Abstract

In this study, we investigate the performance of early-photon fluorescence tomography based on a heterogeneous mouse model. The telegraph equation is used to accurately describe the propagation of light in tissues at short times. The optimal time gate for early photons is determined by singular value analysis at first. Then, fluorescent targets located in different organs of the mouse model are investigated. The simulation results demonstrate that the reconstructed tomographic images based on early photons yield improvement in spatial resolution and quantification than the quasi-CW measurements. Meanwhile, compared with the homogeneous model, the use of the heterogeneous model can improve the accuracy of fluorescence distribution and quantification in early-photon fluorescence tomography.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005).
    [CrossRef] [PubMed]
  2. E. E. Graves, R. Weissleder, and V. Ntziachristos, “Fluorescence molecular imaging of small animal tumor models,” Curr. Mol. Med. 4, 419–430 (2004).
    [CrossRef] [PubMed]
  3. M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA 105, 19126–19131 (2008).
    [CrossRef] [PubMed]
  4. K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5, 144–154 (2000).
    [CrossRef] [PubMed]
  5. F. Liu, K. M. Yoo, and R. R. Alfano, “Ultrafast laser-pulse transmission and imaging through biological tissues,” Appl. Opt. 32, 554–558 (1993).
    [CrossRef] [PubMed]
  6. M. E. Zevallos, S. K. Gayen, B. B. Das, M. Alrubaiee, and R. R. Alfano, “Picosecond electronic time-gated imaging of bones in tissues,” IEEE J. Sel. Top. Quantum Electron. 5, 916–922(1999).
    [CrossRef]
  7. J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, “Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms,” Proc. Natl. Acad. Sci. USA 94, 8783–8788 (1997).
    [CrossRef] [PubMed]
  8. R. Berg, O. Jarlman, and S. Svanberg, “Medical transillumination imaging using short-pulse diode lasers,” Appl. Opt. 32, 574–579 (1993).
    [CrossRef] [PubMed]
  9. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265(2000).
    [CrossRef]
  10. G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 30, 409–411(2005).
    [CrossRef] [PubMed]
  11. G. M. Turner, A. Soubret, and V. Ntziachristos, “Inversion with early photons,” Med. Phys. 34, 1405–1411 (2007).
    [CrossRef] [PubMed]
  12. M. Niedre and V. Ntziachristos, “Comparison of fluorescence tomographic imaging in mice with early-arriving and quasi-continuous-wave photons,” Opt. Lett. 35, 369–371 (2010).
    [CrossRef] [PubMed]
  13. F. Leblond, H. Dehghani, D. Kepshire, and B. W. Pogue, “Early-photon fluorescence tomography: spatial resolution improvements and noise stability considerations,” J. Opt. Soc. Am. A 26, 1444–1457 (2009).
    [CrossRef]
  14. L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46, 4896–4906 (2007).
    [CrossRef] [PubMed]
  15. Y. Tan and H. Jiang, “Diffuse optical tomography guided quantitative fluorescence molecular tomography,” Appl. Opt. 47, 2011–2016 (2008).
    [CrossRef] [PubMed]
  16. C. Baltes and G. W. Faris, “Frequency domain measurements on turbid media with strong absorption using the PN approximation,” Appl. Opt. 48, 2991–3000 (2009).
    [CrossRef] [PubMed]
