Abstract

The usual near-field radiation profile of a light beam emanating from a photonic crystal waveguide (PCW) has a main lobe at the center line of the waveguide. However, a centrally symmetric profile for the emission pattern with two sidelobes can be required in some applications, e.g., Y-type power dividers, wavelength multiplexers, and semiconductor lasers. With such motivations in mind, we present the design of a compact structure that deflects the beam propagation direction in this manner. The idea utilizes the manipulation of the dispersion diagram of cascaded photonic crystals by exploiting the bandgap and self-collimation properties. The waveguide mode in the PCW can be transformed from a propagating mode into a diffusive one by altering the filling factor, which, in turn, leads to off-axis light emission. By using the finite-difference time-domain method, we show that the emission takes place into free space at the inclined output surfaces of the PCW with deviation angles of ±45°.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489(1987).
    [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (2nd ed., Princeton Univ. Press, 2008).
  4. M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1402–1411 (2000).
    [CrossRef]
  5. A. Mekis, J. C. Chen, I. Kurand, S. Fan, P. R. Villeneuve, and J. D. Joannopolous, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
    [CrossRef] [PubMed]
  6. H. Kurt and D. S. Citrin, “Photonic-crystal heterostructure waveguides,” IEEE J. Quantum Electron. 43, 78–84 (2007).
    [CrossRef]
  7. A. Talneau, L. Le Gouezigou, N. Bouadma, M. Agio, M. Kafesaki, and C. M. Soukoulis, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 micrometers,” Appl. Phys. Lett. 80, 547–549 (2002).
    [CrossRef]
  8. H. Kurt, I. H. Giden, and K. Ustun, “Highly efficient and broadband light transmission in 90° nanophotonic wire waveguide bends,” J. Opt. Soc. Am. B 28, 495–501 (2011).
    [CrossRef]
  9. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
    [CrossRef] [PubMed]
  10. E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
    [CrossRef]
  11. S. K. Morrison and Y. S. Kivshar, “Engineering of directional emission from photonic crystal waveguides,” Appl. Phys. Lett. 86, 081110 (2005).
    [CrossRef]
  12. D. Tang, L. Chen, and W. Ding, “Efficient beaming from photonic crystal waveguides via self-collimation effect,” Appl. Phys. Lett. 89, 131120 (2006).
    [CrossRef]
  13. I. Bulu, H. Caglayan, and E. Ozbay, “Beaming of light and enhanced transmission via surface modes of photonic crystals,” Opt. Lett. 30, 3078–3080 (2005).
    [CrossRef] [PubMed]
  14. C.-C. Chen, T. Pertsch, R. Iliev, F. Lederer, and A. Tünnermann, “Directional emission from photonic crystal waveguides,” Opt. Express 14, 2423–2428 (2006).
    [CrossRef] [PubMed]
  15. Y. Zhang, Y. Zhang, and B. Li, “Highly-efficient directional emission from photonic crystal waveguides for coupling of freely propagated terahertz waves into Si slab waveguides,” Opt. Express 15, 9281–9286 (2007).
    [CrossRef] [PubMed]
  16. E. H. Khoo, A. Q. Liu, T. H. Cheng, J. Li, and D. Pinjala, “Light focusing via Rowland concave surface of photonic crystal,” Appl. Phys. Lett. 91, 221105 (2007).
    [CrossRef]
  17. H. Kurt, “Theoretical study of directional emission enhancement from photonic crystal waveguides with tapered exits,” IEEE Photon. Technol. Lett. 20, 1682–1684 (2008).
    [CrossRef]
  18. H. Kurt, “The directional emission sensitivity of photonic crystal waveguides to air holes removal,” Appl. Phys. B 95, 341–344 (2009).
    [CrossRef]
  19. H. Kurt, “Limited-diffraction light propagation with axicon-shape photonic crystals,” J. Opt. Soc. Am. B 26, 981–986(2009).
    [CrossRef]
  20. S. Morrison and Y. Kivshar, “Observation of enhanced beaming from photonic crystal waveguides,” Appl. Phys. B 94, 149–153 (2009).
    [CrossRef]
  21. K. Guven and E. Ozbay, “Directivity enhancement and deflection of the beam emitted from a photonic crystal waveguide via defect coupling,” Opt. Express 15, 14973–14978(2007).
    [CrossRef] [PubMed]
  22. S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric structure surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
    [CrossRef]
  23. D.-Z. Lin, T.-D. Cheng, C.-K. Chang, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Directional light beaming control by a subwavelength asymmetric surface structure,” Opt. Express 15, 2585–2591 (2007).
    [CrossRef] [PubMed]
  24. H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis directional beaming via photonic crystal surface modes,” Appl. Phys. Lett. 92, 092114 (2008).
    [CrossRef]
  25. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200(1994).
    [CrossRef]
  26. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
    [CrossRef]
  27. A. Taflove, Computational Electromagnetics: The Finite-Difference Time-Domain Method (Artech House, 1995).
  28. R. K. Sinha and S. Rawal, “Modeling and design of 2D photonic crystal based Y type dual band wavelength demultiplexer,” Opt. Quantum Electron. 40, 603–613 (2008).
    [CrossRef]
  29. F. S.-S. Chien, S.-C. Cheng, Y.-J. Hsu, and W.-F. Hsieh, “Dual-band multiplexer/demultiplexer with photonic-crystal-waveguide couplers for bidirectional communications,” Opt. Commun. 266, 592–597 (2006).
    [CrossRef]
  30. H. Kurt, K. Ustun, and L. Ayas, “Study of different spectral regions and delay bandwidth relation in slow light photonic crystal waveguides,” Opt. Express 18, 26965–26977 (2010).
    [CrossRef]

