Abstract

We report on the experiments on the interaction of gigawatt femtosecond laser pulses with suspended millimeter-sized water droplets. The transparent droplets experienced laser-induced breakdown and explosive boiling up and emitted a broadband radiation. This radiation covers the spectral range from 450 to 1100nm and consists of the spectrum of laser pulse scattered and transformed by the droplet due to self-phase modulation and plasma emission produced in water during photoionization. The droplet emission spectrum showed remarkable broadening at all viewing angles and is maximal in the direction of the laser exit from the droplet. The enlargement of the droplet results in additional spectral spreading of the emitted radiation. The depth and amount of laser pulse spectral self-transformations upon propagation through the water droplet are simulated by means of numerical calculations.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kasparian and J-P. Wolf, “A new transient SRS analysis method of aerosols and application to a nonlinear femtosecond lidar,” Opt. Commun. 152, 355–360 (1998).
    [CrossRef]
  2. J. Kasparian, B. Krämer, T. Leisner, P. Rairoux, V. Boutou, B. Vezin, and J. P. Wolf, “Size dependence of nonlinear Mie scattering in microdroplets illuminated by ultrashort pulses,” J. Opt. Soc. Am. B 15, 1918–1922 (1998).
    [CrossRef]
  3. Y.-L. Pan, S. C. Hill, J.-P. Wolf, S. Holler, R. K. Chang, and J. R. Bottiger, “Backward enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt. 41, 2994–2999 (2002).
    [CrossRef] [PubMed]
  4. H. C. Huang, Y.-L. Pan, S. C. Hill, R. G. Pinnick, and R. K. Chang, “Real-time measurement of dual-wavelength laser-induced fluorescence spectra of individual aerosol particles,” Opt. Express 16, 16523–16528 (2008).
    [CrossRef] [PubMed]
  5. A. Flettner, T. Pfeifer, D. Walter, C. Winterfeldt, C. Spielmann, and G. Gerber, “High-harmonics generation and plasma radiation from water microdroplets,” Appl. Phys. B 77, 747–751 (2003).
    [CrossRef]
  6. C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J.-P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
    [CrossRef] [PubMed]
  7. J.-P. Wolf, Y.-L. Pan, G. M. Turner, M. C. Beard, C. A. Schmuttenmaer, S. Holler, and R. K. Chang, “Ballistic trajectories of optical wave packets within microcavities,” Phys. Rev. A 64, 023808 (2001).
    [CrossRef]
  8. A. Lindinger, J. Hagen, L. D. Socaciu, T. M. Bernhardt, L. Wöste, D. Duft, and T. Leisner, “Time-resolved explosion dynamics of H2O droplets induced by femtosecond laser pulses,” Appl. Opt. 43, 5263–5269 (2004).
    [CrossRef] [PubMed]
  9. M. Wakamatsu, S. Ikezawa, and T. Ueda, “Particle element and size simultaneous measurement using LIBS,” IEEJ Trans. SM 127, 397–402 (2007).
    [CrossRef]
  10. Y. E. Geints, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, A. A. Zemlyanov, S. S. Golik, and O. A. Bukin, “Broadband emission spectrum dynamics of large water droplets exposed to intense ultrashort laser radiation,” Opt. Lett. 35, 2717–2719 (2010).
    [CrossRef] [PubMed]
  11. D. V. Apeksimov, O. A. Bukin, E. E. Bykova, Yu. E. Geints, S. S. Golik, A. A. Zemlyanov, Al. A. Zemlyanov, A. A. Ilyin, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, and E. B. Sokolova, “Interaction of GW laser pulses with liquid media. Part 1. Explosive boiling up of large isolated water droplets,” Atmos. Ocean. Opt. 23, 448–454 (2010).
    [CrossRef]
  12. Yu. E. Geints and A. A. Zemlyanov, “Phase explosion of a water droplet by a femtosecond laser pulse: II. Thermodynamic paths of a fluid,” Atmos. Ocean. Opt. 22, 844–848 (2009).
    [CrossRef]
  13. G. Gouesbet, B. Maheu, and G. Grehan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).
    [CrossRef]
  14. Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Modeling of multiphoton-excited fluorescence from spherical droplet irradiated by an ultrashort laser radiation, using the method of computation electrodynamics,” Atmos. Ocean. Opt. 23, 1120–1126 (2010).
  15. Yu. E. Geints and A. A. Zemlyanov, “Filamentation of high-power ultrashort laser radiation in air and water. Comparative analysis,” Quantum Electron. 40, 121–126 (2010).
    [CrossRef]
  16. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).
  17. S. N. Bagaev, Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, E. V. Pestryakov, A. N. Stepanov, and V. I. Trunov, “Laboratory and numerical experiments on propagation of high-power femtosecond laser radiation through air and droplet media,” Atmos. Ocean. Opt. 20, 374–379 (2007).

