Abstract

The achievement of new satellite or airborne remote sensing instruments enables the more precise study of cities with metric spatial resolutions. For studies such as the radiative characterization of urban features, knowledge of the atmosphere and particularly of aerosols is required to perform first an atmospheric compensation of the remote sensing images. However, to our knowledge, no efficient aerosol characterization technique adapted both to urban areas and to very high spatial resolution images has yet been developed. The goal of this paper is so to present a new code to characterize aerosol optical properties, OSIS, adapted to urban remote sensing images of metric spatial resolution acquired in the visible and near-IR spectral domains. First, a new aerosol characterization method based on the observation of shadow/sun transitions is presented, offering the advantage to avoid the assessment of target reflectances. Its principle and the modeling of the signal used to solve the retrieval equation are then detailed. Finally, a sensitivity study of OSIS from synthetic images simulated by the radiative transfer code AMARTIS v2 is also presented. This study has shown an intrinsic precision of this tool of Δτa=0.1.τa±(0.02+0.4.τa) for retrieval of aerosol optical thicknesses. This study shows that OSIS is a powerful tool for aerosol characterization that has a precision similar to satellite products for the aerosol optical thicknesses retrieval and that can be applied to every very high spatial resolution instrument, multispectral or hyperspectral, airborne or satellite.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. S. Krause, “Relative radiometric characterization and performance of the QuickBird high-resolution commercial imaging satellite,” Proc. SPIE 5542, 35–44 (2004).
    [CrossRef]
  2. G. Dial, H. Bowen, F. Gerlach, J. Grodecki, and R. Oleszczuk, “IKONOS satellite, imagery, and products,” Remote Sens. Environ. 88, 23–36 (2003).
    [CrossRef]
  3. Digital Globe, http://digitalglobe.com.
  4. GeoEye, http://geoeye.com.
  5. F. de Lussy, P. Kubik, D. Greslou, V. Pascal, P. Gigord, and J. P. Cantou, “PLEIADES-HR image system products and quality—PLEIADES-HR image system products and geometric accuracy,” Tech. Rep. (Centre National d'Etudes Spaciales, 2005).
  6. P. Déliot, J. Duffaut, and A. Lacan, “Characterization and calibration of a high resolution multi-spectral airborne digital camera,” Proc. SPIE 6031, 603104 (2006).
    [CrossRef]
  7. R. O. Green, M. L. Eastwood, C. H. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
    [CrossRef]
  8. A. Puissant and J. Hirsch, “Télédétection urbaine et résolution spatiale optimale: intérêt pour les utilisateurs et aide pour les classifications,” Revue Internationale de Géomatique 14, 403–415 (2004).
    [CrossRef]
  9. Q. Weng and D. A. Quattrocchi, Urban Remote Sensing (CRC Press, 2007).
  10. S. Lachérade, C. Miesch, D. Boldo, X. Briottet, C. Valorge, and H. Le Men, “ICARE: a physically-based model to correct atmospheric and geometric effects from high spatial and spectral remote sensing images over 3D urban areas,” Meteorol. Atmos. Phys. 102, 209–222 (2008).
    [CrossRef]
  11. M. D. King, Y. J. Kaufman, D. Tanré, and T. Nakajima, “Remote sensing of tropospheric aerosols from space: past, present and future,” Bull. Am. Meteorol. Soc. 80, 2229–2260(1999).
    [CrossRef]
  12. Y. J. Kaufman, D. Tanré, L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben, “Operational remote sensing of tropospheric aerosol over land from EOS-moderate resolution imaging spectroradiometre,” J. Geophys. Res. 102, 17051–17067 (1997).
    [CrossRef]
  13. Y. J. Kaufman, A. E. Wald, L. A. Remer, B. C. Gao, R. R. Li, and L. Flynn, “The MODIS 2.1 μm channel-correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286–1298 (1997).
    [CrossRef]
  14. B. N. Holben, E. Vermote, Y. J. Kaufman, D. Tanré, and V. Kalb, “Aerosol retrieval over land from AVHRR data—Application for atmospheric correction,” IEEE Trans. Geosci. Remote Sens. 30, 212–222 (1992).
    [CrossRef]
  15. D. Tanré, P. Y. Deschamps, C. Devaux, and M. Herman, “Estimation of Saharan aerosol optical thickness from blurring effects in thematic mapper data,” J. Geophys. Res. 93, 15955 (1988).
    [CrossRef]
  16. O. Hagolle, G. Dedieu, B. Mougenot, V. Debaecker, B. Duchemin, and A. Meygret, “Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: application to Formosat-2 images,” Remote Sens. Environ. 112, 1689–1701 (2008).
    [CrossRef]
  17. J. P. Veefkind, G. deLeeuw, and P. A. Durkee, “Retrieval of aerosol optical depth over land using two-angle view satellite radiometry during TARFOX,” Geophys. Res. Lett. 25, 3135–3138 (1998).
    [CrossRef]
  18. J. V. Martonchik, D. J. Diner, R. Kahn, T. P. Ackerman, M. M. Verstraete, B. Pinty, and H. R. Gordon, “Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging,” IEEE Trans. Geosci. Remote Sens. 36, 1212–1227 (1998).
    [CrossRef]
  19. J. V. Martonchik, D. J. Diner, R. Kahn, and B. Gaitley, “Comparison of MISR and AERONET aerosol optical depths over desert sites,” J. Geophys. Res. 31, L16102(2004).
  20. D. A. Vincent, “Aerosol optical depth retrieval from high-resolution commercial satellite imagery over areas of high surface reflectance,” Ph.D. thesis (Naval Postgraduate School, 2006).
  21. C. Thomas, S. Doz, X. Briottet, R. Santer, D. Boldo, and S. Mathieu, “Remote sensing of aerosols in urban areas: sun/shadow retrieval procedure from airborne very high spatial resolution images,” in Proceedings of 2009 Joint Urban Remote Sensing Event (IEEE, 2009), pp. 1–6.
    [CrossRef]
  22. C. Thomas, “Caractérisation des aérosols atmosphériques en milieu urbain par télédétection à très haute résolution spatiale,” Ph.D. thesis (University of Toulouse, 2010).
  23. C. Miesch, X. Briottet, Y. H. Kerr, and F. Cabot, “Monte Carlo approach for solving the radiative transfer equation over mountainous and heterogeneous areas,” Appl. Opt. 38, 7419–7430 (1999).
    [CrossRef]
  24. C. Thomas, S. Doz, X. Briottet, Département Optique Théorique et Appliquée, Oera, Toulouse, France, and S. Lachérade are preparing a manuscript to be called, “AMARTIS v2: 3D radiative transfer code in the [0.4; 2.5 μm] spectral domain dedicated to urban areas.”
  25. S. Lachérade, C. Miesch, X. Briottet, and H. Le Men, “Spectral variability and bidirectional reflectance behaviour of urban materials at a 20 cm spatial resolution in the visible and near infrared wavelengths. A case study over Toulouse (France),” Int. J. Remote Sens. 26, 3859–3866 (2005).
    [CrossRef]
  26. M. Herold and D. Roberts, “Spectral characteristics of asphalt road aging and deterioration: implication for remote sensing applications,” Appl. Opt. 44, 4327–4334 (2005).
    [CrossRef] [PubMed]
  27. P. M. Dare, “Shadow analysis in high-resolution satellite imagery of urban areas,” Photog. Eng. Remote Sens. 71, 169–177(2005).
  28. E. F. Vermote, D. Tanré, J. L. Deuzé, M. Herman, and J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum, 6S: an overview,” IEEE Trans. Geosci. Remote Sens. 35, 675–686 (1997).
    [CrossRef]
  29. E. F. Vermote, D. Tanré, J. L. Deuze, M. Herman, and J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum (6S), 6S user’s guide version 2,” (NASA Goddard Space Flight Center, 1997).
  30. G. Thuillier, M. Hersé, P. C. Simon, D. Labs, H. Mandel, D. Gillotay, and T. Foujols, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions,” Sol. Phys. 214, 1–22 (2003).
    [CrossRef]
  31. A. Angström, “On the atmospheric transmission of sun radiation and on dust in the air,” Geograf. Ann. 11, 156–166 (1929).
    [CrossRef]
  32. C. Thomas, X. Briottet, R. Santer, and S. Lachérade, “Aerosols in urban areas: optical properties and impact on the signal incident to an airborne high-spatial resolution camera,” Proc. SPIE 7107, 71070O (2008).
    [CrossRef]
  33. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
    [CrossRef]
  34. L. C. Henyey, and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
    [CrossRef]
  35. R. Santer, “Atmospheric products over land for MERIS level 2,” Tech. Rep. ATBD 2.15 (European Space Agency, 2000), http://envisat.esa.int/instruments/meris/pdf.
  36. S. Doz, X. Briottet, S. Lache´rade, and D. Boldo, “Simulation over urban area: two case study,” in Proceedings of 2009 Joint Urban Remote Sensing Event (IEEE, 2009).
    [CrossRef]
  37. U. Heiden, K. Segl, S. Roessner, and H. Kaufmann, “Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data,” Remote Sens. Env. 111, 537–552 (2007).
    [CrossRef]
  38. M. Herold, D. A. Roberts, M. E. Gardner, and P. E. Dennison, “Spectrometry for urban area remote sensing—development and analysis of a spectral library from 350 to 2400 nm,” Remote Sens. Env. 91, 304–319 (2004).
    [CrossRef]
  39. C. O. Justice, J. R. G. Townshend, E. F. Vermote, E. Masuoka, R. E. Wolfe, N. Saleous, D. P. Roy, and J. T. Morisette, “An overview of MODIS Land data processing and product status,” Remote Sens. Environ. 83, 3–15 (2002).
    [CrossRef]
  40. M. Cook, B. Peterson, G. Dial, F. Gerlach, K. Hutchins, R. Kudola, and H. Bowen, “IKONOS technical performance assessment,” Proc. SPIE 4381, 94–108 (2001).
    [CrossRef]
  41. R. C. Levy, L. A. Remer, D. Tanré, S. Mattoo, and Y. J. Kaufman, “Algorithm for remote sensing of tropospheric aerosol from MODIS: collections 005 and 051: Revision 2,” Tech. Rep. (NASA, 2009).