  17. A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).
    [CrossRef]
  18. J. Bouza-Domínguez and Y. Bérubé-Lauzière, “Diffuse light propagation in biological media by a time-domain parabolic simplified spherical harmonics approximation with ray-divergence effects,” Appl. Opt. 49, 1414–1429 (2010).
    [CrossRef] [PubMed]
  19. J. Bouza-Domínguez and Y. Bérubé-Lauzière, “Light propagation from fluorescent probes in biological tissues by coupled time-dependent parabolic simplified spherical harmonics equations,” Biomed. Opt. Express 2, 817–837 (2011).
    [CrossRef]
  20. D. J. Durian and J. Rudnick, “Photon migration at short times and distances and in cases of strong absorption,” J. Opt. Soc. Am. A 14, 235–245 (1997).
    [CrossRef]
  21. V. Soloviev, D. Wilson, and S. Vinogradov, “Phosphorescence lifetime imaging in turbid media: the forward problem,” Appl. Opt. 42, 113–123 (2003).
    [CrossRef] [PubMed]
  22. R. Ranadhir, “Telegrapher-based fluorescence-enhanced optical tomography in small volume,” Proc. SPIE 7561, 75610H(2010).
    [CrossRef]
  23. M. Xu, W. Cai, M. Lax, and R. R. Alfano, “Photon migration in turbid media using a cumulant approximation to radiative transfer,” Phys. Rev. E 65, 066609 (2002).
    [CrossRef]
  24. B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
    [CrossRef]
  25. V. Y. Soloviev, K. B. Tahir, J. McGinty, D. S. Elson, M. A. A. Neil, P. M. W. French, and S. R. Arridge, “Fluorescence lifetime imaging by using time-gated data acquisition,” Appl. Opt. 46, 7384–7391 (2007).
    [CrossRef] [PubMed]
  26. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
    [CrossRef]
  27. L. V. Wang and H.-i. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).
  28. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
    [CrossRef] [PubMed]
  29. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
    [CrossRef] [PubMed]
  30. F. Gao, H. Zhao, L. Zhang, Y. Tanikawa, A. Marjono, and Y. Yamada, “A self-normalized, full time-resolved method for fluorescence diffuse optical tomography,” Opt. Express 16, 13104–13121 (2008).
    [CrossRef] [PubMed]
  31. A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imag. 24, 1377–1386 (2005).
    [CrossRef]
  32. E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21, 231–241 (2004).
    [CrossRef]
  33. T. Lasser and V. Ntziachristos, “Optimization of 360°projection fluorescence molecular tomography,” Med. Image Anal. 11, 389–399 (2007).
    [CrossRef] [PubMed]
  34. B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577–587 (2007).
    [CrossRef] [PubMed]
  35. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).
    [CrossRef] [PubMed]
  36. Q. Fang, “Monte Carlo eXtreme Software,” url: http://mcx.sourceforge.net.
  37. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17, 20178–20190 (2009).
    [CrossRef] [PubMed]
  38. S. D. Konecky, G. Y. Panasyuk, K. Lee, A. G. Yodh, and J. C. Schotland, “Imaging complex structures with diffuse light,” Opt. Express 16, 5048–5060 (2008).
    [CrossRef] [PubMed]
  39. Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52, 5569–5585 (2007).
    [CrossRef] [PubMed]
  40. Y. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18, 7835–7850 (2010).
    [CrossRef] [PubMed]

