Abstract

This work evidences the suitability of applying a single twisted nematic liquid-crystal (TN-LC) device to obtain dynamic polarimeters with high accuracy and repeatability. Different Stokes polarimeter setups based on a TN-LC device are optimized, leading to the minimization of the noise propagated from intensity measurements to the Stokes vector calculations. To this aim, we revise the influence of working out of normal incidence and of performing a double pass of the light beam through the LC device. In addition, because transmissive TN-LC devices act as elliptical retarders, an extra study is performed. It analyzes the influence of projecting the light exiting from the TN-LC device over elliptical states of polarization. Finally, diverse optimized polarimeters are experimentally implemented and validated by measuring different states of partially and fully polarized light. The analysis is conducted both for monochromatic (He–Ne laser) and LED light sources, proving the potential of polarimeters based on a single TN-LC device.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Twietmeyer, R. A. Chipman, Ann E. Elsner, Y. Zhao, and D. VanNasdale, “Mueller matrix retinal imager with optimized polarization conditions,” Opt. Express 16, 21339–21354 (2008).
    [CrossRef] [PubMed]
  2. M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5, 1423–1426 (2008).
    [CrossRef]
  3. A. Márquez, I. Moreno, C. Iemmi, A. Lizana, J. Campos, and M. J. Yzuel, “Mueller–Stokes characterization and optimization of a liquid crystal on silicon display showing depolarization,” Opt. Express 16, 1669–1685 (2008).
    [CrossRef] [PubMed]
  4. P. Y. Gerligand, M. Smith, and R. Chipman, “Polarimetric images of a cone,” Opt. Express 4, 420–430 (1999).
    [CrossRef] [PubMed]
  5. A. Peinado, A. Lizana, J. Vidal, C. Iemmi, and J. Campos, “Optimization and performance criteria of a Stokes polarimeter based on two variable retarders,” Opt. Express 18, 9815–9830 (2010).
    [CrossRef] [PubMed]
  6. J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A 2, 216–222(2000).
    [CrossRef]
  7. A. De Martino, Y. K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28, 616–618 (2003).
    [CrossRef] [PubMed]
  8. A. M. Gandorfer, “Ferroelectric retarders as an alternative to piezoelastic modulators for use in solar Stokes vector polarimetry,” Opt. Eng. 38, 1402–1408 (1999).
    [CrossRef]
  9. E. Garcia-Caurel, A. De Martino, and B. Drévillon, “Spectroscopic Mueller polarimeter based on liquid crystal devices,” Thin Solid Films 455–456, 120–123 (2004).
    [CrossRef]
  10. L. Gendre, A. Foulonneau, and L. Bigué, “Imaging linear polarimetry using a single ferroelectric liquid crystal modulator,” Appl. Opt. 49, 4687–4699 (2010).
    [CrossRef] [PubMed]
  11. L. B. Wolff and A. G. Andreou, “Polarization camera sensors,” Image Vis. Comp. 13, 497–510 (1995).
    [CrossRef]
  12. S. L. Blakeney, S. E. Day, and J. N. Stewart, “Determination of unknown input polarisation using a twisted nematic liquid crystal display with fixed components,” Opt. Commun. 214, 1–8 (2002).
    [CrossRef]
  13. D. Goldstein, Polarized Light (Marcel Dekker, 2003).
    [CrossRef]
  14. A. Lizana, N. Martín, M. Estapé, E. Fernández, I. Moreno, A. Márquez, C. Iemmi, J. Campos, and M. J. Yzuel, “Influence of the incident angle in the performance of liquid crystal on silicon displays,” Opt. Express 17, 8491–8505 (2009).
    [CrossRef] [PubMed]
  15. D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25, 802–804(2000).
    [CrossRef]
  16. S. Huard, Polarisation de la Lumière (Masson, 1993).
  17. J. A. Davis, I. Moreno, and P. Tsai, “Polarization eigenstates for twisted-nematic liquid-crystal displays,” Appl. Opt. 37, 937–945 (1998).
    [CrossRef]
  18. S. Stallinga, “Equivalent retarder approach to reflective liquid crystal displays,” J. Appl. Phys. 86, 4756–4766(1999).
    [CrossRef]
  19. C. Soutar and K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704–2712 (1994).
    [CrossRef]
  20. K. Lu and B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 1107–1113 (1990).
    [CrossRef]

2010 (2)

2009 (1)

2008 (3)

2004 (1)

E. Garcia-Caurel, A. De Martino, and B. Drévillon, “Spectroscopic Mueller polarimeter based on liquid crystal devices,” Thin Solid Films 455–456, 120–123 (2004).
[CrossRef]

2003 (1)

2002 (1)

S. L. Blakeney, S. E. Day, and J. N. Stewart, “Determination of unknown input polarisation using a twisted nematic liquid crystal display with fixed components,” Opt. Commun. 214, 1–8 (2002).
[CrossRef]

2000 (2)

1999 (3)

P. Y. Gerligand, M. Smith, and R. Chipman, “Polarimetric images of a cone,” Opt. Express 4, 420–430 (1999).
[CrossRef] [PubMed]