2010 (4)

D. V. Apeksimov, O. A. Bukin, E. E. Bykova, Yu. E. Geints, S. S. Golik, A. A. Zemlyanov, Al. A. Zemlyanov, A. A. Ilyin, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, and E. B. Sokolova, “Interaction of GW laser pulses with liquid media. Part 1. Explosive boiling up of large isolated water droplets,” Atmos. Ocean. Opt. 23, 448–454 (2010).
[CrossRef]

Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Modeling of multiphoton-excited fluorescence from spherical droplet irradiated by an ultrashort laser radiation, using the method of computation electrodynamics,” Atmos. Ocean. Opt. 23, 1120–1126 (2010).

Yu. E. Geints and A. A. Zemlyanov, “Filamentation of high-power ultrashort laser radiation in air and water. Comparative analysis,” Quantum Electron. 40, 121–126 (2010).
[CrossRef]

Y. E. Geints, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, A. A. Zemlyanov, S. S. Golik, and O. A. Bukin, “Broadband emission spectrum dynamics of large water droplets exposed to intense ultrashort laser radiation,” Opt. Lett. 35, 2717–2719 (2010).
[CrossRef] [PubMed]

2009 (1)

Yu. E. Geints and A. A. Zemlyanov, “Phase explosion of a water droplet by a femtosecond laser pulse: II. Thermodynamic paths of a fluid,” Atmos. Ocean. Opt. 22, 844–848 (2009).
[CrossRef]

2008 (1)

2007 (2)

S. N. Bagaev, Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, E. V. Pestryakov, A. N. Stepanov, and V. I. Trunov, “Laboratory and numerical experiments on propagation of high-power femtosecond laser radiation through air and droplet media,” Atmos. Ocean. Opt. 20, 374–379 (2007).

M. Wakamatsu, S. Ikezawa, and T. Ueda, “Particle element and size simultaneous measurement using LIBS,” IEEJ Trans. SM 127, 397–402 (2007).
[CrossRef]

2004 (1)

2003 (1)

A. Flettner, T. Pfeifer, D. Walter, C. Winterfeldt, C. Spielmann, and G. Gerber, “High-harmonics generation and plasma radiation from water microdroplets,” Appl. Phys. B 77, 747–751 (2003).
[CrossRef]

2002 (2)

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J.-P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[CrossRef] [PubMed]

Y.-L. Pan, S. C. Hill, J.-P. Wolf, S. Holler, R. K. Chang, and J. R. Bottiger, “Backward enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt. 41, 2994–2999 (2002).
[CrossRef] [PubMed]

2001 (1)

J.-P. Wolf, Y.-L. Pan, G. M. Turner, M. C. Beard, C. A. Schmuttenmaer, S. Holler, and R. K. Chang, “Ballistic trajectories of optical wave packets within microcavities,” Phys. Rev. A 64, 023808 (2001).
[CrossRef]

1998 (2)

J. Kasparian and J-P. Wolf, “A new transient SRS analysis method of aerosols and application to a nonlinear femtosecond lidar,” Opt. Commun. 152, 355–360 (1998).
[CrossRef]

J. Kasparian, B. Krämer, T. Leisner, P. Rairoux, V. Boutou, B. Vezin, and J. P. Wolf, “Size dependence of nonlinear Mie scattering in microdroplets illuminated by ultrashort pulses,” J. Opt. Soc. Am. B 15, 1918–1922 (1998).
[CrossRef]

1988 (1)

1965 (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Apeksimov, D. V.