2011 (1)

2010 (1)

2009 (3)

H. Kurt, “The directional emission sensitivity of photonic crystal waveguides to air holes removal,” Appl. Phys. B 95, 341–344 (2009).
[CrossRef]

H. Kurt, “Limited-diffraction light propagation with axicon-shape photonic crystals,” J. Opt. Soc. Am. B 26, 981–986(2009).
[CrossRef]

S. Morrison and Y. Kivshar, “Observation of enhanced beaming from photonic crystal waveguides,” Appl. Phys. B 94, 149–153 (2009).
[CrossRef]

2008 (3)

H. Kurt, “Theoretical study of directional emission enhancement from photonic crystal waveguides with tapered exits,” IEEE Photon. Technol. Lett. 20, 1682–1684 (2008).
[CrossRef]

R. K. Sinha and S. Rawal, “Modeling and design of 2D photonic crystal based Y type dual band wavelength demultiplexer,” Opt. Quantum Electron. 40, 603–613 (2008).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis directional beaming via photonic crystal surface modes,” Appl. Phys. Lett. 92, 092114 (2008).
[CrossRef]

2007 (6)

Y. Zhang, Y. Zhang, and B. Li, “Highly-efficient directional emission from photonic crystal waveguides for coupling of freely propagated terahertz waves into Si slab waveguides,” Opt. Express 15, 9281–9286 (2007).
[CrossRef] [PubMed]

E. H. Khoo, A. Q. Liu, T. H. Cheng, J. Li, and D. Pinjala, “Light focusing via Rowland concave surface of photonic crystal,” Appl. Phys. Lett. 91, 221105 (2007).
[CrossRef]

K. Guven and E. Ozbay, “Directivity enhancement and deflection of the beam emitted from a photonic crystal waveguide via defect coupling,” Opt. Express 15, 14973–14978(2007).
[CrossRef] [PubMed]

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric structure surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
[CrossRef]

D.-Z. Lin, T.-D. Cheng, C.-K. Chang, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Directional light beaming control by a subwavelength asymmetric surface structure,” Opt. Express 15, 2585–2591 (2007).
[CrossRef] [PubMed]

H. Kurt and D. S. Citrin, “Photonic-crystal heterostructure waveguides,” IEEE J. Quantum Electron. 43, 78–84 (2007).
[CrossRef]

2006 (3)