A. M. Gandorfer, “Ferroelectric retarders as an alternative to piezoelastic modulators for use in solar Stokes vector polarimetry,” Opt. Eng. 38, 1402–1408 (1999).
[CrossRef]

S. Stallinga, “Equivalent retarder approach to reflective liquid crystal displays,” J. Appl. Phys. 86, 4756–4766(1999).
[CrossRef]

1998 (1)

1995 (1)

L. B. Wolff and A. G. Andreou, “Polarization camera sensors,” Image Vis. Comp. 13, 497–510 (1995).
[CrossRef]

1994 (1)

C. Soutar and K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704–2712 (1994).
[CrossRef]

1990 (1)

K. Lu and B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 1107–1113 (1990).
[CrossRef]

Anastasiadou, M.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5, 1423–1426 (2008).
[CrossRef]

Andreou, A. G.

L. B. Wolff and A. G. Andreou, “Polarization camera sensors,” Image Vis. Comp. 13, 497–510 (1995).
[CrossRef]

Bigué, L.

Blakeney, S. L.

S. L. Blakeney, S. E. Day, and J. N. Stewart, “Determination of unknown input polarisation using a twisted nematic liquid crystal display with fixed components,” Opt. Commun. 214, 1–8 (2002).
[CrossRef]

Bueno, J. M.

J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A 2, 216–222(2000).
[CrossRef]

Campos, J.

Chipman, R.

Chipman, R. A.

Clement, D.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5, 1423–1426 (2008).
[CrossRef]

Cohen, H.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5, 1423–1426 (2008).
[CrossRef]

Davis, J. A.

Day, S. E.

S. L. Blakeney, S. E. Day, and J. N. Stewart, “Determination of unknown input polarisation using a twisted nematic liquid crystal display with fixed components,” Opt. Commun. 214, 1–8 (2002).
[CrossRef]

De Martino, A.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5, 1423–1426 (2008).
[CrossRef]

E. Garcia-Caurel, A. De Martino, and B. Drévillon, “Spectroscopic Mueller polarimeter based on liquid crystal devices,” Thin Solid Films 455–456, 120–123 (2004).
[CrossRef]

A. De Martino, Y. K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28, 616–618 (2003).
[CrossRef] [PubMed]

Dereniak, E. L.

Descour, M. R.

Drévillon, B.

E. Garcia-Caurel, A. De Martino, and B. Drévillon, “Spectroscopic Mueller polarimeter based on liquid crystal devices,” Thin Solid Films 455–456, 120–123 (2004).
[CrossRef]

A. De Martino, Y. K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28, 616–618 (2003).
[CrossRef] [PubMed]

Dreyfuss, J.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5, 1423–1426 (2008).
[CrossRef]

Elsner, Ann E.

Estapé, M.

Fernández, E.

Foulonneau, A.

Gandorfer, A. M.

A. M. Gandorfer, “Ferroelectric retarders as an alternative to piezoelastic modulators for use in solar Stokes vector polarimetry,” Opt. Eng. 38, 1402–1408 (1999).
[CrossRef]

Garcia-Caurel, E.

E. Garcia-Caurel, A. De Martino, and B. Drévillon, “Spectroscopic Mueller polarimeter based on liquid crystal devices,” Thin Solid Films 455–456, 120–123 (2004).
[CrossRef]

A. De Martino, Y. K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28, 616–618 (2003).
[CrossRef] [PubMed]

Gendre, L.

Gerligand, P. Y.

Goldstein, D.

D. Goldstein, Polarized Light (Marcel Dekker, 2003).
[CrossRef]

Huard, S.

S. Huard, Polarisation de la Lumière (Masson, 1993).

Huynh, B.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5, 1423–1426 (2008).
[CrossRef]

Iemmi, C.

Kemme, S. A.

Kim, Y. K.

Laude, B.

Laude-Boulesteix, B.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5, 1423–1426 (2008).
[CrossRef]

Liège, F.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5, 1423–1426 (2008).
[CrossRef]

Lizana, A.

Lu, K.

C. Soutar and K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704–2712 (1994).
[CrossRef]

K. Lu and B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 1107–1113 (1990).
[CrossRef]

Márquez, A.

Martín, N.

Moreno, I.

Nazac, A.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5, 1423–1426 (2008).
[CrossRef]

Peinado, A.

Phipps, G. S.

Quang, N.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5, 1423–1426 (2008).
[CrossRef]

Sabatke, D. S.

Saleh, B. E. A.

K. Lu and B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 1107–1113 (1990).
[CrossRef]

Schwartz, L.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5, 1423–1426 (2008).
[CrossRef]

Smith, M.

Soutar, C.

C. Soutar and K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704–2712 (1994).
[CrossRef]

Stallinga, S.

S. Stallinga, “Equivalent retarder approach to reflective liquid crystal displays,” J. Appl. Phys. 86, 4756–4766(1999).
[CrossRef]

Stewart, J. N.