D. V. Apeksimov, O. A. Bukin, E. E. Bykova, Yu. E. Geints, S. S. Golik, A. A. Zemlyanov, Al. A. Zemlyanov, A. A. Ilyin, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, and E. B. Sokolova, “Interaction of GW laser pulses with liquid media. Part 1. Explosive boiling up of large isolated water droplets,” Atmos. Ocean. Opt. 23, 448–454 (2010).
[CrossRef]

Bagaev, S. N.

S. N. Bagaev, Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, E. V. Pestryakov, A. N. Stepanov, and V. I. Trunov, “Laboratory and numerical experiments on propagation of high-power femtosecond laser radiation through air and droplet media,” Atmos. Ocean. Opt. 20, 374–379 (2007).

Beard, M. C.

J.-P. Wolf, Y.-L. Pan, G. M. Turner, M. C. Beard, C. A. Schmuttenmaer, S. Holler, and R. K. Chang, “Ballistic trajectories of optical wave packets within microcavities,” Phys. Rev. A 64, 023808 (2001).
[CrossRef]

Bernhardt, T. M.

Bottiger, J. R.

Boutou, V.

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J.-P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[CrossRef] [PubMed]

J. Kasparian, B. Krämer, T. Leisner, P. Rairoux, V. Boutou, B. Vezin, and J. P. Wolf, “Size dependence of nonlinear Mie scattering in microdroplets illuminated by ultrashort pulses,” J. Opt. Soc. Am. B 15, 1918–1922 (1998).
[CrossRef]

Bukin, O. A.

Y. E. Geints, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, A. A. Zemlyanov, S. S. Golik, and O. A. Bukin, “Broadband emission spectrum dynamics of large water droplets exposed to intense ultrashort laser radiation,” Opt. Lett. 35, 2717–2719 (2010).
[CrossRef] [PubMed]

D. V. Apeksimov, O. A. Bukin, E. E. Bykova, Yu. E. Geints, S. S. Golik, A. A. Zemlyanov, Al. A. Zemlyanov, A. A. Ilyin, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, and E. B. Sokolova, “Interaction of GW laser pulses with liquid media. Part 1. Explosive boiling up of large isolated water droplets,” Atmos. Ocean. Opt. 23, 448–454 (2010).
[CrossRef]

Bykova, E. E.

D. V. Apeksimov, O. A. Bukin, E. E. Bykova, Yu. E. Geints, S. S. Golik, A. A. Zemlyanov, Al. A. Zemlyanov, A. A. Ilyin, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, and E. B. Sokolova, “Interaction of GW laser pulses with liquid media. Part 1. Explosive boiling up of large isolated water droplets,” Atmos. Ocean. Opt. 23, 448–454 (2010).
[CrossRef]

Chang, R. K.

H. C. Huang, Y.-L. Pan, S. C. Hill, R. G. Pinnick, and R. K. Chang, “Real-time measurement of dual-wavelength laser-induced fluorescence spectra of individual aerosol particles,” Opt. Express 16, 16523–16528 (2008).
[CrossRef] [PubMed]

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J.-P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[CrossRef] [PubMed]

Y.-L. Pan, S. C. Hill, J.-P. Wolf, S. Holler, R. K. Chang, and J. R. Bottiger, “Backward enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt. 41, 2994–2999 (2002).
[CrossRef] [PubMed]

J.-P. Wolf, Y.-L. Pan, G. M. Turner, M. C. Beard, C. A. Schmuttenmaer, S. Holler, and R. K. Chang, “Ballistic trajectories of optical wave packets within microcavities,” Phys. Rev. A 64, 023808 (2001).
[CrossRef]

Duft, D.

Favre, C.

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J.-P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[CrossRef] [PubMed]

Flettner, A.