2011 (1)

2010 (4)

2009 (3)

2008 (4)

2007 (6)

G. M. Turner, A. Soubret, and V. Ntziachristos, “Inversion with early photons,” Med. Phys. 34, 1405–1411 (2007).
[CrossRef] [PubMed]

T. Lasser and V. Ntziachristos, “Optimization of 360°projection fluorescence molecular tomography,” Med. Image Anal. 11, 389–399 (2007).
[CrossRef] [PubMed]

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577–587 (2007).
[CrossRef] [PubMed]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46, 4896–4906 (2007).
[CrossRef] [PubMed]

V. Y. Soloviev, K. B. Tahir, J. McGinty, D. S. Elson, M. A. A. Neil, P. M. W. French, and S. R. Arridge, “Fluorescence lifetime imaging by using time-gated data acquisition,” Appl. Opt. 46, 7384–7391 (2007).
[CrossRef] [PubMed]

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52, 5569–5585 (2007).
[CrossRef] [PubMed]

2006 (1)

A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).
[CrossRef]

2005 (4)

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imag. 24, 1377–1386 (2005).
[CrossRef]

G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 30, 409–411(2005).
[CrossRef] [PubMed]

2004 (2)

2003 (1)

2002 (1)

M. Xu, W. Cai, M. Lax, and R. R. Alfano, “Photon migration in turbid media using a cumulant approximation to radiative transfer,” Phys. Rev. E 65, 066609 (2002).
[CrossRef]

2000 (2)

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5, 144–154 (2000).
[CrossRef] [PubMed]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265(2000).
[CrossRef]

1999 (2)

M. E. Zevallos, S. K. Gayen, B. B. Das, M. Alrubaiee, and R. R. Alfano, “Picosecond electronic time-gated imaging of bones in tissues,” IEEE J. Sel. Top. Quantum Electron. 5, 916–922(1999).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

1997 (3)

B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, “Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms,” Proc. Natl. Acad. Sci. USA 94, 8783–8788 (1997).
[CrossRef] [PubMed]

D. J. Durian and J. Rudnick, “Photon migration at short times and distances and in cases of strong absorption,” J. Opt. Soc. Am. A 14, 235–245 (1997).
[CrossRef]

1995 (1)

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

1993 (3)

Aikawa, E.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA 105, 19126–19131 (2008).
[CrossRef] [PubMed]

Alexandrakis, G.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).
[CrossRef] [PubMed]

Alfano, R. R.

M. Xu, W. Cai, M. Lax, and R. R. Alfano, “Photon migration in turbid media using a cumulant approximation to radiative transfer,” Phys. Rev. E 65, 066609 (2002).
[CrossRef]

M. E. Zevallos, S. K. Gayen, B. B. Das, M. Alrubaiee, and R. R. Alfano, “Picosecond electronic time-gated imaging of bones in tissues,” IEEE J. Sel. Top. Quantum Electron. 5, 916–922(1999).
[CrossRef]

B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

F. Liu, K. M. Yoo, and R. R. Alfano, “Ultrafast laser-pulse transmission and imaging through biological tissues,” Appl. Opt. 32, 554–558 (1993).
[CrossRef] [PubMed]

Alrubaiee, M.

M. E. Zevallos, S. K. Gayen, B. B. Das, M. Alrubaiee, and R. R. Alfano, “Picosecond electronic time-gated imaging of bones in tissues,” IEEE J. Sel. Top. Quantum Electron. 5, 916–922(1999).
[CrossRef]

Arridge, S. R.

V. Y. Soloviev, K. B. Tahir, J. McGinty, D. S. Elson, M. A. A. Neil, P. M. W. French, and S. R. Arridge, “Fluorescence lifetime imaging by using time-gated data acquisition,” Appl. Opt. 46, 7384–7391 (2007).
[CrossRef] [PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Baltes, C.

Barber, W. C.

Berg, R.

Berger, M.

Bérubé-Lauzière, Y.

Boas, D. A.

Boutet, J.

Bouza-Domínguez, J.

Cai, W.

M. Xu, W. Cai, M. Lax, and R. R. Alfano, “Photon migration in turbid media using a cumulant approximation to radiative transfer,” Phys. Rev. E 65, 066609 (2002).
[CrossRef]

Chatziioannou, A. F.

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577–587 (2007).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).
[CrossRef] [PubMed]

Chen, K.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5, 144–154 (2000).
[CrossRef] [PubMed]

Culver, J. P.

Da Silva, A.

Das, B. B.

M. E. Zevallos, S. K. Gayen, B. B. Das, M. Alrubaiee, and R. R. Alfano, “Picosecond electronic time-gated imaging of bones in tissues,” IEEE J. Sel. Top. Quantum Electron. 5, 916–922(1999).
[CrossRef]

B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

Dasari, R. R.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5, 144–154 (2000).
[CrossRef] [PubMed]

J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, “Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms,” Proc. Natl. Acad. Sci. USA 94, 8783–8788 (1997).
[CrossRef] [PubMed]

de Kleine, R. H.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA 105, 19126–19131 (2008).
[CrossRef] [PubMed]

Dehghani, H.

