W. Sakla, A. Sakla, and M. S. Alam, “Deterministic hyperspectral target detection using the DWT and spectral fringe-adjusted joint transform correlation,” (invited paper) Proc. SPIE 6967, 69670B (2008).

[CrossRef]

M. S. Alam, A. Bal, E. H. Horache, S. F. Goh, C. H. Loo, S. P. Regula, and A. Sharma, “Metrics for evaluating the performance of joint-transform-correlation-based target recognition and tracking algorithms,” Opt. Eng. 44, 067005 (2005).

[CrossRef]

D. Manolakis, “Taxonomy of detection algorithms for hyperspectral imaging applications,” Opt. Eng. 44, 066403 (2005).

[CrossRef]

D. Manolakis, D. Marden, and G. Shaw, “Hyperspectral image processing for automatic target detection applications,” Lincoln Lab. J. 14, 79–114 (2003).

S. Kaewpijit, J. Le Moigne, and T. El-Ghazawi, “Automatic reduction of hyperspectral imagery using wavelet spectral analysis,” IEEE Trans. Geosci. Remote Sens. 41, 863–871(2003).

[CrossRef]

L. M. Bruce, C. H. Koger, and J. Li, “Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction,” IEEE Trans. Geosci. Remote Sens. 40, 2331–2338 (2002).

[CrossRef]

D. Manolakis and G. Shaw, “Detection algorithms for hyperspectral imaging applications,” IEEE Signal Process. Mag. 19 (1), 29–43 (2002).

[CrossRef]

L. M. Bruce and J. Li, “Wavelets for computationally efficient hyperspectral derivative analysis,” IEEE Trans. Geosci. Remote Sens. 39, 1540–1546 (2001).

[CrossRef]

L. M. Bruce, C. Morgan, and S. Larsen, “Automated detection of subpixel hyperspectral targets with continuous and discrete wavelet transforms,” IEEE Trans. Geosci. Remote Sens. 39, 2217–2226 (2001).

[CrossRef]

I. C. Chein and D. C. Heinz, “Constrained subpixel target detection for remotely sensed imagery,” IEEE Trans. Geosci. Remote Sens. 38, 1144–1159 (2000).

[CrossRef]

S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEE Trans. Image Process. 9, 1532–1546 (2000).

[CrossRef]

C.-I. Chang, “An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis,” IEEE Trans. Inf. Theory 46, 1927–1932(2000).

[CrossRef]

S. M. Yamany, A. A. Farag, and S.-Y. Hsu, “A fuzzy hyperspectral classifier for automatic target recognition (ATR) systems,” Patt. Recogn. Lett. 20, 1431–1438 (1999).

[CrossRef]

M. S. Alam and M. A. Karim, “Multiple target detection using a modified fringe-adjusted joint transform correlator,” Opt. Eng. 33, 1610–1617 (1994).

[CrossRef]

R. A. DeVore, B. Jawerth, and B. J. Lucier, “Image compression through wavelet transform coding,” IEEE Trans. Inf. Theory 38, 719–746 (1992).

[CrossRef]

S. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Machine Intell. 11, 674–693 (1989).

[CrossRef]

M. S. Alam and S. Ochilov, “Spectral fringe-adjusted joint transform correlation,” Appl. Opt. 49, B18–B25 (2010).

[CrossRef]
[PubMed]

W. Sakla, A. Sakla, and M. S. Alam, “Deterministic hyperspectral target detection using the DWT and spectral fringe-adjusted joint transform correlation,” (invited paper) Proc. SPIE 6967, 69670B (2008).

[CrossRef]

M. S. Alam, A. Bal, E. H. Horache, S. F. Goh, C. H. Loo, S. P. Regula, and A. Sharma, “Metrics for evaluating the performance of joint-transform-correlation-based target recognition and tracking algorithms,” Opt. Eng. 44, 067005 (2005).

[CrossRef]

M. S. Alam and M. A. Karim, “Multiple target detection using a modified fringe-adjusted joint transform correlator,” Opt. Eng. 33, 1610–1617 (1994).

[CrossRef]

M. S. Alam and M. A. Karim, “Fringe adjusted joint transform correlation,” Appl. Opt. 32, 4344–4350 (1993).

[CrossRef]
[PubMed]

M. S. Alam, A. Bal, E. H. Horache, S. F. Goh, C. H. Loo, S. P. Regula, and A. Sharma, “Metrics for evaluating the performance of joint-transform-correlation-based target recognition and tracking algorithms,” Opt. Eng. 44, 067005 (2005).

