqueous solution,” Langmuir 20, 6414–6420 (2004).
[CrossRef] [PubMed]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (GNRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962(2003).
[CrossRef]

Park, J.

E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8–12 (2001).
[CrossRef]

Pastoriza-Santos, I.

J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzan, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2009).
[CrossRef]

Pérez-Juste, J.

J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzan, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2009).
[CrossRef]

Prasad, P. N.

Robotti, K. M.

G. D. VanWiggeren, M. A. Bynum, J. P. Ertel, S. Jefferson, K. M. Robotti, E. P. Thrush, D. M. Baney, and K. P. Killeen, “A novel optical method providing for high-sensitivity and high-throughput biomolecular interaction analysis,” Sens. Actuators B Chem. 127, 341–349 (2007).
[CrossRef]

Roy, D.

E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8–12 (2001).
[CrossRef]

Sau, T. K.

T. K. Sau and C. J. Murphy, “Seeded high yield synthesis of short Au nanorods in aqueous solution,” Langmuir 20, 6414–6420 (2004).
[CrossRef] [PubMed]

Slavik, S.

S. Slavik and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123, 10–12 (2007).
[CrossRef]

Thrush, E. P.

G. D. VanWiggeren, M. A. Bynum, J. P. Ertel, S. Jefferson, K. M. Robotti, E. P. Thrush, D. M. Baney, and K. P. Killeen, “A novel optical method providing for high-sensitivity and high-throughput biomolecular interaction analysis,” Sens. Actuators B Chem. 127, 341–349 (2007).
[CrossRef]

VanWiggeren, G. D.

G. D. VanWiggeren, M. A. Bynum, J. P. Ertel, S. Jefferson, K. M. Robotti, E. P. Thrush, D. M. Baney, and K. P. Killeen, “A novel optical method providing for high-sensitivity and high-throughput biomolecular interaction analysis,” Sens. Actuators B Chem. 127, 341–349 (2007).
[CrossRef]

Wu, Y.

J. S. Mitchell, Y. Wu, C. J. Cook, and L. Main, “Sensitivity enhancement of surface plasmon resonance biosensing of small molecules,” Anal. Biochem. 343, 125–135(2005).
[CrossRef] [PubMed]

Yi, J.

E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8–12 (2001).
[CrossRef]

Yong, K.-T.

Yu, C.

C. Yu and J. Irudayaraj, “Multiplex biosensor using gold nanorods,” Anal. Chem. 79572–579 (2007).
[CrossRef] [PubMed]

Anal. Biochem.

J. S. Mitchell, Y. Wu, C. J. Cook, and L. Main, “Sensitivity enhancement of surface plasmon resonance biosensing of small molecules,” Anal. Biochem. 343, 125–135(2005).
[CrossRef] [PubMed]

Anal. Chem.

C. Yu and J. Irudayaraj, “Multiplex biosensor using gold nanorods,” Anal. Chem. 79572–579 (2007).
[CrossRef] [PubMed]

Chem. Mater.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (GNRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962(2003).
[CrossRef]

Chem. Rev.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493(2008).
[CrossRef] [PubMed]

Coord. Chem. Rev.

J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzan, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2009).
[CrossRef]

J. Phys. Chem. B

E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8–12 (2001).
[CrossRef]

Langmuir

T. K. Sau and C. J. Murphy, “Seeded high yield synthesis of short Au nanorods in aqueous solution,” Langmuir 20, 6414–6420 (2004).
[CrossRef] [PubMed]

A. Gole and C. J. Murphy, “Biotin–streptavidin-induced aggregation of gold nanorods: tuning rod–rod orientation,” Langmuir 21, 10756–10762 (2005).
[CrossRef] [PubMed]

Opt. Express

Sens. Actuators B Chem.

G. D. VanWiggeren, M. A. Bynum, J. P. Ertel, S. Jefferson, K. M. Robotti, E. P. Thrush, D. M. Baney, and K. P. Killeen, “A novel optical method providing for high-sensitivity and high-throughput biomolecular interaction analysis,” Sens. Actuators B Chem. 127, 341–349 (2007).
[CrossRef]

S. Slavik and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123, 10–12 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

SPR sensor with wavelength modulation.

Fig. 2
Fig. 2

TEM pictures and UV-vis absorption spectra of Au-NRs with the LSPR peak at (a) 630, (b) 650, (c) 690, and (d) 734 nm .

Fig. 3
Fig. 3

Response curves obtained from im mobilization of GNR-conjugated anti-IgG: (a) GNR630-anti-IgG, (b) GNR650-anti-IgG, (c) GNR690-anti-IgG, (d) GNR734-anti-IgG, (e) colloidal Au-anti-IgG.

Fig. 4
Fig. 4

Amplification effect of Au-NRs.

Fig. 5
Fig. 5

Simplified representation of a plasmonic Au-NR interaction with a gold film.

Fig. 6
Fig. 6

FEA simulations of resonant Au-NR (distance from the film is 10 nm ) coupling to the film. The distribution in the X Z plane of the time-averaged electric energy density ( J / m 3 ) for (a) the film and the 20 nm radius gold nanosphere particle, (b) the film and the 20 nm diameter, 40 nm long GNR particle, and (c) the film and the 20 nm diameter, 30 nm long GNR particle. The film and the rod are shown with gray lines.

Metrics