Delpy, D. T.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265(2000).
[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Dinten, J. M.

Dogdas, B.

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577–587 (2007).
[CrossRef] [PubMed]

Durian, D. J.

Elson, D. S.

Fang, Q.

Faris, G. W.

Feld, M. S.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5, 144–154 (2000).
[CrossRef] [PubMed]

J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, “Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms,” Proc. Natl. Acad. Sci. USA 94, 8783–8788 (1997).
[CrossRef] [PubMed]

French, P. M. W.

Fry, M. E.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265(2000).
[CrossRef]

Gao, F.

Gao, H.

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52, 5569–5585 (2007).
[CrossRef] [PubMed]

Gayen, S. K.

M. E. Zevallos, S. K. Gayen, B. B. Das, M. Alrubaiee, and R. R. Alfano, “Picosecond electronic time-gated imaging of bones in tissues,” IEEE J. Sel. Top. Quantum Electron. 5, 916–922(1999).
[CrossRef]

Graves, E. E.

Gulsen, G.

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18, 7835–7850 (2010).
[CrossRef] [PubMed]

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52, 5569–5585 (2007).
[CrossRef] [PubMed]

Hebden, J. C.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265(2000).
[CrossRef]

Hervé, L.

Hillman, E. M. C.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265(2000).
[CrossRef]

Hiraoka, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Iwanczyk, J. S.

Jarlman, O.

Jiang, H.

Kepshire, D.

Kirsch, D. G.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA 105, 19126–19131 (2008).
[CrossRef] [PubMed]

Klose, A. D.

A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).
[CrossRef]

Koenig, A.

Konecky, S. D.

Larsen, E. W.

A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).
[CrossRef]

Lasser, T.

T. Lasser and V. Ntziachristos, “Optimization of 360°projection fluorescence molecular tomography,” Med. Image Anal. 11, 389–399 (2007).
[CrossRef] [PubMed]

Lax, M.

M. Xu, W. Cai, M. Lax, and R. R. Alfano, “Photon migration in turbid media using a cumulant approximation to radiative transfer,” Phys. Rev. E 65, 066609 (2002).
[CrossRef]

Leahy, R. M.

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577–587 (2007).
[CrossRef] [PubMed]

Leblond, F.

Lee, K.

Lin, Y.

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18, 7835–7850 (2010).
[CrossRef] [PubMed]

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52, 5569–5585 (2007).
[CrossRef] [PubMed]

Liu, F.

B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

F. Liu, K. M. Yoo, and R. R. Alfano, “Ultrafast laser-pulse transmission and imaging through biological tissues,” Appl. Opt. 32, 554–558 (1993).
[CrossRef] [PubMed]

Marjono, A.

McGinty, J.

Nalcioglu, O.

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18, 7835–7850 (2010).
[CrossRef] [PubMed]

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52, 5569–5585 (2007).
[CrossRef] [PubMed]

Neil, M. A. A.

Niedre, M.

Niedre, M. J.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA 105, 19126–19131 (2008).
[CrossRef] [PubMed]

Ntziachristos, V.

M. Niedre and V. Ntziachristos, “Comparison of fluorescence tomographic imaging in mice with early-arriving and quasi-continuous-wave photons,” Opt. Lett. 35, 369–371 (2010).
[CrossRef] [PubMed]

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA 105, 19126–19131 (2008).
[CrossRef] [PubMed]

G. M. Turner, A. Soubret, and V. Ntziachristos, “Inversion with early photons,” Med. Phys. 34, 1405–1411 (2007).
[CrossRef] [PubMed]

T. Lasser and V. Ntziachristos, “Optimization of 360°projection fluorescence molecular tomography,” Med. Image Anal. 11, 389–399 (2007).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imag. 24, 1377–1386 (2005).
[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005).
[CrossRef] [PubMed]

G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 30, 409–411(2005).
[CrossRef] [PubMed]

E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21, 231–241 (2004).
[CrossRef]

E. E. Graves, R. Weissleder, and V. Ntziachristos, “Fluorescence molecular imaging of small animal tumor models,” Curr. Mol. Med. 4, 419–430 (2004).
[CrossRef] [PubMed]

Panasyuk, G. Y.

