Abstract

Technological innovation in all areas has led to the appearance in recent years of new metallic and pearlescent materials, yet no exhaustive studies have been conducted to assess their colorimetric capabilities. The chromatic variability of these special-effect pigments may largely be due to the three-dimensional effect of their curved shapes and orientations when they are directionally or diffusely illuminated. Our study examines goniochromatic colors using the optimal colors (MacAdam limits) associated with normal colors (photometric scale of relative spectral reflectance from 0 to 1) under certain conventional illuminants and other light sources. From a database of 91 metallic and interference samples and using a multi-gonio-spectrophotometer, we analyzed samples with lightness values of more than 100 and others with lightness values of less than 100, but with higher chromaticities than optimal colors, which places them beyond the MacAdam limits. Our study thus demonstrates the existence of chromatic perceptions beyond the normal solid color associated with these materials and independent of the light source. The challenge for future research, therefore, is to replicate and render these color appearances in current and future color reproduction technologies for computer graphics.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Kirchner, G. J. van den Kieboom, L. Njo, R. Super, and R. Gottenbos, “Observation of visual texture of metallic and pearlescent materials,” Color Res. Appl. 32, 256–266 (2007).
    [CrossRef]
  2. G. Pfaff, Special Effect Pigments: Technical Basics And Applications (Vincentz Network, 2008), p. 218.
  3. W. R. Cramer and P. Gabel, “Measuring special effects,” Paint & Coatings Industry 29, 36–46 (2001).
  4. M. Douma, “Causes of Colours,” retrieved March, 2010, http://www.webexhibits.org/causesofcolor/15.html. (2008).
  5. S. Berthier, Iridescences: The Physical Colors of Insects (Springer, Paris, 2006).
  6. E. Chorro, E. Perales, F. M. Martinez-Verdu, J. Campos, and A. Pons, “Colorimetric and spectral evaluation of the optical anisotropy of metallic and pearlescent samples,” J. Mod. Opt. 56, 1457–1465 (2009).
    [CrossRef]
  7. D. L. MacAdam, “Theory of the maximum visual efficiency of colored materials,” J. Opt. Soc. Am. 25, 249–252(1935).
    [CrossRef]
  8. D. L. MacAdam, “Maximum visual efficiency of colored materials,” J. Opt. Soc. Am. 25, 361–367 (1935).
    [CrossRef]
  9. A. D. Logvinenko, “An object-color space,” J. Vis. 91–23(2009).
    [CrossRef]
  10. R. S. Berns, Billmeyer and Saltzman’s Principles of Color Technology (Wiley, 2000).
  11. R. W. G. Hunt, The Reproduction of Colour (Wiley, 2004), p. 702.
  12. R. G. Kuenhi, Color Space and Its Divisions: Color Order from Antiquity to the Present (Wiley-VCH, 2003), p. 202.
  13. E. Perales, E. Chorro, F. Martinez-Verdu, S. Otero, and V. de Gracia, “A new method for comparing colour gamuts among printing technologies,” Imaging Sci. 56, 145–152(2008).
    [CrossRef]
  14. E. Perales, E. Chorro, V. Viqueira, and F. M. Martínez-Verdú, “Estimation of the real colour gamut,” in 11th Congress of the International Colour Association (AIC 2009) (Colour Society of Australia, 2009), p. 71.
  15. E. Perales, F. M. Martinez-Verdu, V. Viqueira, J. Fernandez-Reche, J. A. Diaz, and J. Uroz, “Comparison of color gamuts among several types of paper with the same printing technology,” Color Res. Appl. 34, 330–332 (2009).
    [CrossRef]
  16. M. R. Pointer, “The gamut of real surface colors,” Color Res. Appl. 5, 145–155 (1980).
    [CrossRef]
  17. 17.M. R. Pointer, “Request for real surface colours,” Color Res. Appl. 27, 374–374 (2002).
    [CrossRef]
  18. ASTM-E2175-01, “Standard practice for specifying the geometry of multiangle spectrophotometers,” (American Society for Testing and Materials, 2001).
  19. DIN-6175-2, “Tolerances for automotive paint—Part 2: Goniochromatic paints,” (Deutsches Institut für Normung, 1999).
  20. CIE-15:2004, “Colorimetry,” (Commision Internationale de L’Eclaraige, 2004).
  21. C. Li, M. R. Luo, M. S. Cho, and J. S. Kim, “Linear programming method for computing the gamut of object color solid,” J. Opt. Soc. Am. A 27, 985–991 (2010).
    [CrossRef]
  22. 22.F. Martinez-Verdu, E. Perales, E. Chorro, D. de Fez, V. Viqueira, and E. Gilabert, “Computation and visualization of the MacAdam limits for any lightness, hue angle, and light source,” J. Opt. Soc. Am. A 24, 1501–1515 (2007).
    [CrossRef]

