Abstract

Femtosecond wavelength conversion in the telecommunication bands via four-wave mixing in a 1.5mm long silicon rib waveguide is theoretically investigated. Compared with picosecond pulses, the spectra are greatly broadened for the femtosecond pulses due to self-phase modulation and cross-phase modulation in the four-wave mixing process, and it is difficult to achieve a wavelength converter when the pump and signal pulse widths are close to or less than 100fs in the telecommunication bands because of the spectral overlap. The influence of the spectral broadening on the conversion efficiency is also investigated. The conversion bandwidth of 220nm and peak conversion efficiency of 8dB are demonstrated by using 500fs pulses with higher efficiency than the picosecond pulse-pumped efficiency when the repetition rate is 100GHz.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
    [CrossRef]
  2. V. Raghunathan, O. Boyraz, and B. Jalali, “20 dB on-off Raman amplification in silicon waveguides,” in Proceedings of the Conference on Lasers and Electro-optics (CLEO), Vol. 1(IEEE, 2005), pp. 349–351.
    [CrossRef]
  3. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
    [CrossRef] [PubMed]
  4. T. K. Liang and H. K. Tsang, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for auto-correlation measurements,” Appl. Phys. Lett. 81, 1323–1325 (2002).
    [CrossRef]
  5. D. Dimitripoulos, R. Jhavery, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
    [CrossRef]
  6. Y. Liu and H. Tsang, “Time dependent density of free carriers generated by two photon absorption in silicon waveguides,” Appl. Phys. Lett. 90, 211105 (2007).
    [CrossRef]
  7. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
    [CrossRef]
  8. I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, and R. M. Osgood Jr., “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express 14, 12380–12387 (2006).
    [CrossRef] [PubMed]
  9. L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32, 391–393 (2007).
    [CrossRef] [PubMed]
  10. L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32, 2031–2033 (2007).
    [CrossRef] [PubMed]
  11. M. Khorasaninejad and S. S. Saini, “All-optical logic gates using nonlinear effects in silicon-on-insulator waveguides,” Appl. Opt. 48, F31–F36 (2009).
    [CrossRef]
  12. I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, and R. M. Osgood Jr., “Cross-phase modulation-induced spectral and temporal modulation effects on co-propagating femtosecond pulses in silicon photonic wires,” Opt. Express 15, 1135–1146(2007).
    [CrossRef] [PubMed]
  13. L. Yin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Optical switching using nonlinear polarization rotation inside silicon waveguides,” Opt. Lett. 34, 476–478 (2009).
    [CrossRef] [PubMed]
  14. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637(2005).
    [CrossRef] [PubMed]
  15. Q. Lin, T. J. Johnson, R. Perahia, C. P. Michael, and O. J. Painter, “A proposal for highly tunable optical parametric oscillation in silicon micro-resonators,” Opt. Express 16, 10596–10610 (2008).
    [CrossRef] [PubMed]
  16. H. Rong, Y. Kuo, A. Liu, and M. Paniccia, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express 14, 1182–1188 (2006).
    [CrossRef] [PubMed]
  17. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18, 1904–1908 (2010).
    [CrossRef] [PubMed]
  18. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photon. 4, 561–564 (2010).
    [CrossRef]
  19. R. L. Espinola, J. I. Dadap, R. M. Osgood Jr., S. J. McNab, and Y. A. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13, 4341–4349 (2005).
    [CrossRef] [PubMed]
  20. Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express 14, 11721–11726(2006).
    [CrossRef] [PubMed]
  21. S.-M. Gao, E.-K. Tien, Q. Song, Y.-W. Huang, and S. K. Kalyoncu, “Experiment of C-band wavelength conversion in a silicon waveguide pumped by dispersed femtosecond laser pulse,” Chin. Phys. Lett. 27, 124206 (2010).
    [CrossRef]
  22. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
    [CrossRef] [PubMed]
  23. X. Liu, R. M. Osgood Jr., Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photon. 4, 557–560 (2010).
    [CrossRef]
  24. W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16, 16735–16745(2008).
    [CrossRef] [PubMed]
  25. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14, 4786–4799 (2006).
    [CrossRef] [PubMed]
  26. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express 15, 16604–16644 (2007).
    [CrossRef] [PubMed]
  27. X. Sang and O. Boyraz, “Gain and noise characteristics of high-bit-rate silicon parametric amplifiers,” Opt. Express 16, 13122–13132 (2008).
    [CrossRef] [PubMed]
  28. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Elsevier, 2007).
  29. N. C. Panoiu, X. Liu, and R. M. Osgood Jr., “Self-steepening of ultrashort pulses in silicon photonic nanowires,” Opt. Lett. 34, 947–949 (2009).
    [CrossRef] [PubMed]