Peltié, P.

Perelman, L.

J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, “Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms,” Proc. Natl. Acad. Sci. USA 94, 8783–8788 (1997).
[CrossRef] [PubMed]

Perelman, L. T.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5, 144–154 (2000).
[CrossRef] [PubMed]

Pogue, B. W.

Ranadhir, R.

R. Ranadhir, “Telegrapher-based fluorescence-enhanced optical tomography in small volume,” Proc. SPIE 7561, 75610H(2010).
[CrossRef]

Rannou, F. R.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).
[CrossRef] [PubMed]

Ripoll, J.

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imag. 24, 1377–1386 (2005).
[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005).
[CrossRef] [PubMed]

G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 30, 409–411(2005).
[CrossRef] [PubMed]

E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21, 231–241 (2004).
[CrossRef]

Rizo, P.

Roeck, W.

Rudnick, J.

Schmidt, F. E. W.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265(2000).
[CrossRef]

Schotland, J. C.

Schweiger, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Soloviev, V.

Soloviev, V. Y.

Soubret, A.

G. M. Turner, A. Soubret, and V. Ntziachristos, “Inversion with early photons,” Med. Phys. 34, 1405–1411 (2007).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imag. 24, 1377–1386 (2005).
[CrossRef]

G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 30, 409–411(2005).
[CrossRef] [PubMed]

Stout, D.

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577–587 (2007).
[CrossRef] [PubMed]

Svanberg, S.

Tahir, K. B.

Tan, Y.

Tanikawa, Y.

Turner, G. M.

Vinogradov, S.

Wang, L. V.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005).
[CrossRef] [PubMed]

L. V. Wang and H.-i. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

Weissleder, R.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA 105, 19126–19131 (2008).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005).
[CrossRef] [PubMed]

E. E. Graves, R. Weissleder, and V. Ntziachristos, “Fluorescence molecular imaging of small animal tumor models,” Curr. Mol. Med. 4, 419–430 (2004).
[CrossRef] [PubMed]

E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21, 231–241 (2004).
[CrossRef]

Wilson, D.

Wu, H.-i.

L. V. Wang and H.-i. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

Wu, J.

J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, “Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms,” Proc. Natl. Acad. Sci. USA 94, 8783–8788 (1997).
[CrossRef] [PubMed]

Xu, M.

M. Xu, W. Cai, M. Lax, and R. R. Alfano, “Photon migration in turbid media using a cumulant approximation to radiative transfer,” Phys. Rev. E 65, 066609 (2002).
[CrossRef]

Yamada, Y.

Yodh, A. G.

Yoo, K. M.

Zacharakis, G.

Zevallos, M. E.

M. E. Zevallos, S. K. Gayen, B. B. Das, M. Alrubaiee, and R. R. Alfano, “Picosecond electronic time-gated imaging of bones in tissues,” IEEE J. Sel. Top. Quantum Electron. 5, 916–922(1999).
[CrossRef]

Zhang, L.

Zhang, Q.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5, 144–154 (2000).
[CrossRef] [PubMed]

Zhao, H.

Appl. Opt. (8)

F. Liu, K. M. Yoo, and R. R. Alfano, “Ultrafast laser-pulse transmission and imaging through biological tissues,” Appl. Opt. 32, 554–558 (1993).
[CrossRef] [PubMed]

R. Berg, O. Jarlman, and S. Svanberg, “Medical transillumination imaging using short-pulse diode lasers,” Appl. Opt. 32, 574–579 (1993).
[CrossRef] [PubMed]

V. Soloviev, D. Wilson, and S. Vinogradov, “Phosphorescence lifetime imaging in turbid media: the forward problem,” Appl. Opt. 42, 113–123 (2003).
[CrossRef] [PubMed]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46, 4896–4906 (2007).
[CrossRef] [PubMed]