S. L. Blakeney, S. E. Day, and J. N. Stewart, “Determination of unknown input polarisation using a twisted nematic liquid crystal display with fixed components,” Opt. Commun. 214, 1–8 (2002).
[CrossRef]

Sweatt, W. C.

Tsai, P.

Twietmeyer, K. M.

VanNasdale, D.

Vidal, J.

Wolff, L. B.

L. B. Wolff and A. G. Andreou, “Polarization camera sensors,” Image Vis. Comp. 13, 497–510 (1995).
[CrossRef]

Yzuel, M. J.

Zhao, Y.

Appl. Opt. (2)

Image Vis. Comp. (1)

L. B. Wolff and A. G. Andreou, “Polarization camera sensors,” Image Vis. Comp. 13, 497–510 (1995).
[CrossRef]

J. Appl. Phys. (1)

S. Stallinga, “Equivalent retarder approach to reflective liquid crystal displays,” J. Appl. Phys. 86, 4756–4766(1999).
[CrossRef]

J. Opt. A (1)

J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A 2, 216–222(2000).
[CrossRef]

Opt. Commun. (1)

S. L. Blakeney, S. E. Day, and J. N. Stewart, “Determination of unknown input polarisation using a twisted nematic liquid crystal display with fixed components,” Opt. Commun. 214, 1–8 (2002).
[CrossRef]

Opt. Eng. (3)

C. Soutar and K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704–2712 (1994).
[CrossRef]

K. Lu and B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 1107–1113 (1990).
[CrossRef]

A. M. Gandorfer, “Ferroelectric retarders as an alternative to piezoelastic modulators for use in solar Stokes vector polarimetry,” Opt. Eng. 38, 1402–1408 (1999).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Phys. Status Solidi C (1)

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5, 1423–1426 (2008).
[CrossRef]

Thin Solid Films (1)

E. Garcia-Caurel, A. De Martino, and B. Drévillon, “Spectroscopic Mueller polarimeter based on liquid crystal devices,” Thin Solid Films 455–456, 120–123 (2004).
[CrossRef]

Other (2)

D. Goldstein, Polarized Light (Marcel Dekker, 2003).
[CrossRef]

S. Huard, Polarisation de la Lumière (Masson, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Different Stokes polarimeter setups containing a single TN-LC, an LP, and a radiometer: (a) normal incidence, (b) oblique incidence at α i on the TN-LC, (c) double pass through the TN-LC device by means of a reflection on a mirror, (d) normal incidence and inserting a QWP [ WP ( λ / 4 ) ] between the TN-LC and the polarizer, (e) TN-LC oblique incidence including a QWP, and (f) TN-LC double pass including a QWP.

Fig. 2
Fig. 2

Optimized projection SOPs curve by addressing a sequence of voltages ( 1 5.5 V ) for polarimeters (a) A, (b) B, (c) C, (d) D, (e) E, and (f) F. The vertices of each inscribed irregular tetrahedron are the four optimal projection polarization states achieved as a solution of the EWV minimization process.

Fig. 3
Fig. 3

Stokes parameter variance average as a function of different polarimeters, using a linearly polarized SOP (rhombi) or an elliptically polarized SOP (squares) to project over the exiting light from the TN-LC device.

Fig. 4
Fig. 4

EWV dependence on the twist angle of the TN-LC device. (Actual twist angle value used in the implemented polarimeters in Section 3: 93.2 ° .)

Fig. 5
Fig. 5

EWV dependence on the maximum birefringence of the TN-LC device. (Actual maximum birefringence value used in the implemented polarimeters in Section 3: 276.5 ° .)

Tables (6)

Tables Icon

Table 1 Optimization Results by Minimizing the EWV Indicator Corresponding to Polarimeters A–F (Using Four Projection SOPs) a

Tables Icon

Table 2 Stokes Parameters of Three Different SOPs (the Stokes Vectors Are Normalized) Measured by Each Implemented Polarimeter (A, B, C, D, E, and F), when Monochromatic Light Is Employed a

Tables Icon

Table 3 Normalized Stokes Parameters (Fully Polarized Contribution) and DOP Measurements of Two Different SOPs Partially Polarized by Means of Polarimeter D and the Commercial Polarimeter (Thorlabs), when Monochromatic Light Is Used

Tables Icon

Table 4 Stokes Parameters of Three Different States of Polarization (the Stokes Vectors are Normalized) Measured by Polarimeter D and the Commercial Polarimeter (Thorlabs), when They are Illuminated with an LED Light Source

Tables Icon

Table 5 Normalized Stokes Parameters (Fully Polarized Contribution) and DOP Measurements of Two Different SOPs Partially Polarized by Means of Polarimeter D and the Commercial Polarimeter (Thorlabs), when an LED Light Source Is Employed

Tables Icon

Table 6 Features of the TN-LC Device Employed in the Polarimeter Setups

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S = A 1 I .
EWV ( A ) = j 1 σ j 2 .
CN ( A ) = σ max σ min .
DOP = S 1 2 + S 2 2 + S 3 2 S 0 ; 0 DOP 1.

Metrics