2010 (5)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
[CrossRef]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photon. 4, 561–564 (2010).
[CrossRef]

S.-M. Gao, E.-K. Tien, Q. Song, Y.-W. Huang, and S. K. Kalyoncu, “Experiment of C-band wavelength conversion in a silicon waveguide pumped by dispersed femtosecond laser pulse,” Chin. Phys. Lett. 27, 124206 (2010).
[CrossRef]

X. Liu, R. M. Osgood Jr., Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photon. 4, 557–560 (2010).
[CrossRef]

A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18, 1904–1908 (2010).
[CrossRef] [PubMed]

2009 (3)

2008 (3)

2007 (5)

2006 (5)

2005 (4)

R. L. Espinola, J. I. Dadap, R. M. Osgood Jr., S. J. McNab, and Y. A. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13, 4341–4349 (2005).
[CrossRef] [PubMed]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637(2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[CrossRef] [PubMed]

D. Dimitripoulos, R. Jhavery, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
[CrossRef]

2002 (2)

T. K. Liang and H. K. Tsang, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for auto-correlation measurements,” Appl. Phys. Lett. 81, 1323–1325 (2002).
[CrossRef]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Agrawal, G. P.

Alic, N.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photon. 4, 561–564 (2010).
[CrossRef]

Asghari, M.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Boggio, J. M. C.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photon. 4, 561–564 (2010).
[CrossRef]

Boyraz, O.

X. Sang and O. Boyraz, “Gain and noise characteristics of high-bit-rate silicon parametric amplifiers,” Opt. Express 16, 13122–13132 (2008).
[CrossRef] [PubMed]

V. Raghunathan, O. Boyraz, and B. Jalali, “20 dB on-off Raman amplification in silicon waveguides,” in Proceedings of the Conference on Lasers and Electro-optics (CLEO), Vol. 1(IEEE, 2005), pp. 349–351.
[CrossRef]

Chen, X.

Claps, R.

D. Dimitripoulos, R. Jhavery, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
[CrossRef]

Cohen, O.

Dadap, J. I.

Day, I. E.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Dimitripoulos, D.

D. Dimitripoulos, R. Jhavery, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
[CrossRef]

Divliansky, I. B.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photon. 4, 561–564 (2010).
[CrossRef]

Drake, J.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Espinola, R. L.

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[CrossRef] [PubMed]

Fauchet, P. M.

Foster, M. A.

A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18, 1904–1908 (2010).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
[CrossRef]

Fukuda, H.

Gaeta, A. L.

A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18, 1904–1908 (2010).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Gao, S.-M.

S.-M. Gao, E.-K. Tien, Q. Song, Y.-W. Huang, and S. K. Kalyoncu, “Experiment of C-band wavelength conversion in a silicon waveguide pumped by dispersed femtosecond laser pulse,” Chin. Phys. Lett. 27, 124206 (2010).
[CrossRef]

Green, W. M. J.

X. Liu, R. M. Osgood Jr., Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photon. 4, 557–560 (2010).
[CrossRef]

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[CrossRef] [PubMed]

Harpin, A.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Hsieh, I.-W.

Huang, Y.-W.

S.-M. Gao, E.-K. Tien, Q. Song, Y.-W. Huang, and S. K. Kalyoncu, “Experiment of C-band wavelength conversion in a silicon waveguide pumped by dispersed femtosecond laser pulse,” Chin. Phys. Lett. 27, 124206 (2010).
[CrossRef]

Itabashi, S.

Jalali, B.

D. Dimitripoulos, R. Jhavery, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
[CrossRef]

V. Raghunathan, O. Boyraz, and B. Jalali, “20 dB on-off Raman amplification in silicon waveguides,” in Proceedings of the Conference on Lasers and Electro-optics (CLEO), Vol. 1(IEEE, 2005), pp. 349–351.
[CrossRef]

Jhavery, R.

D. Dimitripoulos, R. Jhavery, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
[CrossRef]

Johnson, T. J.

Jones, R.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[CrossRef] [PubMed]

Kalyoncu, S. K.

S.-M. Gao, E.-K. Tien, Q. Song, Y.-W. Huang, and S. K. Kalyoncu, “Experiment of C-band wavelength conversion in a silicon waveguide pumped by dispersed femtosecond laser pulse,” Chin. Phys. Lett. 27, 124206 (2010).
[CrossRef]

Khorasaninejad, M.

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
[CrossRef]

Kuo, Y.

Kuo, Y.-H.

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
[CrossRef]

Liang, T. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

T. K. Liang and H. K. Tsang, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for auto-correlation measurements,” Appl. Phys. Lett. 81, 1323–1325 (2002).
[CrossRef]

Lin, Q.

Lipson, M.

A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18, 1904–1908 (2010).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Liu, A.