2008 (3)

S. Lachérade, C. Miesch, D. Boldo, X. Briottet, C. Valorge, and H. Le Men, “ICARE: a physically-based model to correct atmospheric and geometric effects from high spatial and spectral remote sensing images over 3D urban areas,” Meteorol. Atmos. Phys. 102, 209–222 (2008).
[CrossRef]

O. Hagolle, G. Dedieu, B. Mougenot, V. Debaecker, B. Duchemin, and A. Meygret, “Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: application to Formosat-2 images,” Remote Sens. Environ. 112, 1689–1701 (2008).
[CrossRef]

C. Thomas, X. Briottet, R. Santer, and S. Lachérade, “Aerosols in urban areas: optical properties and impact on the signal incident to an airborne high-spatial resolution camera,” Proc. SPIE 7107, 71070O (2008).
[CrossRef]

2007 (1)

U. Heiden, K. Segl, S. Roessner, and H. Kaufmann, “Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data,” Remote Sens. Env. 111, 537–552 (2007).
[CrossRef]

2006 (1)

P. Déliot, J. Duffaut, and A. Lacan, “Characterization and calibration of a high resolution multi-spectral airborne digital camera,” Proc. SPIE 6031, 603104 (2006).
[CrossRef]

2005 (3)

S. Lachérade, C. Miesch, X. Briottet, and H. Le Men, “Spectral variability and bidirectional reflectance behaviour of urban materials at a 20 cm spatial resolution in the visible and near infrared wavelengths. A case study over Toulouse (France),” Int. J. Remote Sens. 26, 3859–3866 (2005).
[CrossRef]

M. Herold and D. Roberts, “Spectral characteristics of asphalt road aging and deterioration: implication for remote sensing applications,” Appl. Opt. 44, 4327–4334 (2005).
[CrossRef] [PubMed]

P. M. Dare, “Shadow analysis in high-resolution satellite imagery of urban areas,” Photog. Eng. Remote Sens. 71, 169–177(2005).

2004 (4)

J. V. Martonchik, D. J. Diner, R. Kahn, and B. Gaitley, “Comparison of MISR and AERONET aerosol optical depths over desert sites,” J. Geophys. Res. 31, L16102(2004).

K. S. Krause, “Relative radiometric characterization and performance of the QuickBird high-resolution commercial imaging satellite,” Proc. SPIE 5542, 35–44 (2004).
[CrossRef]

M. Herold, D. A. Roberts, M. E. Gardner, and P. E. Dennison, “Spectrometry for urban area remote sensing—development and analysis of a spectral library from 350 to 2400 nm,” Remote Sens. Env. 91, 304–319 (2004).
[CrossRef]

A. Puissant and J. Hirsch, “Télédétection urbaine et résolution spatiale optimale: intérêt pour les utilisateurs et aide pour les classifications,” Revue Internationale de Géomatique 14, 403–415 (2004).
[CrossRef]

2003 (2)

G. Thuillier, M. Hersé, P. C. Simon, D. Labs, H. Mandel, D. Gillotay, and T. Foujols, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions,” Sol. Phys. 214, 1–22 (2003).
[CrossRef]

G. Dial, H. Bowen, F. Gerlach, J. Grodecki, and R. Oleszczuk, “IKONOS satellite, imagery, and products,” Remote Sens. Environ. 88, 23–36 (2003).
[CrossRef]

2002 (1)

C. O. Justice, J. R. G. Townshend, E. F. Vermote, E. Masuoka, R. E. Wolfe, N. Saleous, D. P. Roy, and J. T. Morisette, “An overview of MODIS Land data processing and product status,” Remote Sens. Environ. 83, 3–15 (2002).
[CrossRef]

2001 (1)

M. Cook, B. Peterson, G. Dial, F. Gerlach, K. Hutchins, R. Kudola, and H. Bowen, “IKONOS technical performance assessment,” Proc. SPIE 4381, 94–108 (2001).
[CrossRef]

1999 (2)

M. D. King, Y. J. Kaufman, D. Tanré, and T. Nakajima, “Remote sensing of tropospheric aerosols from space: past, present and future,” Bull. Am. Meteorol. Soc. 80, 2229–2260(1999).
[CrossRef]

C. Miesch, X. Briottet, Y. H. Kerr, and F. Cabot, “Monte Carlo approach for solving the radiative transfer equation over mountainous and heterogeneous areas,” Appl. Opt. 38, 7419–7430 (1999).
[CrossRef]

1998 (4)

J. P. Veefkind, G. deLeeuw, and P. A. Durkee, “Retrieval of aerosol optical depth over land using two-angle view satellite radiometry during TARFOX,” Geophys. Res. Lett. 25, 3135–3138 (1998).
[CrossRef]

J. V. Martonchik, D. J. Diner, R. Kahn, T. P. Ackerman, M. M. Verstraete, B. Pinty, and H. R. Gordon, “Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging,” IEEE Trans. Geosci. Remote Sens. 36, 1212–1227 (1998).
[CrossRef]

R. O. Green, M. L. Eastwood, C. H. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

1997 (3)

Y. J. Kaufman, D. Tanré, L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben, “Operational remote sensing of tropospheric aerosol over land from EOS-moderate resolution imaging spectroradiometre,” J. Geophys. Res. 102, 17051–17067 (1997).
[CrossRef]

Y. J. Kaufman, A. E. Wald, L. A. Remer, B. C. Gao, R. R. Li, and L. Flynn, “The MODIS 2.1 μm channel-correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286–1298 (1997).
[CrossRef]

E. F. Vermote, D. Tanré, J. L. Deuzé, M. Herman, and J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum, 6S: an overview,” IEEE Trans. Geosci. Remote Sens. 35, 675–686 (1997).
[CrossRef]

1992 (1)

B. N. Holben, E. Vermote, Y. J. Kaufman, D. Tanré, and V. Kalb, “Aerosol retrieval over land from AVHRR data—Application for atmospheric correction,” IEEE Trans. Geosci. Remote Sens. 30, 212–222 (1992).
[CrossRef]

1988 (1)

D. Tanré, P. Y. Deschamps, C. Devaux, and M. Herman, “Estimation of Saharan aerosol optical thickness from blurring effects in thematic mapper data,” J. Geophys. Res. 93, 15955 (1988).
[CrossRef]

1941 (1)

L. C. Henyey, and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

1929 (1)

A. Angström, “On the atmospheric transmission of sun radiation and on dust in the air,” Geograf. Ann. 11, 156–166 (1929).
[CrossRef]

Ackerman, T. P.

J. V. Martonchik, D. J. Diner, R. Kahn, T. P. Ackerman, M. M. Verstraete, B. Pinty, and H. R. Gordon, “Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging,” IEEE Trans. Geosci. Remote Sens. 36, 1212–1227 (1998).
[CrossRef]

Angström, A.

A. Angström, “On the atmospheric transmission of sun radiation and on dust in the air,” Geograf. Ann. 11, 156–166 (1929).
[CrossRef]

Aronsson, M.