A. Flettner, T. Pfeifer, D. Walter, C. Winterfeldt, C. Spielmann, and G. Gerber, “High-harmonics generation and plasma radiation from water microdroplets,” Appl. Phys. B 77, 747–751 (2003).
[CrossRef]

Geints, Y. E.

Geints, Yu. E.

Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Modeling of multiphoton-excited fluorescence from spherical droplet irradiated by an ultrashort laser radiation, using the method of computation electrodynamics,” Atmos. Ocean. Opt. 23, 1120–1126 (2010).

Yu. E. Geints and A. A. Zemlyanov, “Filamentation of high-power ultrashort laser radiation in air and water. Comparative analysis,” Quantum Electron. 40, 121–126 (2010).
[CrossRef]

D. V. Apeksimov, O. A. Bukin, E. E. Bykova, Yu. E. Geints, S. S. Golik, A. A. Zemlyanov, Al. A. Zemlyanov, A. A. Ilyin, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, and E. B. Sokolova, “Interaction of GW laser pulses with liquid media. Part 1. Explosive boiling up of large isolated water droplets,” Atmos. Ocean. Opt. 23, 448–454 (2010).
[CrossRef]

Yu. E. Geints and A. A. Zemlyanov, “Phase explosion of a water droplet by a femtosecond laser pulse: II. Thermodynamic paths of a fluid,” Atmos. Ocean. Opt. 22, 844–848 (2009).
[CrossRef]

S. N. Bagaev, Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, E. V. Pestryakov, A. N. Stepanov, and V. I. Trunov, “Laboratory and numerical experiments on propagation of high-power femtosecond laser radiation through air and droplet media,” Atmos. Ocean. Opt. 20, 374–379 (2007).

Gerber, G.

A. Flettner, T. Pfeifer, D. Walter, C. Winterfeldt, C. Spielmann, and G. Gerber, “High-harmonics generation and plasma radiation from water microdroplets,” Appl. Phys. B 77, 747–751 (2003).
[CrossRef]

Golik, S. S.

D. V. Apeksimov, O. A. Bukin, E. E. Bykova, Yu. E. Geints, S. S. Golik, A. A. Zemlyanov, Al. A. Zemlyanov, A. A. Ilyin, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, and E. B. Sokolova, “Interaction of GW laser pulses with liquid media. Part 1. Explosive boiling up of large isolated water droplets,” Atmos. Ocean. Opt. 23, 448–454 (2010).
[CrossRef]

Y. E. Geints, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, A. A. Zemlyanov, S. S. Golik, and O. A. Bukin, “Broadband emission spectrum dynamics of large water droplets exposed to intense ultrashort laser radiation,” Opt. Lett. 35, 2717–2719 (2010).
[CrossRef] [PubMed]

Gouesbet, G.

Grehan, G.

Hagen, J.

Hill, S. C.

Holler, S.

Y.-L. Pan, S. C. Hill, J.-P. Wolf, S. Holler, R. K. Chang, and J. R. Bottiger, “Backward enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt. 41, 2994–2999 (2002).
[CrossRef] [PubMed]

J.-P. Wolf, Y.-L. Pan, G. M. Turner, M. C. Beard, C. A. Schmuttenmaer, S. Holler, and R. K. Chang, “Ballistic trajectories of optical wave packets within microcavities,” Phys. Rev. A 64, 023808 (2001).
[CrossRef]

Huang, H. C.

Ikezawa, S.

M. Wakamatsu, S. Ikezawa, and T. Ueda, “Particle element and size simultaneous measurement using LIBS,” IEEJ Trans. SM 127, 397–402 (2007).
[CrossRef]

Ilyin, A. A.

D. V. Apeksimov, O. A. Bukin, E. E. Bykova, Yu. E. Geints, S. S. Golik, A. A. Zemlyanov, Al. A. Zemlyanov, A. A. Ilyin, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, and E. B. Sokolova, “Interaction of GW laser pulses with liquid media. Part 1. Explosive boiling up of large isolated water droplets,” Atmos. Ocean. Opt. 23, 448–454 (2010).
[CrossRef]

Kabanov, A. M.