D. Tang, L. Chen, and W. Ding, “Efficient beaming from photonic crystal waveguides via self-collimation effect,” Appl. Phys. Lett. 89, 131120 (2006).
[CrossRef]

C.-C. Chen, T. Pertsch, R. Iliev, F. Lederer, and A. Tünnermann, “Directional emission from photonic crystal waveguides,” Opt. Express 14, 2423–2428 (2006).
[CrossRef] [PubMed]

F. S.-S. Chien, S.-C. Cheng, Y.-J. Hsu, and W.-F. Hsieh, “Dual-band multiplexer/demultiplexer with photonic-crystal-waveguide couplers for bidirectional communications,” Opt. Commun. 266, 592–597 (2006).
[CrossRef]

2005 (2)

S. K. Morrison and Y. S. Kivshar, “Engineering of directional emission from photonic crystal waveguides,” Appl. Phys. Lett. 86, 081110 (2005).
[CrossRef]

I. Bulu, H. Caglayan, and E. Ozbay, “Beaming of light and enhanced transmission via surface modes of photonic crystals,” Opt. Lett. 30, 3078–3080 (2005).
[CrossRef] [PubMed]

2004 (2)

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
[CrossRef]

2002 (1)

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Agio, M. Kafesaki, and C. M. Soukoulis, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 micrometers,” Appl. Phys. Lett. 80, 547–549 (2002).
[CrossRef]

2000 (1)

1996 (1)

A. Mekis, J. C. Chen, I. Kurand, S. Fan, P. R. Villeneuve, and J. D. Joannopolous, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

1994 (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200(1994).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489(1987).
[CrossRef] [PubMed]

1966 (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[CrossRef]

Agio, M.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Agio, M. Kafesaki, and C. M. Soukoulis, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 micrometers,” Appl. Phys. Lett. 80, 547–549 (2002).
[CrossRef]

Ayas, L.

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200(1994).
[CrossRef]

Birner, A.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Bouadma, N.

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Agio, M. Kafesaki, and C. M. Soukoulis, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 micrometers,” Appl. Phys. Lett. 80, 547–549 (2002).
[CrossRef]

Bulu, I.

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis directional beaming via photonic crystal surface modes,” Appl. Phys. Lett. 92, 092114 (2008).
[CrossRef]

I. Bulu, H. Caglayan, and E. Ozbay, “Beaming of light and enhanced transmission via surface modes of photonic crystals,” Opt. Lett. 30, 3078–3080 (2005).
[CrossRef] [PubMed]

Caglayan, H.

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis directional beaming via photonic crystal surface modes,” Appl. Phys. Lett. 92, 092114 (2008).
[CrossRef]

I. Bulu, H. Caglayan, and E. Ozbay, “Beaming of light and enhanced transmission via surface modes of photonic crystals,” Opt. Lett. 30, 3078–3080 (2005).
[CrossRef] [PubMed]

Chang, C.-K.

Chen, C.-C.

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurand, S. Fan, P. R. Villeneuve, and J. D. Joannopolous, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Chen, L.

D. Tang, L. Chen, and W. Ding, “Efficient beaming from photonic crystal waveguides via self-collimation effect,” Appl. Phys. Lett. 89, 131120 (2006).
[CrossRef]

Cheng, S.-C.

F. S.-S. Chien, S.-C. Cheng, Y.-J. Hsu, and W.-F. Hsieh, “Dual-band multiplexer/demultiplexer with photonic-crystal-waveguide couplers for bidirectional communications,” Opt. Commun. 266, 592–597 (2006).
[CrossRef]

Cheng, T. H.

E. H. Khoo, A. Q. Liu, T. H. Cheng, J. Li, and D. Pinjala, “Light focusing via Rowland concave surface of photonic crystal,” Appl. Phys. Lett. 91, 221105 (2007).
[CrossRef]

Cheng, T.-D.

Chien, F. S.-S.

F. S.-S. Chien, S.-C. Cheng, Y.-J. Hsu, and W.-F. Hsieh, “Dual-band multiplexer/demultiplexer with photonic-crystal-waveguide couplers for bidirectional communications,” Opt. Commun. 266, 592–597 (2006).
[CrossRef]

Citrin, D. S.