R. O. Green, M. L. Eastwood, C. H. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Boldo, D.

S. Lachérade, C. Miesch, D. Boldo, X. Briottet, C. Valorge, and H. Le Men, “ICARE: a physically-based model to correct atmospheric and geometric effects from high spatial and spectral remote sensing images over 3D urban areas,” Meteorol. Atmos. Phys. 102, 209–222 (2008).
[CrossRef]

C. Thomas, S. Doz, X. Briottet, R. Santer, D. Boldo, and S. Mathieu, “Remote sensing of aerosols in urban areas: sun/shadow retrieval procedure from airborne very high spatial resolution images,” in Proceedings of 2009 Joint Urban Remote Sensing Event (IEEE, 2009), pp. 1–6.
[CrossRef]

S. Doz, X. Briottet, S. Lache´rade, and D. Boldo, “Simulation over urban area: two case study,” in Proceedings of 2009 Joint Urban Remote Sensing Event (IEEE, 2009).
[CrossRef]

Bowen, H.

G. Dial, H. Bowen, F. Gerlach, J. Grodecki, and R. Oleszczuk, “IKONOS satellite, imagery, and products,” Remote Sens. Environ. 88, 23–36 (2003).
[CrossRef]

M. Cook, B. Peterson, G. Dial, F. Gerlach, K. Hutchins, R. Kudola, and H. Bowen, “IKONOS technical performance assessment,” Proc. SPIE 4381, 94–108 (2001).
[CrossRef]

Briottet, X.

S. Lachérade, C. Miesch, D. Boldo, X. Briottet, C. Valorge, and H. Le Men, “ICARE: a physically-based model to correct atmospheric and geometric effects from high spatial and spectral remote sensing images over 3D urban areas,” Meteorol. Atmos. Phys. 102, 209–222 (2008).
[CrossRef]

C. Thomas, X. Briottet, R. Santer, and S. Lachérade, “Aerosols in urban areas: optical properties and impact on the signal incident to an airborne high-spatial resolution camera,” Proc. SPIE 7107, 71070O (2008).
[CrossRef]

S. Lachérade, C. Miesch, X. Briottet, and H. Le Men, “Spectral variability and bidirectional reflectance behaviour of urban materials at a 20 cm spatial resolution in the visible and near infrared wavelengths. A case study over Toulouse (France),” Int. J. Remote Sens. 26, 3859–3866 (2005).
[CrossRef]

C. Miesch, X. Briottet, Y. H. Kerr, and F. Cabot, “Monte Carlo approach for solving the radiative transfer equation over mountainous and heterogeneous areas,” Appl. Opt. 38, 7419–7430 (1999).
[CrossRef]

C. Thomas, S. Doz, X. Briottet, R. Santer, D. Boldo, and S. Mathieu, “Remote sensing of aerosols in urban areas: sun/shadow retrieval procedure from airborne very high spatial resolution images,” in Proceedings of 2009 Joint Urban Remote Sensing Event (IEEE, 2009), pp. 1–6.
[CrossRef]

C. Thomas, S. Doz, X. Briottet, Département Optique Théorique et Appliquée, Oera, Toulouse, France, and S. Lachérade are preparing a manuscript to be called, “AMARTIS v2: 3D radiative transfer code in the [0.4; 2.5 μm] spectral domain dedicated to urban areas.”

S. Doz, X. Briottet, S. Lache´rade, and D. Boldo, “Simulation over urban area: two case study,” in Proceedings of 2009 Joint Urban Remote Sensing Event (IEEE, 2009).
[CrossRef]

Buis, J. P.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Cabot, F.

Cantou, J. P.

F. de Lussy, P. Kubik, D. Greslou, V. Pascal, P. Gigord, and J. P. Cantou, “PLEIADES-HR image system products and quality—PLEIADES-HR image system products and geometric accuracy,” Tech. Rep. (Centre National d'Etudes Spaciales, 2005).

Chippendale, B. J.

R. O. Green, M. L. Eastwood, C. H. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Chovit, C. J.

R. O. Green, M. L. Eastwood, C. H. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Chrien, T. G.

R. O. Green, M. L. Eastwood, C. H. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Chu, A.

Y. J. Kaufman, D. Tanré, L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben, “Operational remote sensing of tropospheric aerosol over land from EOS-moderate resolution imaging spectroradiometre,” J. Geophys. Res. 102, 17051–17067 (1997).
[CrossRef]

Cook, M.

M. Cook, B. Peterson, G. Dial, F. Gerlach, K. Hutchins, R. Kudola, and H. Bowen, “IKONOS technical performance assessment,” Proc. SPIE 4381, 94–108 (2001).
[CrossRef]

Dare, P. M.

P. M. Dare, “Shadow analysis in high-resolution satellite imagery of urban areas,” Photog. Eng. Remote Sens. 71, 169–177(2005).

de Lussy, F.

F. de Lussy, P. Kubik, D. Greslou, V. Pascal, P. Gigord, and J. P. Cantou, “PLEIADES-HR image system products and quality—PLEIADES-HR image system products and geometric accuracy,” Tech. Rep. (Centre National d'Etudes Spaciales, 2005).

Debaecker, V.

O. Hagolle, G. Dedieu, B. Mougenot, V. Debaecker, B. Duchemin, and A. Meygret, “Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: application to Formosat-2 images,” Remote Sens. Environ. 112, 1689–1701 (2008).
[CrossRef]

Dedieu, G.

O. Hagolle, G. Dedieu, B. Mougenot, V. Debaecker, B. Duchemin, and A. Meygret, “Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: application to Formosat-2 images,” Remote Sens. Environ. 112, 1689–1701 (2008).
[CrossRef]

deLeeuw, G.

J. P. Veefkind, G. deLeeuw, and P. A. Durkee, “Retrieval of aerosol optical depth over land using two-angle view satellite radiometry during TARFOX,” Geophys. Res. Lett. 25, 3135–3138 (1998).
[CrossRef]

Déliot, P.

P. Déliot, J. Duffaut, and A. Lacan, “Characterization and calibration of a high resolution multi-spectral airborne digital camera,” Proc. SPIE 6031, 603104 (2006).
[CrossRef]

Dennison, P. E.

M. Herold, D. A. Roberts, M. E. Gardner, and P. E. Dennison, “Spectrometry for urban area remote sensing—development and analysis of a spectral library from 350 to 2400 nm,” Remote Sens. Env. 91, 304–319 (2004).
[CrossRef]

Deschamps, P. Y.

D. Tanré, P. Y. Deschamps, C. Devaux, and M. Herman, “Estimation of Saharan aerosol optical thickness from blurring effects in thematic mapper data,” J. Geophys. Res. 93, 15955 (1988).
[CrossRef]

Deuze, J. L.

E. F. Vermote, D. Tanré, J. L. Deuze, M. Herman, and J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum (6S), 6S user’s guide version 2,” (NASA Goddard Space Flight Center, 1997).

Deuzé, J. L.

E. F. Vermote, D. Tanré, J. L. Deuzé, M. Herman, and J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum, 6S: an overview,” IEEE Trans. Geosci. Remote Sens. 35, 675–686 (1997).
[CrossRef]

Devaux, C.

D. Tanré, P. Y. Deschamps, C. Devaux, and M. Herman, “Estimation of Saharan aerosol optical thickness from blurring effects in thematic mapper data,” J. Geophys. Res. 93, 15955 (1988).
[CrossRef]

Dial, G.

G. Dial, H. Bowen, F. Gerlach, J. Grodecki, and R. Oleszczuk, “IKONOS satellite, imagery, and products,” Remote Sens. Environ. 88, 23–36 (2003).
[CrossRef]

M. Cook, B. Peterson, G. Dial, F. Gerlach, K. Hutchins, R. Kudola, and H. Bowen, “IKONOS technical performance assessment,” Proc. SPIE 4381, 94–108 (2001).
[CrossRef]

Diner, D. J.

J. V. Martonchik, D. J. Diner, R. Kahn, and B. Gaitley, “Comparison of MISR and AERONET aerosol optical depths over desert sites,” J. Geophys. Res. 31, L16102(2004).

J. V. Martonchik, D. J. Diner, R. Kahn, T. P. Ackerman, M. M. Verstraete, B. Pinty, and H. R. Gordon, “Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging,” IEEE Trans. Geosci. Remote Sens. 36, 1212–1227 (1998).
[CrossRef]

Doz, S.

C. Thomas, S. Doz, X. Briottet, R. Santer, D. Boldo, and S. Mathieu, “Remote sensing of aerosols in urban areas: sun/shadow retrieval procedure from airborne very high spatial resolution images,” in Proceedings of 2009 Joint Urban Remote Sensing Event (IEEE, 2009), pp. 1–6.
[CrossRef]

C. Thomas, S. Doz, X. Briottet, Département Optique Théorique et Appliquée, Oera, Toulouse, France, and S. Lachérade are preparing a manuscript to be called, “AMARTIS v2: 3D radiative transfer code in the [0.4; 2.5 μm] spectral domain dedicated to urban areas.”