V. Y. Soloviev, K. B. Tahir, J. McGinty, D. S. Elson, M. A. A. Neil, P. M. W. French, and S. R. Arridge, “Fluorescence lifetime imaging by using time-gated data acquisition,” Appl. Opt. 46, 7384–7391 (2007).
[CrossRef] [PubMed]

C. Baltes and G. W. Faris, “Frequency domain measurements on turbid media with strong absorption using the PN approximation,” Appl. Opt. 48, 2991–3000 (2009).
[CrossRef] [PubMed]

Y. Tan and H. Jiang, “Diffuse optical tomography guided quantitative fluorescence molecular tomography,” Appl. Opt. 47, 2011–2016 (2008).
[CrossRef] [PubMed]

J. Bouza-Domínguez and Y. Bérubé-Lauzière, “Diffuse light propagation in biological media by a time-domain parabolic simplified spherical harmonics approximation with ray-divergence effects,” Appl. Opt. 49, 1414–1429 (2010).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

Curr. Mol. Med. (1)

E. E. Graves, R. Weissleder, and V. Ntziachristos, “Fluorescence molecular imaging of small animal tumor models,” Curr. Mol. Med. 4, 419–430 (2004).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

M. E. Zevallos, S. K. Gayen, B. B. Das, M. Alrubaiee, and R. R. Alfano, “Picosecond electronic time-gated imaging of bones in tissues,” IEEE J. Sel. Top. Quantum Electron. 5, 916–922(1999).
[CrossRef]

IEEE Trans. Med. Imag. (1)

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imag. 24, 1377–1386 (2005).
[CrossRef]

Inverse Probl. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

J. Biomed. Opt. (1)

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5, 144–154 (2000).
[CrossRef] [PubMed]

J. Comput. Phys. (1)

A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).
[CrossRef]

J. Opt. Soc. Am. A (3)

Med. Image Anal. (1)

T. Lasser and V. Ntziachristos, “Optimization of 360°projection fluorescence molecular tomography,” Med. Image Anal. 11, 389–399 (2007).
[CrossRef] [PubMed]

Med. Phys. (3)

G. M. Turner, A. Soubret, and V. Ntziachristos, “Inversion with early photons,” Med. Phys. 34, 1405–1411 (2007).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phys. Med. Biol. (3)

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52, 5569–5585 (2007).
[CrossRef] [PubMed]

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577–587 (2007).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).
[CrossRef] [PubMed]

Phys. Rev. E (1)

M. Xu, W. Cai, M. Lax, and R. R. Alfano, “Photon migration in turbid media using a cumulant approximation to radiative transfer,” Phys. Rev. E 65, 066609 (2002).
[CrossRef]

Proc. Natl. Acad. Sci. USA (2)

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA 105, 19126–19131 (2008).
[CrossRef] [PubMed]

J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, “Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms,” Proc. Natl. Acad. Sci. USA 94, 8783–8788 (1997).
[CrossRef] [PubMed]

Proc. SPIE (1)

R. Ranadhir, “Telegrapher-based fluorescence-enhanced optical tomography in small volume,” Proc. SPIE 7561, 75610H(2010).
[CrossRef]

Rep. Prog. Phys. (1)

B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265(2000).
[CrossRef]

Other (2)

L. V. Wang and H.-i. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

Q. Fang, “Monte Carlo eXtreme Software,” url: http://mcx.sourceforge.net.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Schematic of the free-space time-gated fluorescence tomography system. (b) Mouse chest region used for simulation. Different colors correspond to different tissue types (red, heart; yellow, lungs; pink, liver; gray, adipose tissue). (c) Position of excitation lights and FOV of detection. All 18 isotropic light sources are shown in one cross section, which is indicated by the green line in (b). The FOV of detection is 120 ° , and the FOV with respect to source S1 is shown.