H. Rong, Y. Kuo, A. Liu, and M. Paniccia, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express 14, 1182–1188 (2006).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[CrossRef] [PubMed]

Liu, X.

X. Liu, R. M. Osgood Jr., Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photon. 4, 557–560 (2010).
[CrossRef]

N. C. Panoiu, X. Liu, and R. M. Osgood Jr., “Self-steepening of ultrashort pulses in silicon photonic nanowires,” Opt. Lett. 34, 947–949 (2009).
[CrossRef] [PubMed]

Liu, Y.

Y. Liu and H. Tsang, “Time dependent density of free carriers generated by two photon absorption in silicon waveguides,” Appl. Phys. Lett. 90, 211105 (2007).
[CrossRef]

Mathlouthi, W.

McNab, S. J.

Michael, C. P.

Mookherjea, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photon. 4, 561–564 (2010).
[CrossRef]

Moro, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photon. 4, 561–564 (2010).
[CrossRef]

Osgood, R. M.

Painter, O. J.

Paniccia, M.

Panoiu, N. C.

Park, J. S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photon. 4, 561–564 (2010).
[CrossRef]

Perahia, R.

Radic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photon. 4, 561–564 (2010).
[CrossRef]

Raghunathan, V.

V. Raghunathan, O. Boyraz, and B. Jalali, “20 dB on-off Raman amplification in silicon waveguides,” in Proceedings of the Conference on Lasers and Electro-optics (CLEO), Vol. 1(IEEE, 2005), pp. 349–351.
[CrossRef]

Roberts, S. W.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Rong, H.

Saini, S. S.

Salem, R.

Sang, X.

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Shoji, T.

Sih, V.

Song, Q.

S.-M. Gao, E.-K. Tien, Q. Song, Y.-W. Huang, and S. K. Kalyoncu, “Experiment of C-band wavelength conversion in a silicon waveguide pumped by dispersed femtosecond laser pulse,” Chin. Phys. Lett. 27, 124206 (2010).
[CrossRef]

Takahashi, J.

Takahashi, M.

Tien, E.-K.

S.-M. Gao, E.-K. Tien, Q. Song, Y.-W. Huang, and S. K. Kalyoncu, “Experiment of C-band wavelength conversion in a silicon waveguide pumped by dispersed femtosecond laser pulse,” Chin. Phys. Lett. 27, 124206 (2010).
[CrossRef]

Tsang, H.

Y. Liu and H. Tsang, “Time dependent density of free carriers generated by two photon absorption in silicon waveguides,” Appl. Phys. Lett. 90, 211105 (2007).
[CrossRef]

Tsang, H. K.

T. K. Liang and H. K. Tsang, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for auto-correlation measurements,” Appl. Phys. Lett. 81, 1323–1325 (2002).
[CrossRef]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Tsuchizawa, T.

Turner, A. C.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Turner-Foster, A. C.

Vlasov, Y. A.

X. Liu, R. M. Osgood Jr., Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photon. 4, 557–560 (2010).
[CrossRef]

R. L. Espinola, J. I. Dadap, R. M. Osgood Jr., S. J. McNab, and Y. A. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13, 4341–4349 (2005).
[CrossRef] [PubMed]

Watanabe, T.

Wong, C. S.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Woo, J. C. S.

D. Dimitripoulos, R. Jhavery, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
[CrossRef]

Xu, S.

Yamada, K.

Yin, L.

Zhang, J.

Zlatanovic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photon. 4, 561–564 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

T. K. Liang and H. K. Tsang, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for auto-correlation measurements,” Appl. Phys. Lett. 81, 1323–1325 (2002).
[CrossRef]

D. Dimitripoulos, R. Jhavery, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
[CrossRef]

Y. Liu and H. Tsang, “Time dependent density of free carriers generated by two photon absorption in silicon waveguides,” Appl. Phys. Lett. 90, 211105 (2007).
[CrossRef]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Chin. Phys. Lett. (1)

S.-M. Gao, E.-K. Tien, Q. Song, Y.-W. Huang, and S. K. Kalyoncu, “Experiment of C-band wavelength conversion in a silicon waveguide pumped by dispersed femtosecond laser pulse,” Chin. Phys. Lett. 27, 124206 (2010).
[CrossRef]

Nat. Photon. (3)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
[CrossRef]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photon. 4, 561–564 (2010).
[CrossRef]

X. Liu, R. M. Osgood Jr., Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photon. 4, 557–560 (2010).
[CrossRef]

Nature (2)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[CrossRef] [PubMed]

Opt. Express (12)

A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18, 1904–1908 (2010).
[CrossRef] [PubMed]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express 15, 16604–16644 (2007).
[CrossRef] [PubMed]