2010

2009

E. Chorro, E. Perales, F. M. Martinez-Verdu, J. Campos, and A. Pons, “Colorimetric and spectral evaluation of the optical anisotropy of metallic and pearlescent samples,” J. Mod. Opt. 56, 1457–1465 (2009).
[CrossRef]

A. D. Logvinenko, “An object-color space,” J. Vis. 91–23(2009).
[CrossRef]

E. Perales, F. M. Martinez-Verdu, V. Viqueira, J. Fernandez-Reche, J. A. Diaz, and J. Uroz, “Comparison of color gamuts among several types of paper with the same printing technology,” Color Res. Appl. 34, 330–332 (2009).
[CrossRef]

2008

E. Perales, E. Chorro, F. Martinez-Verdu, S. Otero, and V. de Gracia, “A new method for comparing colour gamuts among printing technologies,” Imaging Sci. 56, 145–152(2008).
[CrossRef]

2007

E. Kirchner, G. J. van den Kieboom, L. Njo, R. Super, and R. Gottenbos, “Observation of visual texture of metallic and pearlescent materials,” Color Res. Appl. 32, 256–266 (2007).
[CrossRef]

22.F. Martinez-Verdu, E. Perales, E. Chorro, D. de Fez, V. Viqueira, and E. Gilabert, “Computation and visualization of the MacAdam limits for any lightness, hue angle, and light source,” J. Opt. Soc. Am. A 24, 1501–1515 (2007).
[CrossRef]

2002

17.M. R. Pointer, “Request for real surface colours,” Color Res. Appl. 27, 374–374 (2002).
[CrossRef]

2001

W. R. Cramer and P. Gabel, “Measuring special effects,” Paint & Coatings Industry 29, 36–46 (2001).

1980

M. R. Pointer, “The gamut of real surface colors,” Color Res. Appl. 5, 145–155 (1980).
[CrossRef]

1935

Berns, R. S.

R. S. Berns, Billmeyer and Saltzman’s Principles of Color Technology (Wiley, 2000).

Berthier, S.

S. Berthier, Iridescences: The Physical Colors of Insects (Springer, Paris, 2006).

Campos, J.

E. Chorro, E. Perales, F. M. Martinez-Verdu, J. Campos, and A. Pons, “Colorimetric and spectral evaluation of the optical anisotropy of metallic and pearlescent samples,” J. Mod. Opt. 56, 1457–1465 (2009).
[CrossRef]

Cho, M. S.

Chorro, E.

E. Chorro, E. Perales, F. M. Martinez-Verdu, J. Campos, and A. Pons, “Colorimetric and spectral evaluation of the optical anisotropy of metallic and pearlescent samples,” J. Mod. Opt. 56, 1457–1465 (2009).
[CrossRef]

E. Perales, E. Chorro, F. Martinez-Verdu, S. Otero, and V. de Gracia, “A new method for comparing colour gamuts among printing technologies,” Imaging Sci. 56, 145–152(2008).
[CrossRef]

22.F. Martinez-Verdu, E. Perales, E. Chorro, D. de Fez, V. Viqueira, and E. Gilabert, “Computation and visualization of the MacAdam limits for any lightness, hue angle, and light source,” J. Opt. Soc. Am. A 24, 1501–1515 (2007).
[CrossRef]

E. Perales, E. Chorro, V. Viqueira, and F. M. Martínez-Verdú, “Estimation of the real colour gamut,” in 11th Congress of the International Colour Association (AIC 2009) (Colour Society of Australia, 2009), p. 71.

Cramer, W. R.

W. R. Cramer and P. Gabel, “Measuring special effects,” Paint & Coatings Industry 29, 36–46 (2001).

de Fez, D.

de Gracia, V.

E. Perales, E. Chorro, F. Martinez-Verdu, S. Otero, and V. de Gracia, “A new method for comparing colour gamuts among printing technologies,” Imaging Sci. 56, 145–152(2008).
[CrossRef]

Diaz, J. A.