S. Doz, X. Briottet, S. Lache´rade, and D. Boldo, “Simulation over urban area: two case study,” in Proceedings of 2009 Joint Urban Remote Sensing Event (IEEE, 2009).
[CrossRef]

Duchemin, B.

O. Hagolle, G. Dedieu, B. Mougenot, V. Debaecker, B. Duchemin, and A. Meygret, “Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: application to Formosat-2 images,” Remote Sens. Environ. 112, 1689–1701 (2008).
[CrossRef]

Duffaut, J.

P. Déliot, J. Duffaut, and A. Lacan, “Characterization and calibration of a high resolution multi-spectral airborne digital camera,” Proc. SPIE 6031, 603104 (2006).
[CrossRef]

Durkee, P. A.

J. P. Veefkind, G. deLeeuw, and P. A. Durkee, “Retrieval of aerosol optical depth over land using two-angle view satellite radiometry during TARFOX,” Geophys. Res. Lett. 25, 3135–3138 (1998).
[CrossRef]

Eastwood, M. L.

R. O. Green, M. L. Eastwood, C. H. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Eck, T. F.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Faust, J. A.

R. O. Green, M. L. Eastwood, C. H. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Flynn, L.

Y. J. Kaufman, A. E. Wald, L. A. Remer, B. C. Gao, R. R. Li, and L. Flynn, “The MODIS 2.1 μm channel-correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286–1298 (1997).
[CrossRef]

Foujols, T.

G. Thuillier, M. Hersé, P. C. Simon, D. Labs, H. Mandel, D. Gillotay, and T. Foujols, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions,” Sol. Phys. 214, 1–22 (2003).
[CrossRef]

Gaitley, B.

J. V. Martonchik, D. J. Diner, R. Kahn, and B. Gaitley, “Comparison of MISR and AERONET aerosol optical depths over desert sites,” J. Geophys. Res. 31, L16102(2004).

Gao, B. C.

Y. J. Kaufman, A. E. Wald, L. A. Remer, B. C. Gao, R. R. Li, and L. Flynn, “The MODIS 2.1 μm channel-correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286–1298 (1997).
[CrossRef]

Gardner, M. E.

M. Herold, D. A. Roberts, M. E. Gardner, and P. E. Dennison, “Spectrometry for urban area remote sensing—development and analysis of a spectral library from 350 to 2400 nm,” Remote Sens. Env. 91, 304–319 (2004).
[CrossRef]

Gerlach, F.

G. Dial, H. Bowen, F. Gerlach, J. Grodecki, and R. Oleszczuk, “IKONOS satellite, imagery, and products,” Remote Sens. Environ. 88, 23–36 (2003).
[CrossRef]

M. Cook, B. Peterson, G. Dial, F. Gerlach, K. Hutchins, R. Kudola, and H. Bowen, “IKONOS technical performance assessment,” Proc. SPIE 4381, 94–108 (2001).
[CrossRef]

Gigord, P.

F. de Lussy, P. Kubik, D. Greslou, V. Pascal, P. Gigord, and J. P. Cantou, “PLEIADES-HR image system products and quality—PLEIADES-HR image system products and geometric accuracy,” Tech. Rep. (Centre National d'Etudes Spaciales, 2005).

Gillotay, D.

G. Thuillier, M. Hersé, P. C. Simon, D. Labs, H. Mandel, D. Gillotay, and T. Foujols, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions,” Sol. Phys. 214, 1–22 (2003).
[CrossRef]

Gordon, H. R.

J. V. Martonchik, D. J. Diner, R. Kahn, T. P. Ackerman, M. M. Verstraete, B. Pinty, and H. R. Gordon, “Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging,” IEEE Trans. Geosci. Remote Sens. 36, 1212–1227 (1998).
[CrossRef]

Green, R. O.

R. O. Green, M. L. Eastwood, C. H. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Greenstein, J. L.

L. C. Henyey, and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Greslou, D.

F. de Lussy, P. Kubik, D. Greslou, V. Pascal, P. Gigord, and J. P. Cantou, “PLEIADES-HR image system products and quality—PLEIADES-HR image system products and geometric accuracy,” Tech. Rep. (Centre National d'Etudes Spaciales, 2005).

Grodecki, J.

G. Dial, H. Bowen, F. Gerlach, J. Grodecki, and R. Oleszczuk, “IKONOS satellite, imagery, and products,” Remote Sens. Environ. 88, 23–36 (2003).
[CrossRef]

Hagolle, O.

O. Hagolle, G. Dedieu, B. Mougenot, V. Debaecker, B. Duchemin, and A. Meygret, “Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: application to Formosat-2 images,” Remote Sens. Environ. 112, 1689–1701 (2008).
[CrossRef]

Heiden, U.

U. Heiden, K. Segl, S. Roessner, and H. Kaufmann, “Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data,” Remote Sens. Env. 111, 537–552 (2007).
[CrossRef]

Henyey, L. C.

L. C. Henyey, and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Herman, M.

E. F. Vermote, D. Tanré, J. L. Deuzé, M. Herman, and J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum, 6S: an overview,” IEEE Trans. Geosci. Remote Sens. 35, 675–686 (1997).
[CrossRef]

D. Tanré, P. Y. Deschamps, C. Devaux, and M. Herman, “Estimation of Saharan aerosol optical thickness from blurring effects in thematic mapper data,” J. Geophys. Res. 93, 15955 (1988).
[CrossRef]

E. F. Vermote, D. Tanré, J. L. Deuze, M. Herman, and J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum (6S), 6S user’s guide version 2,” (NASA Goddard Space Flight Center, 1997).

Herold, M.

M. Herold and D. Roberts, “Spectral characteristics of asphalt road aging and deterioration: implication for remote sensing applications,” Appl. Opt. 44, 4327–4334 (2005).
[CrossRef] [PubMed]

M. Herold, D. A. Roberts, M. E. Gardner, and P. E. Dennison, “Spectrometry for urban area remote sensing—development and analysis of a spectral library from 350 to 2400 nm,” Remote Sens. Env. 91, 304–319 (2004).
[CrossRef]

Hersé, M.

G. Thuillier, M. Hersé, P. C. Simon, D. Labs, H. Mandel, D. Gillotay, and T. Foujols, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions,” Sol. Phys. 214, 1–22 (2003).
[CrossRef]

Hirsch, J.

A. Puissant and J. Hirsch, “Télédétection urbaine et résolution spatiale optimale: intérêt pour les utilisateurs et aide pour les classifications,” Revue Internationale de Géomatique 14, 403–415 (2004).
[CrossRef]

Holben, B. N.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Y. J. Kaufman, D. Tanré, L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben, “Operational remote sensing of tropospheric aerosol over land from EOS-moderate resolution imaging spectroradiometre,” J. Geophys. Res. 102, 17051–17067 (1997).
[CrossRef]

B. N. Holben, E. Vermote, Y. J. Kaufman, D. Tanré, and V. Kalb, “Aerosol retrieval over land from AVHRR data—Application for atmospheric correction,” IEEE Trans. Geosci. Remote Sens. 30, 212–222 (1992).
[CrossRef]

Hutchins, K.

M. Cook, B. Peterson, G. Dial, F. Gerlach, K. Hutchins, R. Kudola, and H. Bowen, “IKONOS technical performance assessment,” Proc. SPIE 4381, 94–108 (2001).
[CrossRef]

Jankowiak, I.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Justice, C. O.

C. O. Justice, J. R. G. Townshend, E. F. Vermote, E. Masuoka, R. E. Wolfe, N. Saleous, D. P. Roy, and J. T. Morisette, “An overview of MODIS Land data processing and product status,” Remote Sens. Environ. 83, 3–15 (2002).
[CrossRef]

Kahn, R.

J. V. Martonchik, D. J. Diner, R. Kahn, and B. Gaitley, “Comparison of MISR and AERONET aerosol optical depths over desert sites,” J. Geophys. Res. 31, L16102(2004).

J. V. Martonchik, D. J. Diner, R. Kahn, T. P. Ackerman, M. M. Verstraete, B. Pinty, and H. R. Gordon, “Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging,” IEEE Trans. Geosci. Remote Sens. 36, 1212–1227 (1998).
[CrossRef]

Kalb, V.

B. N. Holben, E. Vermote, Y. J. Kaufman, D. Tanré, and V. Kalb, “Aerosol retrieval over land from AVHRR data—Application for atmospheric correction,” IEEE Trans. Geosci. Remote Sens. 30, 212–222 (1992).
[CrossRef]

Kaufman, Y.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Kaufman, Y. J.