Q. Lin, T. J. Johnson, R. Perahia, C. P. Michael, and O. J. Painter, “A proposal for highly tunable optical parametric oscillation in silicon micro-resonators,” Opt. Express 16, 10596–10610 (2008).
[CrossRef] [PubMed]

X. Sang and O. Boyraz, “Gain and noise characteristics of high-bit-rate silicon parametric amplifiers,” Opt. Express 16, 13122–13132 (2008).
[CrossRef] [PubMed]

W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16, 16735–16745(2008).
[CrossRef] [PubMed]

I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, and R. M. Osgood Jr., “Cross-phase modulation-induced spectral and temporal modulation effects on co-propagating femtosecond pulses in silicon photonic wires,” Opt. Express 15, 1135–1146(2007).
[CrossRef] [PubMed]

R. L. Espinola, J. I. Dadap, R. M. Osgood Jr., S. J. McNab, and Y. A. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13, 4341–4349 (2005).
[CrossRef] [PubMed]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637(2005).
[CrossRef] [PubMed]

H. Rong, Y. Kuo, A. Liu, and M. Paniccia, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express 14, 1182–1188 (2006).
[CrossRef] [PubMed]

Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14, 4786–4799 (2006).
[CrossRef] [PubMed]

Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express 14, 11721–11726(2006).
[CrossRef] [PubMed]

I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, and R. M. Osgood Jr., “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express 14, 12380–12387 (2006).
[CrossRef] [PubMed]

Opt. Lett. (4)

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Elsevier, 2007).

V. Raghunathan, O. Boyraz, and B. Jalali, “20 dB on-off Raman amplification in silicon waveguides,” in Proceedings of the Conference on Lasers and Electro-optics (CLEO), Vol. 1(IEEE, 2005), pp. 349–351.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Rib silicon waveguide dimension.

Fig. 2
Fig. 2

(a) Effective indices curve; (b) first-order dispersion curve; (c) group velocity dispersion curve; (d) third-order dispersion curve.

Fig. 3
Fig. 3

The relationship between the single pulse energy of the three waves and silicon waveguide length, when λ s = 1450 nm , T FWHM = 300 fs .

Fig. 4
Fig. 4

The input and output spectrum in the 1.5 mm long silicon rib waveguide for a 1550 nm pump and a 1450 nm signal with (a)  100 fs , (b)  300 fs , and (c)  500 fs pulse widths, respectively.

Fig. 5
Fig. 5

Conversion efficiency versus pulse width in the cases of (a) low repetition rate ( 0.1 GHz ) and (b) neglecting FCA.

Fig. 6
Fig. 6

Conversion efficiency versus the repetition rate for different pulse widths.

Fig. 7
Fig. 7

Conversion efficiency versus signal wavelength for two different pulse widths when the repetition rate is 100 GHz .

Fig. 8
Fig. 8

Conversion efficiency versus pump peak power for two different pulse widths when the repetition rate is 100 GHz .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

A p z + i β 2 p 2 2 A p T 2 β 3 p 6 3 A p T 3 = 1 2 ( α p + α f c p ) A p + i γ p e ( 1 + i ω p t ) | A p | 2 A p + i 2 π λ p δ n f c p A P + 2 i γ p e ( | A s | 2 + | A i | 2 ) A p + 2 i γ p A s A i A p * exp ( i Δ β z ) ,
A s z + d s A s T + i β 2 s 2 2 A s T 2 β 3 s 6 3 A s T 3 = 1 2 ( α s + α f c s ) A s + i γ s e ( 1 + i ω s t ) | A s | 2 A s + i 2 π λ s δ n f c s A s + 2 i γ s e ( | A p | 2 + | A i | 2 ) A s + i γ s A p 2 A i * exp ( i Δ β z ) ,
A i z + d i A i T + i β 2 i 2 2 A i T 2 β 3 i 6 3 A i T 3 = 1 2 ( α i + α f c i ) A i + i γ i e [ 1 + i ω i t ] | A i | 2 A i + i 2 π λ i δ n f c i A i + 2 i γ i e ( | A p | 2 + | A s | 2 ) A i + i γ i A p 2 A s * exp ( i Δ β z ) ,
γ j e = γ j + i β TPA 2 A eff ,
σ j = 1.45 × 10 21 ( λ j / λ ref ) 2 m 2 , ζ j = 1.35 × 10 27 ( λ j / λ ref ) 2 m 3 ,
N c j ( z , t ) t = π β TPA 2 h ω j A eff 2 | A j ( z , t ) | 4 N c j ( z , t ) τ c ,
N c ( z , t ) β TPA T 0 2 ( 1 e 1 / R τ c ) h c A eff 2 ( λ p | A p ( z , t ) | 4 + λ s | A s ( z , t ) | 4 + λ i | A i ( z , t ) | 4 ) ,
η = 10 log 10 ( E i out / E sin ) .

Metrics