D. V. Apeksimov, O. A. Bukin, E. E. Bykova, Yu. E. Geints, S. S. Golik, A. A. Zemlyanov, Al. A. Zemlyanov, A. A. Ilyin, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, and E. B. Sokolova, “Interaction of GW laser pulses with liquid media. Part 1. Explosive boiling up of large isolated water droplets,” Atmos. Ocean. Opt. 23, 448–454 (2010).
[CrossRef]

Y. E. Geints, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, A. A. Zemlyanov, S. S. Golik, and O. A. Bukin, “Broadband emission spectrum dynamics of large water droplets exposed to intense ultrashort laser radiation,” Opt. Lett. 35, 2717–2719 (2010).
[CrossRef] [PubMed]

S. N. Bagaev, Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, E. V. Pestryakov, A. N. Stepanov, and V. I. Trunov, “Laboratory and numerical experiments on propagation of high-power femtosecond laser radiation through air and droplet media,” Atmos. Ocean. Opt. 20, 374–379 (2007).

Kasparian, J.

J. Kasparian, B. Krämer, T. Leisner, P. Rairoux, V. Boutou, B. Vezin, and J. P. Wolf, “Size dependence of nonlinear Mie scattering in microdroplets illuminated by ultrashort pulses,” J. Opt. Soc. Am. B 15, 1918–1922 (1998).
[CrossRef]

J. Kasparian and J-P. Wolf, “A new transient SRS analysis method of aerosols and application to a nonlinear femtosecond lidar,” Opt. Commun. 152, 355–360 (1998).
[CrossRef]

Keldysh, L. V.

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Krämer, B.

Krenz, M.

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J.-P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[CrossRef] [PubMed]

Lambrecht, H.

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J.-P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[CrossRef] [PubMed]

Leisner, T.

Lindinger, A.

Maheu, B.

Matvienko, G. G.

Y. E. Geints, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, A. A. Zemlyanov, S. S. Golik, and O. A. Bukin, “Broadband emission spectrum dynamics of large water droplets exposed to intense ultrashort laser radiation,” Opt. Lett. 35, 2717–2719 (2010).
[CrossRef] [PubMed]

D. V. Apeksimov, O. A. Bukin, E. E. Bykova, Yu. E. Geints, S. S. Golik, A. A. Zemlyanov, Al. A. Zemlyanov, A. A. Ilyin, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, and E. B. Sokolova, “Interaction of GW laser pulses with liquid media. Part 1. Explosive boiling up of large isolated water droplets,” Atmos. Ocean. Opt. 23, 448–454 (2010).
[CrossRef]

S. N. Bagaev, Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, E. V. Pestryakov, A. N. Stepanov, and V. I. Trunov, “Laboratory and numerical experiments on propagation of high-power femtosecond laser radiation through air and droplet media,” Atmos. Ocean. Opt. 20, 374–379 (2007).

Oshlakov, V. K.

Y. E. Geints, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, A. A. Zemlyanov, S. S. Golik, and O. A. Bukin, “Broadband emission spectrum dynamics of large water droplets exposed to intense ultrashort laser radiation,” Opt. Lett. 35, 2717–2719 (2010).
[CrossRef] [PubMed]

D. V. Apeksimov, O. A. Bukin, E. E. Bykova, Yu. E. Geints, S. S. Golik, A. A. Zemlyanov, Al. A. Zemlyanov, A. A. Ilyin, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, and E. B. Sokolova, “Interaction of GW laser pulses with liquid media. Part 1. Explosive boiling up of large isolated water droplets,” Atmos. Ocean. Opt. 23, 448–454 (2010).
[CrossRef]

Pan, Y.-L.

Panina, E. K.

Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Modeling of multiphoton-excited fluorescence from spherical droplet irradiated by an ultrashort laser radiation, using the method of computation electrodynamics,” Atmos. Ocean. Opt. 23, 1120–1126 (2010).

Pestryakov, E. V.

S. N. Bagaev, Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, E. V. Pestryakov, A. N. Stepanov, and V. I. Trunov, “Laboratory and numerical experiments on propagation of high-power femtosecond laser radiation through air and droplet media,” Atmos. Ocean. Opt. 20, 374–379 (2007).