E. Perales, F. M. Martinez-Verdu, V. Viqueira, J. Fernandez-Reche, J. A. Diaz, and J. Uroz, “Comparison of color gamuts among several types of paper with the same printing technology,” Color Res. Appl. 34, 330–332 (2009).
[CrossRef]

Douma, M.

M. Douma, “Causes of Colours,” retrieved March, 2010, http://www.webexhibits.org/causesofcolor/15.html. (2008).

Fernandez-Reche, J.

E. Perales, F. M. Martinez-Verdu, V. Viqueira, J. Fernandez-Reche, J. A. Diaz, and J. Uroz, “Comparison of color gamuts among several types of paper with the same printing technology,” Color Res. Appl. 34, 330–332 (2009).
[CrossRef]

Gabel, P.

W. R. Cramer and P. Gabel, “Measuring special effects,” Paint & Coatings Industry 29, 36–46 (2001).

Gilabert, E.

Gottenbos, R.

E. Kirchner, G. J. van den Kieboom, L. Njo, R. Super, and R. Gottenbos, “Observation of visual texture of metallic and pearlescent materials,” Color Res. Appl. 32, 256–266 (2007).
[CrossRef]

Hunt, R. W. G.

R. W. G. Hunt, The Reproduction of Colour (Wiley, 2004), p. 702.

Kim, J. S.

Kirchner, E.

E. Kirchner, G. J. van den Kieboom, L. Njo, R. Super, and R. Gottenbos, “Observation of visual texture of metallic and pearlescent materials,” Color Res. Appl. 32, 256–266 (2007).
[CrossRef]

Kuenhi, R. G.

R. G. Kuenhi, Color Space and Its Divisions: Color Order from Antiquity to the Present (Wiley-VCH, 2003), p. 202.

Li, C.

Logvinenko, A. D.

A. D. Logvinenko, “An object-color space,” J. Vis. 91–23(2009).
[CrossRef]

Luo, M. R.

MacAdam, D. L.

Martinez-Verdu, F.

E. Perales, E. Chorro, F. Martinez-Verdu, S. Otero, and V. de Gracia, “A new method for comparing colour gamuts among printing technologies,” Imaging Sci. 56, 145–152(2008).
[CrossRef]

22.F. Martinez-Verdu, E. Perales, E. Chorro, D. de Fez, V. Viqueira, and E. Gilabert, “Computation and visualization of the MacAdam limits for any lightness, hue angle, and light source,” J. Opt. Soc. Am. A 24, 1501–1515 (2007).
[CrossRef]

Martinez-Verdu, F. M.

E. Perales, F. M. Martinez-Verdu, V. Viqueira, J. Fernandez-Reche, J. A. Diaz, and J. Uroz, “Comparison of color gamuts among several types of paper with the same printing technology,” Color Res. Appl. 34, 330–332 (2009).
[CrossRef]

E. Chorro, E. Perales, F. M. Martinez-Verdu, J. Campos, and A. Pons, “Colorimetric and spectral evaluation of the optical anisotropy of metallic and pearlescent samples,” J. Mod. Opt. 56, 1457–1465 (2009).
[CrossRef]

Martínez-Verdú, F. M.

E. Perales, E. Chorro, V. Viqueira, and F. M. Martínez-Verdú, “Estimation of the real colour gamut,” in 11th Congress of the International Colour Association (AIC 2009) (Colour Society of Australia, 2009), p. 71.

Njo, L.

E. Kirchner, G. J. van den Kieboom, L. Njo, R. Super, and R. Gottenbos, “Observation of visual texture of metallic and pearlescent materials,” Color Res. Appl. 32, 256–266 (2007).
[CrossRef]

Otero, S.

E. Perales, E. Chorro, F. Martinez-Verdu, S. Otero, and V. de Gracia, “A new method for comparing colour gamuts among printing technologies,” Imaging Sci. 56, 145–152(2008).
[CrossRef]

Perales, E.