Fig. 2
Fig. 2

(a) Fluorescence signal of different times at ( 0 , 0.8 , 2.1 ) cm from the fluorescent targets with the excitation source at ( 0.6 , 0.5 , 2.0 ) cm . The fluorescent targets are located in the heart and right lung, as shown in Fig. 8g. (b)–(e) Surface fluorescence signals corresponding to 200, 400, 600, and 1000 ps , respectively.

Fig. 3
Fig. 3

(a) Singular value spectra of the TD weight matrix calculated at different time gates. The noise threshold for evaluating N σ is 10 4 (indicated by the horizontal dashed–dotted line). (b) Number of singular value as a function of time gates used in the weight matrix. Inset, sample TPSF of the emission on the surface of the mouse model.

Fig. 4
Fig. 4

Real distribution and reconstruction results of a single fluorescent target. The first column illustrates the real position of the target, while the second and third columns correspond to reconstruction results using T 200 ps and T 1000 ps time gates, respectively. The first row [(b)–(c)] is the reconstructed fluorescence tomographic images (each slice is normalized to the maximum value), while the second row is the mouse atlas images fused with the fluorescence tomographic images. The third row is the 3D rendering of the mouse model combined with the reconstructed fluorescence. The arrows indicate the position of the fluorescent targets.

Fig. 5
Fig. 5

Intensity profiles along the dashed–dotted lines, which are shown in Figs. 4a, 4b.

Fig. 6
Fig. 6

Reconstruction results of double fluorescent targets in the same organ using different time gates. The first column illustrates the real position of the target, while the second and third columns correspond to reconstruction results using T 200 ps and T 1000 ps time gates, respectively. The first row [(b)–(c)]  is the reconstructed fluorescence tomographic images (each slice is normalized to the maximum value), while the second row is the fusion of the fluorescence tomographic images with the labeled mouse atlas images. The third row is the 3D rendering of the mouse atlas combined with the reconstructed fluorescence. The arrows indicate the position of the fluorescent targets.

Fig. 7
Fig. 7

(a) Intensity profiles along the dashed–dotted lines, which are shown in Figs. 6a, 6b, 6c. (b) Intensity profiles along the dashed–dotted lines, which are shown in Figs. 8a, 8b, 8c.

Fig. 8
Fig. 8

Reconstruction results of double targets in different organs using different time gates. The first column illustrates the real position of the target, while the second and third columns correspond g to reconstruction results using T 200 ps and T 1000 ps time gates, respectively. The first row [(b)–(c)] is the reconstructed fluorescence tomographic images (each slice is normalized to the maximum value), while the second row is the fusion of the fluorescence tomographic images with the labeled mouse atlas images. The third row is the 3D rendering of the mouse atlas combined with the reconstructed fluorescence. The arrows indicate the position of the fluorescent targets.

Fig. 9
Fig. 9

Reconstruction results of double targets with different fluorescent yields. The first column illustrates the real position of the target, while the second and the last columns correspond to reconstruction results using T 200 ps and T 1000 ps time gates, respectively. The first row [(b)–(c)] is the reconstructed fluorescence tomographic images (each slice is normalized to the maximum value), while the second row is the fusion of the fluorescence tomographic images with the labeled mouse atlas images.

Fig. 10
Fig. 10

Intensity profiles along the dashed–dotted lines, which are shown in Figs. 9a, 9b, 9c.

Fig. 11
Fig. 11

Reconstruction results of using the homogeneous model. The first column is the single fluorescent target in the liver. The second column is the double fluorescent target in the liver, and the third column is the two fluorescent targets in the heart and the lung. The small circles indicate the real position of the fluorescent targets. Each slice is normalized to the maximum value.

Fig. 12
Fig. 12

Reconstruction results of two fluorescent targets in different organs using the TE method and the MC method (each slice is normalized to the maximum value).