M. D. King, Y. J. Kaufman, D. Tanré, and T. Nakajima, “Remote sensing of tropospheric aerosols from space: past, present and future,” Bull. Am. Meteorol. Soc. 80, 2229–2260(1999).
[CrossRef]

Y. J. Kaufman, A. E. Wald, L. A. Remer, B. C. Gao, R. R. Li, and L. Flynn, “The MODIS 2.1 μm channel-correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286–1298 (1997).
[CrossRef]

Y. J. Kaufman, D. Tanré, L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben, “Operational remote sensing of tropospheric aerosol over land from EOS-moderate resolution imaging spectroradiometre,” J. Geophys. Res. 102, 17051–17067 (1997).
[CrossRef]

B. N. Holben, E. Vermote, Y. J. Kaufman, D. Tanré, and V. Kalb, “Aerosol retrieval over land from AVHRR data—Application for atmospheric correction,” IEEE Trans. Geosci. Remote Sens. 30, 212–222 (1992).
[CrossRef]

R. C. Levy, L. A. Remer, D. Tanré, S. Mattoo, and Y. J. Kaufman, “Algorithm for remote sensing of tropospheric aerosol from MODIS: collections 005 and 051: Revision 2,” Tech. Rep. (NASA, 2009).

Kaufmann, H.

U. Heiden, K. Segl, S. Roessner, and H. Kaufmann, “Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data,” Remote Sens. Env. 111, 537–552 (2007).
[CrossRef]

Kerr, Y. H.

King, M. D.

M. D. King, Y. J. Kaufman, D. Tanré, and T. Nakajima, “Remote sensing of tropospheric aerosols from space: past, present and future,” Bull. Am. Meteorol. Soc. 80, 2229–2260(1999).
[CrossRef]

Krause, K. S.

K. S. Krause, “Relative radiometric characterization and performance of the QuickBird high-resolution commercial imaging satellite,” Proc. SPIE 5542, 35–44 (2004).
[CrossRef]

Kubik, P.

F. de Lussy, P. Kubik, D. Greslou, V. Pascal, P. Gigord, and J. P. Cantou, “PLEIADES-HR image system products and quality—PLEIADES-HR image system products and geometric accuracy,” Tech. Rep. (Centre National d'Etudes Spaciales, 2005).

Kudola, R.

M. Cook, B. Peterson, G. Dial, F. Gerlach, K. Hutchins, R. Kudola, and H. Bowen, “IKONOS technical performance assessment,” Proc. SPIE 4381, 94–108 (2001).
[CrossRef]

Labs, D.

G. Thuillier, M. Hersé, P. C. Simon, D. Labs, H. Mandel, D. Gillotay, and T. Foujols, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions,” Sol. Phys. 214, 1–22 (2003).
[CrossRef]

Lacan, A.

P. Déliot, J. Duffaut, and A. Lacan, “Characterization and calibration of a high resolution multi-spectral airborne digital camera,” Proc. SPIE 6031, 603104 (2006).
[CrossRef]

Lache´rade, S.

S. Doz, X. Briottet, S. Lache´rade, and D. Boldo, “Simulation over urban area: two case study,” in Proceedings of 2009 Joint Urban Remote Sensing Event (IEEE, 2009).
[CrossRef]

Lachérade, S.

S. Lachérade, C. Miesch, D. Boldo, X. Briottet, C. Valorge, and H. Le Men, “ICARE: a physically-based model to correct atmospheric and geometric effects from high spatial and spectral remote sensing images over 3D urban areas,” Meteorol. Atmos. Phys. 102, 209–222 (2008).
[CrossRef]

C. Thomas, X. Briottet, R. Santer, and S. Lachérade, “Aerosols in urban areas: optical properties and impact on the signal incident to an airborne high-spatial resolution camera,” Proc. SPIE 7107, 71070O (2008).
[CrossRef]

S. Lachérade, C. Miesch, X. Briottet, and H. Le Men, “Spectral variability and bidirectional reflectance behaviour of urban materials at a 20 cm spatial resolution in the visible and near infrared wavelengths. A case study over Toulouse (France),” Int. J. Remote Sens. 26, 3859–3866 (2005).
[CrossRef]

C. Thomas, S. Doz, X. Briottet, Département Optique Théorique et Appliquée, Oera, Toulouse, France, and S. Lachérade are preparing a manuscript to be called, “AMARTIS v2: 3D radiative transfer code in the [0.4; 2.5 μm] spectral domain dedicated to urban areas.”

Lavenu, F.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Le Men, H.

S. Lachérade, C. Miesch, D. Boldo, X. Briottet, C. Valorge, and H. Le Men, “ICARE: a physically-based model to correct atmospheric and geometric effects from high spatial and spectral remote sensing images over 3D urban areas,” Meteorol. Atmos. Phys. 102, 209–222 (2008).
[CrossRef]

S. Lachérade, C. Miesch, X. Briottet, and H. Le Men, “Spectral variability and bidirectional reflectance behaviour of urban materials at a 20 cm spatial resolution in the visible and near infrared wavelengths. A case study over Toulouse (France),” Int. J. Remote Sens. 26, 3859–3866 (2005).
[CrossRef]

Levy, R. C.

R. C. Levy, L. A. Remer, D. Tanré, S. Mattoo, and Y. J. Kaufman, “Algorithm for remote sensing of tropospheric aerosol from MODIS: collections 005 and 051: Revision 2,” Tech. Rep. (NASA, 2009).

Li, R. R.

Y. J. Kaufman, A. E. Wald, L. A. Remer, B. C. Gao, R. R. Li, and L. Flynn, “The MODIS 2.1 μm channel-correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286–1298 (1997).
[CrossRef]

Mandel, H.

G. Thuillier, M. Hersé, P. C. Simon, D. Labs, H. Mandel, D. Gillotay, and T. Foujols, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions,” Sol. Phys. 214, 1–22 (2003).
[CrossRef]

Martonchik, J. V.

J. V. Martonchik, D. J. Diner, R. Kahn, and B. Gaitley, “Comparison of MISR and AERONET aerosol optical depths over desert sites,” J. Geophys. Res. 31, L16102(2004).

J. V. Martonchik, D. J. Diner, R. Kahn, T. P. Ackerman, M. M. Verstraete, B. Pinty, and H. R. Gordon, “Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging,” IEEE Trans. Geosci. Remote Sens. 36, 1212–1227 (1998).
[CrossRef]

Masuoka, E.

C. O. Justice, J. R. G. Townshend, E. F. Vermote, E. Masuoka, R. E. Wolfe, N. Saleous, D. P. Roy, and J. T. Morisette, “An overview of MODIS Land data processing and product status,” Remote Sens. Environ. 83, 3–15 (2002).
[CrossRef]

Mathieu, S.

C. Thomas, S. Doz, X. Briottet, R. Santer, D. Boldo, and S. Mathieu, “Remote sensing of aerosols in urban areas: sun/shadow retrieval procedure from airborne very high spatial resolution images,” in Proceedings of 2009 Joint Urban Remote Sensing Event (IEEE, 2009), pp. 1–6.
[CrossRef]

Mattoo, S.

R. C. Levy, L. A. Remer, D. Tanré, S. Mattoo, and Y. J. Kaufman, “Algorithm for remote sensing of tropospheric aerosol from MODIS: collections 005 and 051: Revision 2,” Tech. Rep. (NASA, 2009).

Meygret, A.

O. Hagolle, G. Dedieu, B. Mougenot, V. Debaecker, B. Duchemin, and A. Meygret, “Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: application to Formosat-2 images,” Remote Sens. Environ. 112, 1689–1701 (2008).
[CrossRef]

Miesch, C.

S. Lachérade, C. Miesch, D. Boldo, X. Briottet, C. Valorge, and H. Le Men, “ICARE: a physically-based model to correct atmospheric and geometric effects from high spatial and spectral remote sensing images over 3D urban areas,” Meteorol. Atmos. Phys. 102, 209–222 (2008).
[CrossRef]

S. Lachérade, C. Miesch, X. Briottet, and H. Le Men, “Spectral variability and bidirectional reflectance behaviour of urban materials at a 20 cm spatial resolution in the visible and near infrared wavelengths. A case study over Toulouse (France),” Int. J. Remote Sens. 26, 3859–3866 (2005).
[CrossRef]

C. Miesch, X. Briottet, Y. H. Kerr, and F. Cabot, “Monte Carlo approach for solving the radiative transfer equation over mountainous and heterogeneous areas,” Appl. Opt. 38, 7419–7430 (1999).
[CrossRef]

Morcrette, J. J.

E. F. Vermote, D. Tanré, J. L. Deuzé, M. Herman, and J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum, 6S: an overview,” IEEE Trans. Geosci. Remote Sens. 35, 675–686 (1997).
[CrossRef]

E. F. Vermote, D. Tanré, J. L. Deuze, M. Herman, and J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum (6S), 6S user’s guide version 2,” (NASA Goddard Space Flight Center, 1997).

Morisette, J. T.