E. Chorro, E. Perales, F. M. Martinez-Verdu, J. Campos, and A. Pons, “Colorimetric and spectral evaluation of the optical anisotropy of metallic and pearlescent samples,” J. Mod. Opt. 56, 1457–1465 (2009).
[CrossRef]

E. Perales, F. M. Martinez-Verdu, V. Viqueira, J. Fernandez-Reche, J. A. Diaz, and J. Uroz, “Comparison of color gamuts among several types of paper with the same printing technology,” Color Res. Appl. 34, 330–332 (2009).
[CrossRef]

E. Perales, E. Chorro, F. Martinez-Verdu, S. Otero, and V. de Gracia, “A new method for comparing colour gamuts among printing technologies,” Imaging Sci. 56, 145–152(2008).
[CrossRef]

22.F. Martinez-Verdu, E. Perales, E. Chorro, D. de Fez, V. Viqueira, and E. Gilabert, “Computation and visualization of the MacAdam limits for any lightness, hue angle, and light source,” J. Opt. Soc. Am. A 24, 1501–1515 (2007).
[CrossRef]

E. Perales, E. Chorro, V. Viqueira, and F. M. Martínez-Verdú, “Estimation of the real colour gamut,” in 11th Congress of the International Colour Association (AIC 2009) (Colour Society of Australia, 2009), p. 71.

Pfaff, G.

G. Pfaff, Special Effect Pigments: Technical Basics And Applications (Vincentz Network, 2008), p. 218.

Pointer, M. R.

17.M. R. Pointer, “Request for real surface colours,” Color Res. Appl. 27, 374–374 (2002).
[CrossRef]

M. R. Pointer, “The gamut of real surface colors,” Color Res. Appl. 5, 145–155 (1980).
[CrossRef]

Pons, A.

E. Chorro, E. Perales, F. M. Martinez-Verdu, J. Campos, and A. Pons, “Colorimetric and spectral evaluation of the optical anisotropy of metallic and pearlescent samples,” J. Mod. Opt. 56, 1457–1465 (2009).
[CrossRef]

Super, R.

E. Kirchner, G. J. van den Kieboom, L. Njo, R. Super, and R. Gottenbos, “Observation of visual texture of metallic and pearlescent materials,” Color Res. Appl. 32, 256–266 (2007).
[CrossRef]

Uroz, J.

E. Perales, F. M. Martinez-Verdu, V. Viqueira, J. Fernandez-Reche, J. A. Diaz, and J. Uroz, “Comparison of color gamuts among several types of paper with the same printing technology,” Color Res. Appl. 34, 330–332 (2009).
[CrossRef]

van den Kieboom, G. J.

E. Kirchner, G. J. van den Kieboom, L. Njo, R. Super, and R. Gottenbos, “Observation of visual texture of metallic and pearlescent materials,” Color Res. Appl. 32, 256–266 (2007).
[CrossRef]

Viqueira, V.

E. Perales, F. M. Martinez-Verdu, V. Viqueira, J. Fernandez-Reche, J. A. Diaz, and J. Uroz, “Comparison of color gamuts among several types of paper with the same printing technology,” Color Res. Appl. 34, 330–332 (2009).
[CrossRef]

22.F. Martinez-Verdu, E. Perales, E. Chorro, D. de Fez, V. Viqueira, and E. Gilabert, “Computation and visualization of the MacAdam limits for any lightness, hue angle, and light source,” J. Opt. Soc. Am. A 24, 1501–1515 (2007).
[CrossRef]

E. Perales, E. Chorro, V. Viqueira, and F. M. Martínez-Verdú, “Estimation of the real colour gamut,” in 11th Congress of the International Colour Association (AIC 2009) (Colour Society of Australia, 2009), p. 71.

Color Res. Appl.

E. Kirchner, G. J. van den Kieboom, L. Njo, R. Super, and R. Gottenbos, “Observation of visual texture of metallic and pearlescent materials,” Color Res. Appl. 32, 256–266 (2007).
[CrossRef]

E. Perales, F. M. Martinez-Verdu, V. Viqueira, J. Fernandez-Reche, J. A. Diaz, and J. Uroz, “Comparison of color gamuts among several types of paper with the same printing technology,” Color Res. Appl. 34, 330–332 (2009).
[CrossRef]

M. R. Pointer, “The gamut of real surface colors,” Color Res. Appl. 5, 145–155 (1980).
[CrossRef]

17.M. R. Pointer, “Request for real surface colours,” Color Res. Appl. 27, 374–374 (2002).
[CrossRef]

Imaging Sci.