Pfeifer, T.

A. Flettner, T. Pfeifer, D. Walter, C. Winterfeldt, C. Spielmann, and G. Gerber, “High-harmonics generation and plasma radiation from water microdroplets,” Appl. Phys. B 77, 747–751 (2003).
[CrossRef]

Pinnick, R. G.

Rairoux, P.

Schmuttenmaer, C. A.

J.-P. Wolf, Y.-L. Pan, G. M. Turner, M. C. Beard, C. A. Schmuttenmaer, S. Holler, and R. K. Chang, “Ballistic trajectories of optical wave packets within microcavities,” Phys. Rev. A 64, 023808 (2001).
[CrossRef]

Socaciu, L. D.

Sokolova, E. B.

D. V. Apeksimov, O. A. Bukin, E. E. Bykova, Yu. E. Geints, S. S. Golik, A. A. Zemlyanov, Al. A. Zemlyanov, A. A. Ilyin, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, and E. B. Sokolova, “Interaction of GW laser pulses with liquid media. Part 1. Explosive boiling up of large isolated water droplets,” Atmos. Ocean. Opt. 23, 448–454 (2010).
[CrossRef]

Spielmann, C.

A. Flettner, T. Pfeifer, D. Walter, C. Winterfeldt, C. Spielmann, and G. Gerber, “High-harmonics generation and plasma radiation from water microdroplets,” Appl. Phys. B 77, 747–751 (2003).
[CrossRef]

Stepanov, A. N.

S. N. Bagaev, Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, E. V. Pestryakov, A. N. Stepanov, and V. I. Trunov, “Laboratory and numerical experiments on propagation of high-power femtosecond laser radiation through air and droplet media,” Atmos. Ocean. Opt. 20, 374–379 (2007).

Trunov, V. I.

S. N. Bagaev, Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, E. V. Pestryakov, A. N. Stepanov, and V. I. Trunov, “Laboratory and numerical experiments on propagation of high-power femtosecond laser radiation through air and droplet media,” Atmos. Ocean. Opt. 20, 374–379 (2007).

Turner, G. M.

J.-P. Wolf, Y.-L. Pan, G. M. Turner, M. C. Beard, C. A. Schmuttenmaer, S. Holler, and R. K. Chang, “Ballistic trajectories of optical wave packets within microcavities,” Phys. Rev. A 64, 023808 (2001).
[CrossRef]

Ueda, T.

M. Wakamatsu, S. Ikezawa, and T. Ueda, “Particle element and size simultaneous measurement using LIBS,” IEEJ Trans. SM 127, 397–402 (2007).
[CrossRef]

Vezin, B.

Wakamatsu, M.

M. Wakamatsu, S. Ikezawa, and T. Ueda, “Particle element and size simultaneous measurement using LIBS,” IEEJ Trans. SM 127, 397–402 (2007).
[CrossRef]

Walter, D.

A. Flettner, T. Pfeifer, D. Walter, C. Winterfeldt, C. Spielmann, and G. Gerber, “High-harmonics generation and plasma radiation from water microdroplets,” Appl. Phys. B 77, 747–751 (2003).
[CrossRef]

Winterfeldt, C.

A. Flettner, T. Pfeifer, D. Walter, C. Winterfeldt, C. Spielmann, and G. Gerber, “High-harmonics generation and plasma radiation from water microdroplets,” Appl. Phys. B 77, 747–751 (2003).
[CrossRef]

Woeste, L.

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J.-P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[CrossRef] [PubMed]

Wolf, J. P.

Wolf, J.-P.

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J.-P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[CrossRef] [PubMed]

Y.-L. Pan, S. C. Hill, J.-P. Wolf, S. Holler, R. K. Chang, and J. R. Bottiger, “Backward enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt. 41, 2994–2999 (2002).
[CrossRef] [PubMed]

J.-P. Wolf, Y.-L. Pan, G. M. Turner, M. C. Beard, C. A. Schmuttenmaer, S. Holler, and R. K. Chang, “Ballistic trajectories of optical wave packets within microcavities,” Phys. Rev. A 64, 023808 (2001).
[CrossRef]

Wolf, J-P.