[CrossRef]

L. M. Bruce, C. H. Koger, and J. Li, “Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction,” IEEE Trans. Geosci. Remote Sens. 40, 2331–2338 (2002).

[CrossRef]

L. M. Bruce and J. Li, “Wavelets for computationally efficient hyperspectral derivative analysis,” IEEE Trans. Geosci. Remote Sens. 39, 1540–1546 (2001).

[CrossRef]

L. M. Bruce, C. Morgan, and S. Larsen, “Automated detection of subpixel hyperspectral targets with continuous and discrete wavelet transforms,” IEEE Trans. Geosci. Remote Sens. 39, 2217–2226 (2001).

[CrossRef]

C.-I. Chang, “An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis,” IEEE Trans. Inf. Theory 46, 1927–1932(2000).

[CrossRef]

C.-I. Chang, Hyperspectral Imaging: Techniques for Spectral Detection and Classification (Kluwer Academic/Plenum, 2003).

S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEE Trans. Image Process. 9, 1532–1546 (2000).

[CrossRef]

T. Chang and C. Kuo, “Texture analysis and classification with tree-structured wavelet transform,” IEEE Trans. Image Process. 2, 429–441 (1993).

[CrossRef]
[PubMed]

I. C. Chein and D. C. Heinz, “Constrained subpixel target detection for remotely sensed imagery,” IEEE Trans. Geosci. Remote Sens. 38, 1144–1159 (2000).

[CrossRef]

R. A. DeVore, B. Jawerth, and B. J. Lucier, “Image compression through wavelet transform coding,” IEEE Trans. Inf. Theory 38, 719–746 (1992).

[CrossRef]

S. Kaewpijit, J. Le Moigne, and T. El-Ghazawi, “Automatic reduction of hyperspectral imagery using wavelet spectral analysis,” IEEE Trans. Geosci. Remote Sens. 41, 863–871(2003).

[CrossRef]

S. M. Yamany, A. A. Farag, and S.-Y. Hsu, “A fuzzy hyperspectral classifier for automatic target recognition (ATR) systems,” Patt. Recogn. Lett. 20, 1431–1438 (1999).

[CrossRef]

M. S. Alam, A. Bal, E. H. Horache, S. F. Goh, C. H. Loo, S. P. Regula, and A. Sharma, “Metrics for evaluating the performance of joint-transform-correlation-based target recognition and tracking algorithms,” Opt. Eng. 44, 067005 (2005).

[CrossRef]

I. C. Chein and D. C. Heinz, “Constrained subpixel target detection for remotely sensed imagery,” IEEE Trans. Geosci. Remote Sens. 38, 1144–1159 (2000).

[CrossRef]

M. S. Alam, A. Bal, E. H. Horache, S. F. Goh, C. H. Loo, S. P. Regula, and A. Sharma, “Metrics for evaluating the performance of joint-transform-correlation-based target recognition and tracking algorithms,” Opt. Eng. 44, 067005 (2005).

[CrossRef]

S. M. Yamany, A. A. Farag, and S.-Y. Hsu, “A fuzzy hyperspectral classifier for automatic target recognition (ATR) systems,” Patt. Recogn. Lett. 20, 1431–1438 (1999).

[CrossRef]

A. K. Jain, Fundamentals of Digital Image Processing(Prentice-Hall, 1989).

R. A. DeVore, B. Jawerth, and B. J. Lucier, “Image compression through wavelet transform coding,” IEEE Trans. Inf. Theory 38, 719–746 (1992).

[CrossRef]

S. Kaewpijit, J. Le Moigne, and T. El-Ghazawi, “Automatic reduction of hyperspectral imagery using wavelet spectral analysis,” IEEE Trans. Geosci. Remote Sens. 41, 863–871(2003).

[CrossRef]

L. M. Bruce, C. H. Koger, and J. Li, “Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction,” IEEE Trans. Geosci. Remote Sens. 40, 2331–2338 (2002).

[CrossRef]

M. Vetterli and J. Kovacevic, Wavelets and Subband Coding (Prentice-Hall, 1995).

T. Chang and C. Kuo, “Texture analysis and classification with tree-structured wavelet transform,” IEEE Trans. Image Process. 2, 429–441 (1993).

[CrossRef]
[PubMed]

L. M. Bruce, C. Morgan, and S. Larsen, “Automated detection of subpixel hyperspectral targets with continuous and discrete wavelet transforms,” IEEE Trans. Geosci. Remote Sens. 39, 2217–2226 (2001).