C. O. Justice, J. R. G. Townshend, E. F. Vermote, E. Masuoka, R. E. Wolfe, N. Saleous, D. P. Roy, and J. T. Morisette, “An overview of MODIS Land data processing and product status,” Remote Sens. Environ. 83, 3–15 (2002).
[CrossRef]

Mougenot, B.

O. Hagolle, G. Dedieu, B. Mougenot, V. Debaecker, B. Duchemin, and A. Meygret, “Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: application to Formosat-2 images,” Remote Sens. Environ. 112, 1689–1701 (2008).
[CrossRef]

Nakajima, T.

M. D. King, Y. J. Kaufman, D. Tanré, and T. Nakajima, “Remote sensing of tropospheric aerosols from space: past, present and future,” Bull. Am. Meteorol. Soc. 80, 2229–2260(1999).
[CrossRef]

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Olah, M. R.

R. O. Green, M. L. Eastwood, C. H. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Oleszczuk, R.

G. Dial, H. Bowen, F. Gerlach, J. Grodecki, and R. Oleszczuk, “IKONOS satellite, imagery, and products,” Remote Sens. Environ. 88, 23–36 (2003).
[CrossRef]

Pascal, V.

F. de Lussy, P. Kubik, D. Greslou, V. Pascal, P. Gigord, and J. P. Cantou, “PLEIADES-HR image system products and quality—PLEIADES-HR image system products and geometric accuracy,” Tech. Rep. (Centre National d'Etudes Spaciales, 2005).

Pavri, B. E.

R. O. Green, M. L. Eastwood, C. H. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Peterson, B.

M. Cook, B. Peterson, G. Dial, F. Gerlach, K. Hutchins, R. Kudola, and H. Bowen, “IKONOS technical performance assessment,” Proc. SPIE 4381, 94–108 (2001).
[CrossRef]

Pinty, B.

J. V. Martonchik, D. J. Diner, R. Kahn, T. P. Ackerman, M. M. Verstraete, B. Pinty, and H. R. Gordon, “Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging,” IEEE Trans. Geosci. Remote Sens. 36, 1212–1227 (1998).
[CrossRef]

Puissant, A.

A. Puissant and J. Hirsch, “Télédétection urbaine et résolution spatiale optimale: intérêt pour les utilisateurs et aide pour les classifications,” Revue Internationale de Géomatique 14, 403–415 (2004).
[CrossRef]

Quattrocchi, D. A.

Q. Weng and D. A. Quattrocchi, Urban Remote Sensing (CRC Press, 2007).

Reagan, J. A.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Remer, L. A.

Y. J. Kaufman, D. Tanré, L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben, “Operational remote sensing of tropospheric aerosol over land from EOS-moderate resolution imaging spectroradiometre,” J. Geophys. Res. 102, 17051–17067 (1997).
[CrossRef]

Y. J. Kaufman, A. E. Wald, L. A. Remer, B. C. Gao, R. R. Li, and L. Flynn, “The MODIS 2.1 μm channel-correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286–1298 (1997).
[CrossRef]

R. C. Levy, L. A. Remer, D. Tanré, S. Mattoo, and Y. J. Kaufman, “Algorithm for remote sensing of tropospheric aerosol from MODIS: collections 005 and 051: Revision 2,” Tech. Rep. (NASA, 2009).

Roberts, D.

Roberts, D. A.

M. Herold, D. A. Roberts, M. E. Gardner, and P. E. Dennison, “Spectrometry for urban area remote sensing—development and analysis of a spectral library from 350 to 2400 nm,” Remote Sens. Env. 91, 304–319 (2004).
[CrossRef]

Roessner, S.

U. Heiden, K. Segl, S. Roessner, and H. Kaufmann, “Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data,” Remote Sens. Env. 111, 537–552 (2007).
[CrossRef]

Roy, D. P.

C. O. Justice, J. R. G. Townshend, E. F. Vermote, E. Masuoka, R. E. Wolfe, N. Saleous, D. P. Roy, and J. T. Morisette, “An overview of MODIS Land data processing and product status,” Remote Sens. Environ. 83, 3–15 (2002).
[CrossRef]

Saleous, N.

C. O. Justice, J. R. G. Townshend, E. F. Vermote, E. Masuoka, R. E. Wolfe, N. Saleous, D. P. Roy, and J. T. Morisette, “An overview of MODIS Land data processing and product status,” Remote Sens. Environ. 83, 3–15 (2002).
[CrossRef]

Santer, R.

C. Thomas, X. Briottet, R. Santer, and S. Lachérade, “Aerosols in urban areas: optical properties and impact on the signal incident to an airborne high-spatial resolution camera,” Proc. SPIE 7107, 71070O (2008).
[CrossRef]

C. Thomas, S. Doz, X. Briottet, R. Santer, D. Boldo, and S. Mathieu, “Remote sensing of aerosols in urban areas: sun/shadow retrieval procedure from airborne very high spatial resolution images,” in Proceedings of 2009 Joint Urban Remote Sensing Event (IEEE, 2009), pp. 1–6.
[CrossRef]

R. Santer, “Atmospheric products over land for MERIS level 2,” Tech. Rep. ATBD 2.15 (European Space Agency, 2000), http://envisat.esa.int/instruments/meris/pdf.

Sarture, C. H.

R. O. Green, M. L. Eastwood, C. H. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Segl, K.

U. Heiden, K. Segl, S. Roessner, and H. Kaufmann, “Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data,” Remote Sens. Env. 111, 537–552 (2007).
[CrossRef]

Setzer, A.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Simon, P. C.

G. Thuillier, M. Hersé, P. C. Simon, D. Labs, H. Mandel, D. Gillotay, and T. Foujols, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions,” Sol. Phys. 214, 1–22 (2003).
[CrossRef]

Slutsker, I.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Smirnov, A.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Solis, M.

R. O. Green, M. L. Eastwood, C. H. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Tanré, D.

M. D. King, Y. J. Kaufman, D. Tanré, and T. Nakajima, “Remote sensing of tropospheric aerosols from space: past, present and future,” Bull. Am. Meteorol. Soc. 80, 2229–2260(1999).
[CrossRef]

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

E. F. Vermote, D. Tanré, J. L. Deuzé, M. Herman, and J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum, 6S: an overview,” IEEE Trans. Geosci. Remote Sens. 35, 675–686 (1997).
[CrossRef]

Y. J. Kaufman, D. Tanré, L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben, “Operational remote sensing of tropospheric aerosol over land from EOS-moderate resolution imaging spectroradiometre,” J. Geophys. Res. 102, 17051–17067 (1997).
[CrossRef]

B. N. Holben, E. Vermote, Y. J. Kaufman, D. Tanré, and V. Kalb, “Aerosol retrieval over land from AVHRR data—Application for atmospheric correction,” IEEE Trans. Geosci. Remote Sens. 30, 212–222 (1992).
[CrossRef]

D. Tanré, P. Y. Deschamps, C. Devaux, and M. Herman, “Estimation of Saharan aerosol optical thickness from blurring effects in thematic mapper data,” J. Geophys. Res. 93, 15955 (1988).
[CrossRef]

E. F. Vermote, D. Tanré, J. L. Deuze, M. Herman, and J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum (6S), 6S user’s guide version 2,” (NASA Goddard Space Flight Center, 1997).

R. C. Levy, L. A. Remer, D. Tanré, S. Mattoo, and Y. J. Kaufman, “Algorithm for remote sensing of tropospheric aerosol from MODIS: collections 005 and 051: Revision 2,” Tech. Rep. (NASA, 2009).

Thomas, C.

C. Thomas, X. Briottet, R. Santer, and S. Lachérade, “Aerosols in urban areas: optical properties and impact on the signal incident to an airborne high-spatial resolution camera,” Proc. SPIE 7107, 71070O (2008).
[CrossRef]

C. Thomas, “Caractérisation des aérosols atmosphériques en milieu urbain par télédétection à très haute résolution spatiale,” Ph.D. thesis (University of Toulouse, 2010).

C. Thomas, S. Doz, X. Briottet, Département Optique Théorique et Appliquée, Oera, Toulouse, France, and S. Lachérade are preparing a manuscript to be called, “AMARTIS v2: 3D radiative transfer code in the [0.4; 2.5 μm] spectral domain dedicated to urban areas.”

C. Thomas, S. Doz, X. Briottet, R. Santer, D. Boldo, and S. Mathieu, “Remote sensing of aerosols in urban areas: sun/shadow retrieval procedure from airborne very high spatial resolution images,” in Proceedings of 2009 Joint Urban Remote Sensing Event (IEEE, 2009), pp. 1–6.
[CrossRef]

Thuillier, G.

G. Thuillier, M. Hersé, P. C. Simon, D. Labs, H. Mandel, D. Gillotay, and T. Foujols, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions,” Sol. Phys. 214, 1–22 (2003).
[CrossRef]

Townshend, J. R. G.