J. Kasparian and J-P. Wolf, “A new transient SRS analysis method of aerosols and application to a nonlinear femtosecond lidar,” Opt. Commun. 152, 355–360 (1998).
[CrossRef]

Wöste, L.

Yu, J.

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J.-P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[CrossRef] [PubMed]

Zemlyanov, A. A.

Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Modeling of multiphoton-excited fluorescence from spherical droplet irradiated by an ultrashort laser radiation, using the method of computation electrodynamics,” Atmos. Ocean. Opt. 23, 1120–1126 (2010).

Y. E. Geints, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, A. A. Zemlyanov, S. S. Golik, and O. A. Bukin, “Broadband emission spectrum dynamics of large water droplets exposed to intense ultrashort laser radiation,” Opt. Lett. 35, 2717–2719 (2010).
[CrossRef] [PubMed]

Yu. E. Geints and A. A. Zemlyanov, “Filamentation of high-power ultrashort laser radiation in air and water. Comparative analysis,” Quantum Electron. 40, 121–126 (2010).
[CrossRef]

D. V. Apeksimov, O. A. Bukin, E. E. Bykova, Yu. E. Geints, S. S. Golik, A. A. Zemlyanov, Al. A. Zemlyanov, A. A. Ilyin, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, and E. B. Sokolova, “Interaction of GW laser pulses with liquid media. Part 1. Explosive boiling up of large isolated water droplets,” Atmos. Ocean. Opt. 23, 448–454 (2010).
[CrossRef]

Yu. E. Geints and A. A. Zemlyanov, “Phase explosion of a water droplet by a femtosecond laser pulse: II. Thermodynamic paths of a fluid,” Atmos. Ocean. Opt. 22, 844–848 (2009).
[CrossRef]

S. N. Bagaev, Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, E. V. Pestryakov, A. N. Stepanov, and V. I. Trunov, “Laboratory and numerical experiments on propagation of high-power femtosecond laser radiation through air and droplet media,” Atmos. Ocean. Opt. 20, 374–379 (2007).

Zemlyanov, Al. A.

D. V. Apeksimov, O. A. Bukin, E. E. Bykova, Yu. E. Geints, S. S. Golik, A. A. Zemlyanov, Al. A. Zemlyanov, A. A. Ilyin, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, and E. B. Sokolova, “Interaction of GW laser pulses with liquid media. Part 1. Explosive boiling up of large isolated water droplets,” Atmos. Ocean. Opt. 23, 448–454 (2010).
[CrossRef]

Zimmer, W.

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J.-P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (1)

A. Flettner, T. Pfeifer, D. Walter, C. Winterfeldt, C. Spielmann, and G. Gerber, “High-harmonics generation and plasma radiation from water microdroplets,” Appl. Phys. B 77, 747–751 (2003).
[CrossRef]

Atmos. Ocean. Opt. (4)

D. V. Apeksimov, O. A. Bukin, E. E. Bykova, Yu. E. Geints, S. S. Golik, A. A. Zemlyanov, Al. A. Zemlyanov, A. A. Ilyin, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, and E. B. Sokolova, “Interaction of GW laser pulses with liquid media. Part 1. Explosive boiling up of large isolated water droplets,” Atmos. Ocean. Opt. 23, 448–454 (2010).
[CrossRef]

Yu. E. Geints and A. A. Zemlyanov, “Phase explosion of a water droplet by a femtosecond laser pulse: II. Thermodynamic paths of a fluid,” Atmos. Ocean. Opt. 22, 844–848 (2009).
[CrossRef]

Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Modeling of multiphoton-excited fluorescence from spherical droplet irradiated by an ultrashort laser radiation, using the method of computation electrodynamics,” Atmos. Ocean. Opt. 23, 1120–1126 (2010).