[CrossRef]

S. Kaewpijit, J. Le Moigne, and T. El-Ghazawi, “Automatic reduction of hyperspectral imagery using wavelet spectral analysis,” IEEE Trans. Geosci. Remote Sens. 41, 863–871(2003).

[CrossRef]

L. M. Bruce, C. H. Koger, and J. Li, “Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction,” IEEE Trans. Geosci. Remote Sens. 40, 2331–2338 (2002).

[CrossRef]

L. M. Bruce and J. Li, “Wavelets for computationally efficient hyperspectral derivative analysis,” IEEE Trans. Geosci. Remote Sens. 39, 1540–1546 (2001).

[CrossRef]

M. S. Alam, A. Bal, E. H. Horache, S. F. Goh, C. H. Loo, S. P. Regula, and A. Sharma, “Metrics for evaluating the performance of joint-transform-correlation-based target recognition and tracking algorithms,” Opt. Eng. 44, 067005 (2005).

[CrossRef]

R. A. DeVore, B. Jawerth, and B. J. Lucier, “Image compression through wavelet transform coding,” IEEE Trans. Inf. Theory 38, 719–746 (1992).

[CrossRef]

S. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Machine Intell. 11, 674–693 (1989).

[CrossRef]

S. Mallat, A Wavelet Tour of Signal Processing, 2nd. ed.(Academic, 1999).

D. Manolakis, “Taxonomy of detection algorithms for hyperspectral imaging applications,” Opt. Eng. 44, 066403 (2005).

[CrossRef]

D. Manolakis, D. Marden, and G. Shaw, “Hyperspectral image processing for automatic target detection applications,” Lincoln Lab. J. 14, 79–114 (2003).

D. Manolakis and G. Shaw, “Detection algorithms for hyperspectral imaging applications,” IEEE Signal Process. Mag. 19 (1), 29–43 (2002).

[CrossRef]

D. Manolakis, D. Marden, and G. Shaw, “Hyperspectral image processing for automatic target detection applications,” Lincoln Lab. J. 14, 79–114 (2003).

L. M. Bruce, C. Morgan, and S. Larsen, “Automated detection of subpixel hyperspectral targets with continuous and discrete wavelet transforms,” IEEE Trans. Geosci. Remote Sens. 39, 2217–2226 (2001).

[CrossRef]

M. S. Alam, A. Bal, E. H. Horache, S. F. Goh, C. H. Loo, S. P. Regula, and A. Sharma, “Metrics for evaluating the performance of joint-transform-correlation-based target recognition and tracking algorithms,” Opt. Eng. 44, 067005 (2005).

[CrossRef]

W. Sakla, A. Sakla, and M. S. Alam, “Deterministic hyperspectral target detection using the DWT and spectral fringe-adjusted joint transform correlation,” (invited paper) Proc. SPIE 6967, 69670B (2008).

[CrossRef]

W. Sakla, A. Sakla, and M. S. Alam, “Deterministic hyperspectral target detection using the DWT and spectral fringe-adjusted joint transform correlation,” (invited paper) Proc. SPIE 6967, 69670B (2008).

[CrossRef]

R. A. Schowengerdt, Remote Sensing, 2nd ed. (Academic, 1997).

M. S. Alam, A. Bal, E. H. Horache, S. F. Goh, C. H. Loo, S. P. Regula, and A. Sharma, “Metrics for evaluating the performance of joint-transform-correlation-based target recognition and tracking algorithms,” Opt. Eng. 44, 067005 (2005).

[CrossRef]

D. Manolakis, D. Marden, and G. Shaw, “Hyperspectral image processing for automatic target detection applications,” Lincoln Lab. J. 14, 79–114 (2003).

D. Manolakis and G. Shaw, “Detection algorithms for hyperspectral imaging applications,” IEEE Signal Process. Mag. 19 (1), 29–43 (2002).

[CrossRef]

S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEE Trans. Image Process. 9, 1532–1546 (2000).

[CrossRef]

M. Vetterli and J. Kovacevic, Wavelets and Subband Coding (Prentice-Hall, 1995).

S. M. Yamany, A. A. Farag, and S.-Y. Hsu, “A fuzzy hyperspectral classifier for automatic target recognition (ATR) systems,” Patt. Recogn. Lett. 20, 1431–1438 (1999).

[CrossRef]

S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEE Trans. Image Process. 9, 1532–1546 (2000).