H. Kurt and D. S. Citrin, “Photonic-crystal heterostructure waveguides,” IEEE J. Quantum Electron. 43, 78–84 (2007).
[CrossRef]

Ding, W.

D. Tang, L. Chen, and W. Ding, “Efficient beaming from photonic crystal waveguides via self-collimation effect,” Appl. Phys. Lett. 89, 131120 (2006).
[CrossRef]

Doll, T.

Fan, S.

A. Mekis, J. C. Chen, I. Kurand, S. Fan, P. R. Villeneuve, and J. D. Joannopolous, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

García-Vidal, F. J.

E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
[CrossRef]

Giden, I. H.

Gösele, U.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Guven, K.

Hsieh, W.-F.

F. S.-S. Chien, S.-C. Cheng, Y.-J. Hsu, and W.-F. Hsieh, “Dual-band multiplexer/demultiplexer with photonic-crystal-waveguide couplers for bidirectional communications,” Opt. Commun. 266, 592–597 (2006).
[CrossRef]

Hsu, Y.-J.

F. S.-S. Chien, S.-C. Cheng, Y.-J. Hsu, and W.-F. Hsieh, “Dual-band multiplexer/demultiplexer with photonic-crystal-waveguide couplers for bidirectional communications,” Opt. Commun. 266, 592–597 (2006).
[CrossRef]

Iliev, R.

Joannopolous, J. D.

A. Mekis, J. C. Chen, I. Kurand, S. Fan, P. R. Villeneuve, and J. D. Joannopolous, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (2nd ed., Princeton Univ. Press, 2008).

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489(1987).
[CrossRef] [PubMed]

Kafesaki, M.

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Agio, M. Kafesaki, and C. M. Soukoulis, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 micrometers,” Appl. Phys. Lett. 80, 547–549 (2002).
[CrossRef]

Khoo, E. H.

E. H. Khoo, A. Q. Liu, T. H. Cheng, J. Li, and D. Pinjala, “Light focusing via Rowland concave surface of photonic crystal,” Appl. Phys. Lett. 91, 221105 (2007).
[CrossRef]

Kim, H.

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric structure surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
[CrossRef]

Kim, S.

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric structure surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
[CrossRef]

Kivshar, Y.

S. Morrison and Y. Kivshar, “Observation of enhanced beaming from photonic crystal waveguides,” Appl. Phys. B 94, 149–153 (2009).
[CrossRef]

Kivshar, Y. S.

S. K. Morrison and Y. S. Kivshar, “Engineering of directional emission from photonic crystal waveguides,” Appl. Phys. Lett. 86, 081110 (2005).
[CrossRef]

Kramper, P.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Kurand, I.

A. Mekis, J. C. Chen, I. Kurand, S. Fan, P. R. Villeneuve, and J. D. Joannopolous, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Kurt, H.

H. Kurt, I. H. Giden, and K. Ustun, “Highly efficient and broadband light transmission in 90° nanophotonic wire waveguide bends,” J. Opt. Soc. Am. B 28, 495–501 (2011).
[CrossRef]

H. Kurt, K. Ustun, and L. Ayas, “Study of different spectral regions and delay bandwidth relation in slow light photonic crystal waveguides,” Opt. Express 18, 26965–26977 (2010).
[CrossRef]

H. Kurt, “The directional emission sensitivity of photonic crystal waveguides to air holes removal,” Appl. Phys. B 95, 341–344 (2009).
[CrossRef]

H. Kurt, “Limited-diffraction light propagation with axicon-shape photonic crystals,” J. Opt. Soc. Am. B 26, 981–986(2009).
[CrossRef]

H. Kurt, “Theoretical study of directional emission enhancement from photonic crystal waveguides with tapered exits,” IEEE Photon. Technol. Lett. 20, 1682–1684 (2008).
[CrossRef]

H. Kurt and D. S. Citrin, “Photonic-crystal heterostructure waveguides,” IEEE J. Quantum Electron. 43, 78–84 (2007).
[CrossRef]

Le Gouezigou, L.