C. O. Justice, J. R. G. Townshend, E. F. Vermote, E. Masuoka, R. E. Wolfe, N. Saleous, D. P. Roy, and J. T. Morisette, “An overview of MODIS Land data processing and product status,” Remote Sens. Environ. 83, 3–15 (2002).
[CrossRef]

Valorge, C.

S. Lachérade, C. Miesch, D. Boldo, X. Briottet, C. Valorge, and H. Le Men, “ICARE: a physically-based model to correct atmospheric and geometric effects from high spatial and spectral remote sensing images over 3D urban areas,” Meteorol. Atmos. Phys. 102, 209–222 (2008).
[CrossRef]

Veefkind, J. P.

J. P. Veefkind, G. deLeeuw, and P. A. Durkee, “Retrieval of aerosol optical depth over land using two-angle view satellite radiometry during TARFOX,” Geophys. Res. Lett. 25, 3135–3138 (1998).
[CrossRef]

Vermote, E.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

B. N. Holben, E. Vermote, Y. J. Kaufman, D. Tanré, and V. Kalb, “Aerosol retrieval over land from AVHRR data—Application for atmospheric correction,” IEEE Trans. Geosci. Remote Sens. 30, 212–222 (1992).
[CrossRef]

Vermote, E. F.

C. O. Justice, J. R. G. Townshend, E. F. Vermote, E. Masuoka, R. E. Wolfe, N. Saleous, D. P. Roy, and J. T. Morisette, “An overview of MODIS Land data processing and product status,” Remote Sens. Environ. 83, 3–15 (2002).
[CrossRef]

Y. J. Kaufman, D. Tanré, L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben, “Operational remote sensing of tropospheric aerosol over land from EOS-moderate resolution imaging spectroradiometre,” J. Geophys. Res. 102, 17051–17067 (1997).
[CrossRef]

E. F. Vermote, D. Tanré, J. L. Deuzé, M. Herman, and J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum, 6S: an overview,” IEEE Trans. Geosci. Remote Sens. 35, 675–686 (1997).
[CrossRef]

E. F. Vermote, D. Tanré, J. L. Deuze, M. Herman, and J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum (6S), 6S user’s guide version 2,” (NASA Goddard Space Flight Center, 1997).

Verstraete, M. M.

J. V. Martonchik, D. J. Diner, R. Kahn, T. P. Ackerman, M. M. Verstraete, B. Pinty, and H. R. Gordon, “Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging,” IEEE Trans. Geosci. Remote Sens. 36, 1212–1227 (1998).
[CrossRef]

Vincent, D. A.

D. A. Vincent, “Aerosol optical depth retrieval from high-resolution commercial satellite imagery over areas of high surface reflectance,” Ph.D. thesis (Naval Postgraduate School, 2006).

Wald, A. E.

Y. J. Kaufman, A. E. Wald, L. A. Remer, B. C. Gao, R. R. Li, and L. Flynn, “The MODIS 2.1 μm channel-correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286–1298 (1997).
[CrossRef]

Weng, Q.

Q. Weng and D. A. Quattrocchi, Urban Remote Sensing (CRC Press, 2007).

Williams, O.

R. O. Green, M. L. Eastwood, C. H. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Wolfe, R. E.

C. O. Justice, J. R. G. Townshend, E. F. Vermote, E. Masuoka, R. E. Wolfe, N. Saleous, D. P. Roy, and J. T. Morisette, “An overview of MODIS Land data processing and product status,” Remote Sens. Environ. 83, 3–15 (2002).
[CrossRef]

Appl. Opt. (2)

Astrophys. J. (1)

L. C. Henyey, and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Bull. Am. Meteorol. Soc. (1)

M. D. King, Y. J. Kaufman, D. Tanré, and T. Nakajima, “Remote sensing of tropospheric aerosols from space: past, present and future,” Bull. Am. Meteorol. Soc. 80, 2229–2260(1999).
[CrossRef]

Geograf. Ann. (1)

A. Angström, “On the atmospheric transmission of sun radiation and on dust in the air,” Geograf. Ann. 11, 156–166 (1929).
[CrossRef]

Geophys. Res. Lett. (1)

J. P. Veefkind, G. deLeeuw, and P. A. Durkee, “Retrieval of aerosol optical depth over land using two-angle view satellite radiometry during TARFOX,” Geophys. Res. Lett. 25, 3135–3138 (1998).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (4)

J. V. Martonchik, D. J. Diner, R. Kahn, T. P. Ackerman, M. M. Verstraete, B. Pinty, and H. R. Gordon, “Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging,” IEEE Trans. Geosci. Remote Sens. 36, 1212–1227 (1998).
[CrossRef]

Y. J. Kaufman, A. E. Wald, L. A. Remer, B. C. Gao, R. R. Li, and L. Flynn, “The MODIS 2.1 μm channel-correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286–1298 (1997).
[CrossRef]

B. N. Holben, E. Vermote, Y. J. Kaufman, D. Tanré, and V. Kalb, “Aerosol retrieval over land from AVHRR data—Application for atmospheric correction,” IEEE Trans. Geosci. Remote Sens. 30, 212–222 (1992).
[CrossRef]

E. F. Vermote, D. Tanré, J. L. Deuzé, M. Herman, and J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum, 6S: an overview,” IEEE Trans. Geosci. Remote Sens. 35, 675–686 (1997).
[CrossRef]

Int. J. Remote Sens. (1)

S. Lachérade, C. Miesch, X. Briottet, and H. Le Men, “Spectral variability and bidirectional reflectance behaviour of urban materials at a 20 cm spatial resolution in the visible and near infrared wavelengths. A case study over Toulouse (France),” Int. J. Remote Sens. 26, 3859–3866 (2005).
[CrossRef]

J. Geophys. Res. (3)

Y. J. Kaufman, D. Tanré, L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben, “Operational remote sensing of tropospheric aerosol over land from EOS-moderate resolution imaging spectroradiometre,” J. Geophys. Res. 102, 17051–17067 (1997).
[CrossRef]

D. Tanré, P. Y. Deschamps, C. Devaux, and M. Herman, “Estimation of Saharan aerosol optical thickness from blurring effects in thematic mapper data,” J. Geophys. Res. 93, 15955 (1988).
[CrossRef]

J. V. Martonchik, D. J. Diner, R. Kahn, and B. Gaitley, “Comparison of MISR and AERONET aerosol optical depths over desert sites,” J. Geophys. Res. 31, L16102(2004).

Meteorol. Atmos. Phys. (1)

S. Lachérade, C. Miesch, D. Boldo, X. Briottet, C. Valorge, and H. Le Men, “ICARE: a physically-based model to correct atmospheric and geometric effects from high spatial and spectral remote sensing images over 3D urban areas,” Meteorol. Atmos. Phys. 102, 209–222 (2008).
[CrossRef]

Photog. Eng. Remote Sens. (1)

P. M. Dare, “Shadow analysis in high-resolution satellite imagery of urban areas,” Photog. Eng. Remote Sens. 71, 169–177(2005).

Proc. SPIE (4)

C. Thomas, X. Briottet, R. Santer, and S. Lachérade, “Aerosols in urban areas: optical properties and impact on the signal incident to an airborne high-spatial resolution camera,” Proc. SPIE 7107, 71070O (2008).
[CrossRef]

K. S. Krause, “Relative radiometric characterization and performance of the QuickBird high-resolution commercial imaging satellite,” Proc. SPIE 5542, 35–44 (2004).
[CrossRef]

P. Déliot, J. Duffaut, and A. Lacan, “Characterization and calibration of a high resolution multi-spectral airborne digital camera,” Proc. SPIE 6031, 603104 (2006).
[CrossRef]

M. Cook, B. Peterson, G. Dial, F. Gerlach, K. Hutchins, R. Kudola, and H. Bowen, “IKONOS technical performance assessment,” Proc. SPIE 4381, 94–108 (2001).
[CrossRef]

Remote Sens. Env. (2)

U. Heiden, K. Segl, S. Roessner, and H. Kaufmann, “Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data,” Remote Sens. Env. 111, 537–552 (2007).
[CrossRef]

M. Herold, D. A. Roberts, M. E. Gardner, and P. E. Dennison, “Spectrometry for urban area remote sensing—development and analysis of a spectral library from 350 to 2400 nm,” Remote Sens. Env. 91, 304–319 (2004).
[CrossRef]

Remote Sens. Environ. (5)

C. O. Justice, J. R. G. Townshend, E. F. Vermote, E. Masuoka, R. E. Wolfe, N. Saleous, D. P. Roy, and J. T. Morisette, “An overview of MODIS Land data processing and product status,” Remote Sens. Environ. 83, 3–15 (2002).
[CrossRef]

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

R. O. Green, M. L. Eastwood, C. H. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

G. Dial, H. Bowen, F. Gerlach, J. Grodecki, and R. Oleszczuk, “IKONOS satellite, imagery, and products,” Remote Sens. Environ. 88, 23–36 (2003).
[CrossRef]

O. Hagolle, G. Dedieu, B. Mougenot, V. Debaecker, B. Duchemin, and A. Meygret, “Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: application to Formosat-2 images,” Remote Sens. Environ. 112, 1689–1701 (2008).
[CrossRef]

Revue Internationale de Géomatique (1)

A. Puissant and J. Hirsch, “Télédétection urbaine et résolution spatiale optimale: intérêt pour les utilisateurs et aide pour les classifications,” Revue Internationale de Géomatique 14, 403–415 (2004).
[CrossRef]

Sol. Phys. (1)

G. Thuillier, M. Hersé, P. C. Simon, D. Labs, H. Mandel, D. Gillotay, and T. Foujols, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions,” Sol. Phys. 214, 1–22 (2003).
[CrossRef]

Other (12)

R. C. Levy, L. A. Remer, D. Tanré, S. Mattoo, and Y. J. Kaufman, “Algorithm for remote sensing of tropospheric aerosol from MODIS: collections 005 and 051: Revision 2,” Tech. Rep. (NASA, 2009).