[CrossRef]

M. S. Alam and M. A. Karim, “Fringe adjusted joint transform correlation,” Appl. Opt. 32, 4344–4350 (1993).

[CrossRef]
[PubMed]

S. Jutamulia, G. M. Storti, D. A. Gregory, and J. C. Kirsch, “Illumination-independent high-efficiency joint transform correlator,” Appl. Opt. 30, 4173–4175 (1991).

[CrossRef]
[PubMed]

C. S. Weaver and J. W. Goodman, “A technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966).

[CrossRef]
[PubMed]

M. S. Alam and S. Ochilov, “Spectral fringe-adjusted joint transform correlation,” Appl. Opt. 49, B18–B25 (2010).

[CrossRef]
[PubMed]

D. Manolakis and G. Shaw, “Detection algorithms for hyperspectral imaging applications,” IEEE Signal Process. Mag. 19 (1), 29–43 (2002).

[CrossRef]

L. M. Bruce and J. Li, “Wavelets for computationally efficient hyperspectral derivative analysis,” IEEE Trans. Geosci. Remote Sens. 39, 1540–1546 (2001).

[CrossRef]

L. M. Bruce, C. H. Koger, and J. Li, “Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction,” IEEE Trans. Geosci. Remote Sens. 40, 2331–2338 (2002).

[CrossRef]

S. Kaewpijit, J. Le Moigne, and T. El-Ghazawi, “Automatic reduction of hyperspectral imagery using wavelet spectral analysis,” IEEE Trans. Geosci. Remote Sens. 41, 863–871(2003).

[CrossRef]

L. M. Bruce, C. Morgan, and S. Larsen, “Automated detection of subpixel hyperspectral targets with continuous and discrete wavelet transforms,” IEEE Trans. Geosci. Remote Sens. 39, 2217–2226 (2001).

[CrossRef]

I. C. Chein and D. C. Heinz, “Constrained subpixel target detection for remotely sensed imagery,” IEEE Trans. Geosci. Remote Sens. 38, 1144–1159 (2000).

[CrossRef]

S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEE Trans. Image Process. 9, 1532–1546 (2000).

[CrossRef]

T. Chang and C. Kuo, “Texture analysis and classification with tree-structured wavelet transform,” IEEE Trans. Image Process. 2, 429–441 (1993).

[CrossRef]
[PubMed]

R. A. DeVore, B. Jawerth, and B. J. Lucier, “Image compression through wavelet transform coding,” IEEE Trans. Inf. Theory 38, 719–746 (1992).

[CrossRef]

C.-I. Chang, “An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis,” IEEE Trans. Inf. Theory 46, 1927–1932(2000).

[CrossRef]

S. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Machine Intell. 11, 674–693 (1989).

[CrossRef]

D. Manolakis, D. Marden, and G. Shaw, “Hyperspectral image processing for automatic target detection applications,” Lincoln Lab. J. 14, 79–114 (2003).

D. Manolakis, “Taxonomy of detection algorithms for hyperspectral imaging applications,” Opt. Eng. 44, 066403 (2005).

[CrossRef]

M. S. Alam and M. A. Karim, “Multiple target detection using a modified fringe-adjusted joint transform correlator,” Opt. Eng. 33, 1610–1617 (1994).

[CrossRef]

M. S. Alam, A. Bal, E. H. Horache, S. F. Goh, C. H. Loo, S. P. Regula, and A. Sharma, “Metrics for evaluating the performance of joint-transform-correlation-based target recognition and tracking algorithms,” Opt. Eng. 44, 067005 (2005).

[CrossRef]

S. M. Yamany, A. A. Farag, and S.-Y. Hsu, “A fuzzy hyperspectral classifier for automatic target recognition (ATR) systems,” Patt. Recogn. Lett. 20, 1431–1438 (1999).

[CrossRef]

W. Sakla, A. Sakla, and M. S. Alam, “Deterministic hyperspectral target detection using the DWT and spectral fringe-adjusted joint transform correlation,” (invited paper) Proc. SPIE 6967, 69670B (2008).

[CrossRef]

C.-I. Chang, Hyperspectral Imaging: Techniques for Spectral Detection and Classification (Kluwer Academic/Plenum, 2003).

A. K. Jain, Fundamentals of Digital Image Processing(Prentice-Hall, 1989).

M. Vetterli and J. Kovacevic, Wavelets and Subband Coding (Prentice-Hall, 1995).

S. Mallat, A Wavelet Tour of Signal Processing, 2nd. ed.(Academic, 1999).

ITRES Research, http://www.itres.com, accessed in 2007.

R. A. Schowengerdt, Remote Sensing, 2nd ed. (Academic, 1997).