Tables (7)

Tables Icon

Table 1 Optical Parameters of Different Mouse Tissue

Tables Icon

Table 2 Quantification Analysis of a Single Fluorescent Target

Tables Icon

Table 3 Quantification Analysis of Double Fluorescent Targets in the Same Organ

Tables Icon

Table 4 Quantification Analysis of Double Fluorescent Targets in Different Organs

Tables Icon

Table 5 Quantification Analysis of Double Targets with Different Fluorescent Yields

Tables Icon

Table 6 Quantification Analysis of the T 200 ps Time Gate Using the Homogeneous Model

Tables Icon

Table 7 Quantification Analysis of Double Fluorescent Targets in Different Organs Using the Monte Carlo Method

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

{ 1 c Φ ( r , t ) t + μ a Φ ( r , t ) + · J ( r , t ) = q 0 ( r , t ) 1 c J ( r , t ) t + 1 3 D ( r ) J ( r , t ) + 1 3 Φ ( r , t ) = q 1 ( r , t ) ,
1 c Φ ( r , t ) t + μ a Φ ( r , t ) · [ D ( r ) Φ ( r , t ) ] = q 0 ( r , t ) ,
3 D ( r ) c 2 Φ 2 ( r , t ) t + 1 c ( 3 D ( r ) μ a + 1 ) Φ ( r , t ) t + μ a Φ ( r , t ) · [ D ( r ) Φ ( r , t ) ] = S ( r , t ) ,
D ( r ) c 2 Φ 2 ( r , t ) t + 1 c ( 3 D ( r ) μ a + 1 ) Φ ( r , t ) t + μ a Φ ( r , t ) · [ D ( r ) Φ ( r , t ) ] = S ( r , t ) .
Φ m ( r s , r d , t ) = Ω d 3 r W ( r s , r d , r , t ) η ( r ) .
W ( r s , r d , r , t ) = G x ( r s , r , t ) * E ( t ) * G m ( r , r d , t ) ,
Φ x ( r , t ) n = 1 N v Φ x ( n , t ) u n ( r ) = Φ x ( n , t ) T u ( r ) ,
{ ( M Δ t 2 + D Δ t + K ) Φ x ( n , k + 1 ) = ( 2 M Δ t 2 + D Δ t ) Φ x ( n , k ) ( M Δ t 2 ) Φ x ( n , k 1 ) + Q ( n , k ) Φ x ( n , k ) = Φ x ( n , k Δ t ) , k = 0 , 1 , 2 , Φ x ( n , 1 ) = Φ x ( n , 0 ) = 0 ,
{ M i j = 1 c 2 Ω u i ( r ) D ( r ) u j ( r ) d Ω D i j = 1 c Ω u i ( r ) ( 3 D ( r ) μ a + 1 ) u j ( r ) d Ω K i j = Ω [ D ( r ) u i ( r ) · u j ( r ) + μ a u i ( r ) u j ( r ) ] d Ω + c 2 A Ω u i ( r ) u j ( r ) d ( Ω ) Q i = Ω u i ( r ) S ( r , t ) d Ω .
Φ m ( n , k ) = Φ x ( n , k ) * G m ( n , k ) * E ( n , k ) η ( r ) .
Φ n ( r s , r d , t gate ) = Φ m ( r s , r d , t gate ) Φ x ( r s , r d , t gate ) = Ω W n ( r s , r d , r , t gate ) η ( r ) d 3 r .
W i j n ( r j , t gate ) = Δ V Φ x ( r s i , r j , t gate ) * G m ( r j , r d i , t gate ) * E ( r j , t gate ) Φ x ( r s i , r d i , t gate ) ,
[ Φ n ( r d 1 , t gate ) Φ n ( r d M , t gate ) ] = [ W 11 n ( r 1 , t gate ) W 1 N v n ( r N v , t gate ) W M 1 n ( r 1 , t gate ) W M N v n ( r N v , t gate ) ] · [ η ( r 1 ) η ( r N v ) ] .
X ( r , t gate ) = q = 0 k X ( r , q Δ t ) .

Metrics