Abstract

Because of the nonuniform electric field of the in-plane-switching cell in the thickness direction, an accurate and efficient way for evaluating the Kerr constant of blue-phase liquid crystal (BPLC) needs to be developed. This study demonstrates a method for evaluating the Kerr constant by measuring the off-axis-induced retardation (Rth) change in normal vertical field cells using a commercial polarimeter. The angle-dependent behavior of the Rth change is observed as an electric-tunable positive C retarder. In this paper, a sigmoid fitting model has been chosen for calculating the Kerr constant for considering the very small intrinsic birefringence of the BPLC.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
    [CrossRef]
  2. Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases” Adv. Mater. 17, 96–98 (2005).
    [CrossRef]
  3. S. W. Choi, S. I. Yamamoto, Y. Haseba, H. Higuchi, and H. Kikuchi, “Optically isotropic-nanostructured liquid crystal composite with high Kerr constant,” Appl. Phys. Lett. 92, 043119 (2008).
    [CrossRef]
  4. J. Kerr, “A new relation between electricity and light: dielectrified media birefringent,” Philos. Mag. 50, 337–348 (1875).
  5. P. R. Gerber, “Electro-optical effects of a small-pitch blue-phase system,” Mol. Cryst. Liq. Cryst. 116, 197–206(1985).
    [CrossRef]
  6. M. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D: Appl. Phys. 42, 235502 (2009).
    [CrossRef]
  7. L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95, 231101 (2009).
    [CrossRef]
  8. Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17, 2311–2315 (2005).
    [CrossRef]
  9. J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect in polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
    [CrossRef]
  10. J. Yan, M. Jiao, L. Rao, and S. T. Wu, “Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite,” Opt. Express 18, 11450–11455 (2010).
    [CrossRef] [PubMed]

2010 (2)

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect in polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[CrossRef]

J. Yan, M. Jiao, L. Rao, and S. T. Wu, “Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite,” Opt. Express 18, 11450–11455 (2010).
[CrossRef] [PubMed]

2009 (2)

M. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D: Appl. Phys. 42, 235502 (2009).
[CrossRef]

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95, 231101 (2009).
[CrossRef]

2008 (1)

S. W. Choi, S. I. Yamamoto, Y. Haseba, H. Higuchi, and H. Kikuchi, “Optically isotropic-nanostructured liquid crystal composite with high Kerr constant,” Appl. Phys. Lett. 92, 043119 (2008).
[CrossRef]

2005 (2)

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases” Adv. Mater. 17, 96–98 (2005).
[CrossRef]

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17, 2311–2315 (2005).
[CrossRef]

2002 (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[CrossRef]

1985 (1)

P. R. Gerber, “Electro-optical effects of a small-pitch blue-phase system,” Mol. Cryst. Liq. Cryst. 116, 197–206(1985).
[CrossRef]

1875 (1)

J. Kerr, “A new relation between electricity and light: dielectrified media birefringent,” Philos. Mag. 50, 337–348 (1875).

Cheng, H. C.

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect in polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[CrossRef]

Choi, S. W.

S. W. Choi, S. I. Yamamoto, Y. Haseba, H. Higuchi, and H. Kikuchi, “Optically isotropic-nanostructured liquid crystal composite with high Kerr constant,” Appl. Phys. Lett. 92, 043119 (2008).
[CrossRef]

Gauza, S.

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect in polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[CrossRef]

M. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D: Appl. Phys. 42, 235502 (2009).
[CrossRef]

Ge, Z.

M. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D: Appl. Phys. 42, 235502 (2009).
[CrossRef]

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95, 231101 (2009).
[CrossRef]

Gerber, P. R.

P. R. Gerber, “Electro-optical effects of a small-pitch blue-phase system,” Mol. Cryst. Liq. Cryst. 116, 197–206(1985).
[CrossRef]

Haseba, Y.

S. W. Choi, S. I. Yamamoto, Y. Haseba, H. Higuchi, and H. Kikuchi, “Optically isotropic-nanostructured liquid crystal composite with high Kerr constant,” Appl. Phys. Lett. 92, 043119 (2008).
[CrossRef]

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17, 2311–2315 (2005).
[CrossRef]

Higuchi, H.

S. W. Choi, S. I. Yamamoto, Y. Haseba, H. Higuchi, and H. Kikuchi, “Optically isotropic-nanostructured liquid crystal composite with high Kerr constant,” Appl. Phys. Lett. 92, 043119 (2008).
[CrossRef]

Hisakado, Y.

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases” Adv. Mater. 17, 96–98 (2005).
[CrossRef]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[CrossRef]

Jiao, M.

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect in polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[CrossRef]

J. Yan, M. Jiao, L. Rao, and S. T. Wu, “Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite,” Opt. Express 18, 11450–11455 (2010).
[CrossRef] [PubMed]

Kajiyama, T.

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases” Adv. Mater. 17, 96–98 (2005).
[CrossRef]

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17, 2311–2315 (2005).
[CrossRef]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[CrossRef]

Kang, B. G.

M. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D: Appl. Phys. 42, 235502 (2009).
[CrossRef]

Kerr, J.

J. Kerr, “A new relation between electricity and light: dielectrified media birefringent,” Philos. Mag. 50, 337–348 (1875).

Kikuchi, H.

S. W. Choi, S. I. Yamamoto, Y. Haseba, H. Higuchi, and H. Kikuchi, “Optically isotropic-nanostructured liquid crystal composite with high Kerr constant,” Appl. Phys. Lett. 92, 043119 (2008).
[CrossRef]

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases” Adv. Mater. 17, 96–98 (2005).
[CrossRef]

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17, 2311–2315 (2005).
[CrossRef]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[CrossRef]

Kim, M.

M. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D: Appl. Phys. 42, 235502 (2009).
[CrossRef]

Kim, M. K.

M. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D: Appl. Phys. 42, 235502 (2009).
[CrossRef]

Kim, M. S.

M. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D: Appl. Phys. 42, 235502 (2009).
[CrossRef]

Lee, S. H.

M. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D: Appl. Phys. 42, 235502 (2009).
[CrossRef]

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95, 231101 (2009).
[CrossRef]

Li, Y.

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect in polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[CrossRef]

Nagamura, T.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17, 2311–2315 (2005).
[CrossRef]

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases” Adv. Mater. 17, 96–98 (2005).
[CrossRef]

Rao, L.

J. Yan, M. Jiao, L. Rao, and S. T. Wu, “Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite,” Opt. Express 18, 11450–11455 (2010).
[CrossRef] [PubMed]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect in polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[CrossRef]

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95, 231101 (2009).
[CrossRef]

M. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D: Appl. Phys. 42, 235502 (2009).
[CrossRef]

Wu, S. T.

J. Yan, M. Jiao, L. Rao, and S. T. Wu, “Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite,” Opt. Express 18, 11450–11455 (2010).
[CrossRef] [PubMed]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect in polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[CrossRef]

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95, 231101 (2009).
[CrossRef]

M. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D: Appl. Phys. 42, 235502 (2009).
[CrossRef]

Yamamoto, S. I.

S. W. Choi, S. I. Yamamoto, Y. Haseba, H. Higuchi, and H. Kikuchi, “Optically isotropic-nanostructured liquid crystal composite with high Kerr constant,” Appl. Phys. Lett. 92, 043119 (2008).
[CrossRef]

Yan, J.

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect in polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[CrossRef]

J. Yan, M. Jiao, L. Rao, and S. T. Wu, “Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite,” Opt. Express 18, 11450–11455 (2010).
[CrossRef] [PubMed]

Yang, H.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[CrossRef]

Yokota, M.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[CrossRef]

Yoon, S.

M. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D: Appl. Phys. 42, 235502 (2009).
[CrossRef]

Adv. Mater. (2)

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases” Adv. Mater. 17, 96–98 (2005).
[CrossRef]

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17, 2311–2315 (2005).
[CrossRef]

Appl. Phys. Lett. (3)

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect in polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[CrossRef]

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95, 231101 (2009).
[CrossRef]

S. W. Choi, S. I. Yamamoto, Y. Haseba, H. Higuchi, and H. Kikuchi, “Optically isotropic-nanostructured liquid crystal composite with high Kerr constant,” Appl. Phys. Lett. 92, 043119 (2008).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

M. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D: Appl. Phys. 42, 235502 (2009).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

P. R. Gerber, “Electro-optical effects of a small-pitch blue-phase system,” Mol. Cryst. Liq. Cryst. 116, 197–206(1985).
[CrossRef]

Nat. Mater. (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[CrossRef]

Opt. Express (1)

Philos. Mag. (1)

J. Kerr, “A new relation between electricity and light: dielectrified media birefringent,” Philos. Mag. 50, 337–348 (1875).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic IPS cell structure of a conventional device with an interdigital electrode structure wherein a nonuniform electric field is applied in the thickness direction.

Fig. 2
Fig. 2

Effective optical index ellipsoids of BPLC under various electric fields: V 3 > V 2 > V 1 .

Fig. 3
Fig. 3

Measurement fixture of AxoScan MMP and schematic diagram of the setup.

Fig. 4
Fig. 4

Linear variation of measured retardance with the angle of incidence at various electric fields.

Fig. 5
Fig. 5

R th obtained at different electric fields (black squares) and curve fitted using model (red curve).

Tables (1)

Tables Icon

Table 1 Calculated Kerr Constants with Various Assumed Index, n i , and Corresponding Deviations

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ n ind = λ K E 2 ,
R th = [ n z ( n x + n y ) / 2 ] × d ,
R th = d eff ( n eff n x ) = d cos θ ( n y n z n y 2 cos 2 θ + n z 2 sin 2 θ n z ) ,
θ = sin 1 ( sin θ n i ) .
R th , ind = R s 1 + 10 ( E i 2 E 2 ) * p ,
K = R s · p · ln ( 10 ) 4 · λ · d .

Metrics