S. N. Bagaev, Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, E. V. Pestryakov, A. N. Stepanov, and V. I. Trunov, “Laboratory and numerical experiments on propagation of high-power femtosecond laser radiation through air and droplet media,” Atmos. Ocean. Opt. 20, 374–379 (2007).

IEEJ Trans. SM (1)

M. Wakamatsu, S. Ikezawa, and T. Ueda, “Particle element and size simultaneous measurement using LIBS,” IEEJ Trans. SM 127, 397–402 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

J. Kasparian and J-P. Wolf, “A new transient SRS analysis method of aerosols and application to a nonlinear femtosecond lidar,” Opt. Commun. 152, 355–360 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (1)

J.-P. Wolf, Y.-L. Pan, G. M. Turner, M. C. Beard, C. A. Schmuttenmaer, S. Holler, and R. K. Chang, “Ballistic trajectories of optical wave packets within microcavities,” Phys. Rev. A 64, 023808 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J.-P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
[CrossRef] [PubMed]

Quantum Electron. (1)

Yu. E. Geints and A. A. Zemlyanov, “Filamentation of high-power ultrashort laser radiation in air and water. Comparative analysis,” Quantum Electron. 40, 121–126 (2010).
[CrossRef]

Sov. Phys. JETP (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup: 1, Ti:Sa laser, 800 nm , 55 fs , 1 mJ at 1 kHz ; 2, autocorrelator, PSCOUT PL-SP-LF, Spectra Physics; 3, 5, pivot plates; 4, laser energy meter, Spectra Physics 407 A ; 6, computer; 7, focusing lens, 200 mm ; 8, spectrometer, Ocean Optics HR4000; 9, light filter; 10, video camera, JVC GZ-MG255; 11, photo camera, Nikon E8700; 12, IR-spectrometer, USB4000 Ocean Optics.

Fig. 2
Fig. 2

Images of LIB and visible emission (exposure 1 / 500 s ) in water droplet with d 0 2 mm irradiated by a train of femtosecond laser pulses, recorded at successive time instants increasing from (a) to (d). The laser radiation is incident from the left.

Fig. 3
Fig. 3

Droplet ( d 0 2 mm , exposition 1 s ) emitted in the visible; IR laser impact is from the left.

Fig. 4
Fig. 4

Spectral composition of light emitted by water droplet ( d 0 1.5 mm ) at different scattering angles. The incident laser pulse spectrum is shown in the inset.

Fig. 5
Fig. 5

Polar plot of spectrally averaged emission intensity I of water droplet ( d 0 1.5 mm ) in the spectral ranges (а)  450 600 nm and (b)  600 1100 nm . The experimental points are connected as a guide for eyes.

Fig. 6
Fig. 6

rms spectral width of the light nonlinearly scattered on the 1.5 mm droplet in the spectral range 600 1100 nm versus observation angle. The spectral width of incident radiation is shown by the dashed line.

Fig. 7
Fig. 7

(a) Image of glowing water droplet exposed to laser radiation (shown by thick arrow); (b) ray tracing picture of edge illumination of a sphere by a laser beam.

Fig. 8
Fig. 8

Normalized spectral rms width D ¯ λ of a laser pulse (curve a) and peak density of free electrons ρ e upon propagation in water layer depending on the propagation distance (curve b). The inset shows the corresponding normalized pulse energy E ¯ = E ( z ) / E 0 changes versus distance.

Fig. 9
Fig. 9

Spectral width D λ of emission measured at the angle 360 ° as a function of water droplet diameter. The experimental points are connected as a guide for the eyes.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

{ z i 2 n 0 k 0 T ^ 2 + i k ω 2 2 t 2 } U ( r , z ; t ) i k 0 T ^ ( n ˜ 2 T ^ 2 n p ) U ( r , z ; t ) + α N 2 U ( r , z ; t ) = 0.
α N = σ c ρ e + W I ( I ) I Δ E i ( ρ n t ρ e ) , n p = σ c τ c c ρ e 2 n 0 ,
ρ e t = W I ( I ) ( ρ n t ρ e ) + σ c n 0 Δ E i ρ e I ν r ρ e 2 ,

Metrics