E. Perales, E. Chorro, F. Martinez-Verdu, S. Otero, and V. de Gracia, “A new method for comparing colour gamuts among printing technologies,” Imaging Sci. 56, 145–152(2008).
[CrossRef]

J. Mod. Opt.

E. Chorro, E. Perales, F. M. Martinez-Verdu, J. Campos, and A. Pons, “Colorimetric and spectral evaluation of the optical anisotropy of metallic and pearlescent samples,” J. Mod. Opt. 56, 1457–1465 (2009).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Vis.

A. D. Logvinenko, “An object-color space,” J. Vis. 91–23(2009).
[CrossRef]

Paint & Coatings Industry

W. R. Cramer and P. Gabel, “Measuring special effects,” Paint & Coatings Industry 29, 36–46 (2001).

Other

M. Douma, “Causes of Colours,” retrieved March, 2010, http://www.webexhibits.org/causesofcolor/15.html. (2008).

S. Berthier, Iridescences: The Physical Colors of Insects (Springer, Paris, 2006).

G. Pfaff, Special Effect Pigments: Technical Basics And Applications (Vincentz Network, 2008), p. 218.

R. S. Berns, Billmeyer and Saltzman’s Principles of Color Technology (Wiley, 2000).

R. W. G. Hunt, The Reproduction of Colour (Wiley, 2004), p. 702.

R. G. Kuenhi, Color Space and Its Divisions: Color Order from Antiquity to the Present (Wiley-VCH, 2003), p. 202.

ASTM-E2175-01, “Standard practice for specifying the geometry of multiangle spectrophotometers,” (American Society for Testing and Materials, 2001).

DIN-6175-2, “Tolerances for automotive paint—Part 2: Goniochromatic paints,” (Deutsches Institut für Normung, 1999).

CIE-15:2004, “Colorimetry,” (Commision Internationale de L’Eclaraige, 2004).

E. Perales, E. Chorro, V. Viqueira, and F. M. Martínez-Verdú, “Estimation of the real colour gamut,” in 11th Congress of the International Colour Association (AIC 2009) (Colour Society of Australia, 2009), p. 71.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Illumination and observation angles of the measures of the Datacolor MultiFX10 gonio-spectrophotometer in accordance with the DIN 6175-2 and ASTM E2194 standards. Top: aspecular line; bottom: interference line.

Fig. 2
Fig. 2

Color shifts encoded in CIELAB color space of two goniochromatic samples belong to two conventional objects showing the interference and aspecular lines obtained from a multi-gonio-spectrophotometer with 10 measurement geometries (Datacolor MultiFX10). Top: Colorstream pigment (pure formulation) belong to a piece of a handbag. Bottom: Flame Blue pigment (mixed formulation) belonging to a car body.

Fig. 3
Fig. 3

Differences between the spectral reflectance curves associated with optimal colors and a real color.

Fig. 4
Fig. 4

Rösch–MacAdam color solid associated with the CIE 1931 standard observer and the D65 illuminant together with the 91 goniochromatic samples measured by the Datacolor FX10 multi-gonio-spectrophotometer with different measurement geometries. a) Aspecular line. b) Interference line.

Fig. 5
Fig. 5

Rösch–MacAdam color solid associated with the CIE 1931 standard observer and the D65 illuminant together with the 91 goniochromatic samples measured by the Datacolor FX10 multi-gonio-spectrophotometer for the 25 ° / 170 ° and 25 ° / 140 ° measurement geometries.

Fig. 6
Fig. 6

Comparison of the goniochromatic samples (red circles) with MacAdam limits (solid line) at constant lightness profiles for the measure geometries 25 ° / 140 ° and 45 ° / 120 ° .

Fig. 7
Fig. 7

Relative spectral reflectances along the interference line associated with 14 gonio samples with CIELAB values positioned outside (with L * values > 100 ) MacAdam limits.

Fig. 8
Fig. 8

Relative spectral reflectances along the interference line associated with three gonio samples with CIELAB values positioned outside (with L * values < 100 , but C ab * > C ab , MacAdam * ) MacAdam limits.

Fig. 9
Fig. 9

Rösch–MacAdam color solid associated with the CIE 1931 standard observer and the different light sources together with the 91 goniochromatic samples measured with Datacolor FX10 multi-gonio-spectrophotometer for the 45 ° / 120 ° measurement geometry.

Fig. 10
Fig. 10

Number of samples placed beyond the MacAdam limits for the different light sources and different (interference line) measurement geometries with C ab * > C ab , MacAdam * .

Metrics