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Agio, M. Kafesaki, and C. M. Soukoulis, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 micrometers,” Appl. Phys. Lett. 80, 547–549 (2002).
[CrossRef]

Lederer, F.

Lee, B.

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric structure surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
[CrossRef]

Lee, C.-K.

Li, B.

Li, J.

E. H. Khoo, A. Q. Liu, T. H. Cheng, J. Li, and D. Pinjala, “Light focusing via Rowland concave surface of photonic crystal,” Appl. Phys. Lett. 91, 221105 (2007).
[CrossRef]

Lim, Y.

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric structure surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
[CrossRef]

Lin, D.-Z.

Liu, A. Q.

E. H. Khoo, A. Q. Liu, T. H. Cheng, J. Li, and D. Pinjala, “Light focusing via Rowland concave surface of photonic crystal,” Appl. Phys. Lett. 91, 221105 (2007).
[CrossRef]

Liu, J.-M.

Loncar, M.

Martín-Moreno, L.

E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (2nd ed., Princeton Univ. Press, 2008).

Mekis, A.

A. Mekis, J. C. Chen, I. Kurand, S. Fan, P. R. Villeneuve, and J. D. Joannopolous, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Moreno, E.

E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
[CrossRef]

Morrison, S.

S. Morrison and Y. Kivshar, “Observation of enhanced beaming from photonic crystal waveguides,” Appl. Phys. B 94, 149–153 (2009).
[CrossRef]

Morrison, S. K.

S. K. Morrison and Y. S. Kivshar, “Engineering of directional emission from photonic crystal waveguides,” Appl. Phys. Lett. 86, 081110 (2005).
[CrossRef]

Müller, F.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Ozbay, E.

Pertsch, T.

Pinjala, D.

E. H. Khoo, A. Q. Liu, T. H. Cheng, J. Li, and D. Pinjala, “Light focusing via Rowland concave surface of photonic crystal,” Appl. Phys. Lett. 91, 221105 (2007).
[CrossRef]

Rawal, S.

R. K. Sinha and S. Rawal, “Modeling and design of 2D photonic crystal based Y type dual band wavelength demultiplexer,” Opt. Quantum Electron. 40, 603–613 (2008).
[CrossRef]

Sandoghar, V.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Scherer, A.

Sinha, R. K.

R. K. Sinha and S. Rawal, “Modeling and design of 2D photonic crystal based Y type dual band wavelength demultiplexer,” Opt. Quantum Electron. 40, 603–613 (2008).
[CrossRef]

Soukoulis, C. M.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Agio, M. Kafesaki, and C. M. Soukoulis, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 micrometers,” Appl. Phys. Lett. 80, 547–549 (2002).
[CrossRef]

Taflove, A.

A. Taflove, Computational Electromagnetics: The Finite-Difference Time-Domain Method (Artech House, 1995).

Talneau, A.

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Agio, M. Kafesaki, and C. M. Soukoulis, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 micrometers,” Appl. Phys. Lett. 80, 547–549 (2002).
[CrossRef]

Tang, D.

D. Tang, L. Chen, and W. Ding, “Efficient beaming from photonic crystal waveguides via self-collimation effect,” Appl. Phys. Lett. 89, 131120 (2006).
[CrossRef]

Tünnermann, A.

Ustun, K.

Villeneuve, P. R.

A. Mekis, J. C. Chen, I. Kurand, S. Fan, P. R. Villeneuve, and J. D. Joannopolous, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Vuckovic, J.

Wehrspohn, R. B.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (2nd ed., Princeton Univ. Press, 2008).

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
[CrossRef] [PubMed]

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[CrossRef]

Yeh, C.-S.

Yeh, J.-T.

Zhang, Y.