Q. Weng and D. A. Quattrocchi, Urban Remote Sensing (CRC Press, 2007).

Digital Globe, http://digitalglobe.com.

GeoEye, http://geoeye.com.

F. de Lussy, P. Kubik, D. Greslou, V. Pascal, P. Gigord, and J. P. Cantou, “PLEIADES-HR image system products and quality—PLEIADES-HR image system products and geometric accuracy,” Tech. Rep. (Centre National d'Etudes Spaciales, 2005).

D. A. Vincent, “Aerosol optical depth retrieval from high-resolution commercial satellite imagery over areas of high surface reflectance,” Ph.D. thesis (Naval Postgraduate School, 2006).

C. Thomas, S. Doz, X. Briottet, R. Santer, D. Boldo, and S. Mathieu, “Remote sensing of aerosols in urban areas: sun/shadow retrieval procedure from airborne very high spatial resolution images,” in Proceedings of 2009 Joint Urban Remote Sensing Event (IEEE, 2009), pp. 1–6.
[CrossRef]

C. Thomas, “Caractérisation des aérosols atmosphériques en milieu urbain par télédétection à très haute résolution spatiale,” Ph.D. thesis (University of Toulouse, 2010).

E. F. Vermote, D. Tanré, J. L. Deuze, M. Herman, and J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum (6S), 6S user’s guide version 2,” (NASA Goddard Space Flight Center, 1997).

R. Santer, “Atmospheric products over land for MERIS level 2,” Tech. Rep. ATBD 2.15 (European Space Agency, 2000), http://envisat.esa.int/instruments/meris/pdf.

S. Doz, X. Briottet, S. Lache´rade, and D. Boldo, “Simulation over urban area: two case study,” in Proceedings of 2009 Joint Urban Remote Sensing Event (IEEE, 2009).
[CrossRef]

C. Thomas, S. Doz, X. Briottet, Département Optique Théorique et Appliquée, Oera, Toulouse, France, and S. Lachérade are preparing a manuscript to be called, “AMARTIS v2: 3D radiative transfer code in the [0.4; 2.5 μm] spectral domain dedicated to urban areas.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Radiative components of the total signal at ground level I tot ( I dir , I scat , I coup , and I refl ) and of the total signal at sensor level R * ( R dir , R env , and R atm ).

Fig. 2
Fig. 2

Observation of shadow/sun transitions from a PELICAN image (spatial resolution of 20 cm ). A and B respectively represent a pixel in the sun and a pixel in the shadow corresponding to the same type of material (tar).

Fig. 3
Fig. 3

Principle of OSIS algorithm for the characterization of atmospheric aerosols from a shadow/sun pixels couple. A and B correspond to the sunny and shady pixels, α and α are Angström coefficients, M α is an aerosol model, τ a is an aerosol optical thickness, λ e is the equivalent wavelength of the spectral band of the image, I dir is the direct irradiance, I scat is the scattered irradiance, I refl is the reflected irradiance, I coup is the Earth–atmosphere coupling irradiance, R atm is the atmospheric radiance, R env is the environment radiance, and ρ env is the mean reflectance of the environment.

Fig. 4
Fig. 4

Spectral single scattering albedos (above) and asymmetry factors (below) the eight aerosol models of the AMD. They are indexed by their Angström coefficient.

Fig. 5
Fig. 5

Illustration of the canopy level and of the sky-viewing solid angle Ω sky used to approximate I coup .

Fig. 6
Fig. 6

3D model of the scene used for the sensitivity study.

Fig. 7
Fig. 7

Simulated sensed radiance image at 550 nm for the M0 aerosol model, an optical thickness of 0.2, a surface reflectance of 0.1, and a spatial resolution of 20 cm . The four shadow/sun couples are located on the figure.

Fig. 8
Fig. 8

Error on aerosol optical thickness retrieval plotted versus the error on buildings reflectance assessment for the scenes of surface reflectance 0.1 and 0.3.

Fig. 9
Fig. 9

Retrieved aerosol optical thicknesses plotted versus simulated aerosol optical thicknesses for the simulations corresponding to particle models M0 to M12 and to the 0.1 reflectance scene with optical thicknesses at 550 nm of 0.1, 0.2, and 0.4. The dashed line represents τ a inv = 1.1 . τ a . The solid lines delimit the ( 1.1 ± 0.4 ) . τ a domain.

Fig. 10
Fig. 10

Spectral aerosol optical thicknesses retrieved for absolute calibration errors of 10 % , 5 % , 0%, + 5 % , and + 10 % in the case of the M0 model, of a 0.1 surface reflectance, and an optical thickness at 550 nm of 0.2. The curve corresponding to an error of 5 % does not appear on this figure because it is hidden behind the curve corresponding to no calibration error.

Fig. 11
Fig. 11

Retrieved aerosol optical thicknesses plotted versus simulated aerosol optical thicknesses for the 13 particle models with optical thicknesses at 550 nm of 0.1, 0.2, and 0.4 and with surface reflectance of 0.1. The solid lines represent the assessed precision of OSIS ( τ a inv = 1.1 . τ a ± ( 0.02 + 0.4 . τ a ) ) and the dashed lines represent the precision of MODIS product above lands ( τ a inv = τ a ± ( 0.05 + 0.15 . τ a ) [41]). This figure differs from Fig. 9 by the different solid and dashed lines.

Tables (3)

Tables Icon

Table 1 Optical Properties of the Direct Aerosol Models Used in OSIS Sensitivity Study and Comparison with the AMD a

Tables Icon

Table 2 Principal Characteristics of the Reference Cases Used for OSIS sensitivity Study

Tables Icon

Table 3 Summary of the Principal Results of OSIS sensitivity Study a

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

R * = R atm + R env + R dir .
R dir = ( I dir + I scat + I coup + I refl ) × ρ c π × T dir
ρ c × T dir = π × R * R atm R env I dir + I scat + I coup + I refl .
ρ c A × T dir A = ρ c B × T dir B .
R * B R atm B R env B R * A R atm A R env A = I scat B + I coup B + I refl B I dir A + I scat A + I coup A + I refl A .
P a ( Θ ) = 1 g 2 ( 1 + g 2 2 g × cos ( Θ ) ) 3 / 2 .
I dir = I S × ( N . n S ) × e τ tot cos ( θ S ) ,
I scat = i = 1 n d bool ciel ( i ) × R sky i × cos ( θ i ) × Ω i
I coup canopy = ( I dir canopy + I scat canopy ) × ρ env × s 1 ρ env × s ,
I coup = ( I dir canopy + I scat canopy ) × ρ env × s 1 ρ env × s × Ω sky 2 π ,
I refl = i = 0 n d bool scene ( i ) × ( I dir i + I scat i ) × ρ refl × e τ tot × ( N . n refl ) × Ω i π ,
R env = ( I dir canopy + I scat canopy ) π × ρ env × T scat 1 ρ env × s ,
{ ρ env = R 1 + R . s R = π × ( R * R env R atm ) e τ tot cos ( θ V ) × ( I dir canopy + I scat canopy ) ,
R env = R dark * R atm .
| R * B R atm B R env B R * A R atm A R env A I scat B + I coup B + I refl B I dir A + I scat A + I coup A + I refl A | .
| α M α M | = min i = 1 , n | α i α i | ,
τ a inv = ( 1.1 ± 0.4 ) × τ a .
α inv = 0.98 × α + 0.28.
τ a inv τ a = 0.1 . τ a ± ( 0.02 + 0.4 . τ a ) .

Metrics