Appl. Phys. B (2)

H. Kurt, “The directional emission sensitivity of photonic crystal waveguides to air holes removal,” Appl. Phys. B 95, 341–344 (2009).
[CrossRef]

S. Morrison and Y. Kivshar, “Observation of enhanced beaming from photonic crystal waveguides,” Appl. Phys. B 94, 149–153 (2009).
[CrossRef]

Appl. Phys. Lett. (6)

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric structure surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis directional beaming via photonic crystal surface modes,” Appl. Phys. Lett. 92, 092114 (2008).
[CrossRef]

E. H. Khoo, A. Q. Liu, T. H. Cheng, J. Li, and D. Pinjala, “Light focusing via Rowland concave surface of photonic crystal,” Appl. Phys. Lett. 91, 221105 (2007).
[CrossRef]

S. K. Morrison and Y. S. Kivshar, “Engineering of directional emission from photonic crystal waveguides,” Appl. Phys. Lett. 86, 081110 (2005).
[CrossRef]

D. Tang, L. Chen, and W. Ding, “Efficient beaming from photonic crystal waveguides via self-collimation effect,” Appl. Phys. Lett. 89, 131120 (2006).
[CrossRef]

A. Talneau, L. Le Gouezigou, N. Bouadma, M. Agio, M. Kafesaki, and C. M. Soukoulis, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 micrometers,” Appl. Phys. Lett. 80, 547–549 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Kurt and D. S. Citrin, “Photonic-crystal heterostructure waveguides,” IEEE J. Quantum Electron. 43, 78–84 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Kurt, “Theoretical study of directional emission enhancement from photonic crystal waveguides with tapered exits,” IEEE Photon. Technol. Lett. 20, 1682–1684 (2008).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200(1994).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

F. S.-S. Chien, S.-C. Cheng, Y.-J. Hsu, and W.-F. Hsieh, “Dual-band multiplexer/demultiplexer with photonic-crystal-waveguide couplers for bidirectional communications,” Opt. Commun. 266, 592–597 (2006).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

R. K. Sinha and S. Rawal, “Modeling and design of 2D photonic crystal based Y type dual band wavelength demultiplexer,” Opt. Quantum Electron. 40, 603–613 (2008).
[CrossRef]

Phys. Rev. B (1)

E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402 (2004).
[CrossRef]

Phys. Rev. Lett. (4)

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

A. Mekis, J. C. Chen, I. Kurand, S. Fan, P. R. Villeneuve, and J. D. Joannopolous, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489(1987).
[CrossRef] [PubMed]

Other (2)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (2nd ed., Princeton Univ. Press, 2008).

A. Taflove, Computational Electromagnetics: The Finite-Difference Time-Domain Method (Artech House, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

The composite square-lattice PCW structure consists of two waveguides of different filling factors. The rod radius of the first PC is 0.22 a , while that of the second PC is 0.16 a . The end surface of the second PCW is terminated as indicated in the figure to collect the light effectively at the drop channels. The spatial separation of wavelengths λ 1 and λ 2 is illustrated. D 1 and D 2 show the locations of the e-field detection points.

Fig. 2
Fig. 2

Dispersion diagram of square-lattice PCs with radii of rods equal to 0.22 a .

Fig. 3
Fig. 3

Dispersion diagram of square-lattice PCs with radii of rods equal to 0.16 a .

Fig. 4
Fig. 4

(a) Dispersion diagram of the first PCW and (b) that of the second PCW. The plane wave expansion method is performed by using supercell technique. The dashed lines show the operating wavelength λ 1 for the off-axis radiation. The dotted lines indicate the bandgap-guided mode λ 2 of the PCWs. The waveguide mode of each PCW is shown by the solid curve. The Brillouin zone of the square-lattice PC is included as an inset.

Fig. 5
Fig. 5

Steady-state e-field plot of a mode through the designed structure. The input frequency is a modulated Gaussian pulse centered at a / λ = 0.32 , which is expected to be guided by the first PCW, and it is allowed to drop at the output channels in the second PCW.

Fig. 6
Fig. 6

Isofrequency contours of the second PC. At the operating frequency of 0.32 along the Γ M direction ( k x = k y ), the contour allows a self-collimation mechanism.

Fig. 7
Fig. 7

Steady-state e-field plot of a mode differ ent than the one in Fig. 5. The input frequency is a modulated Gaussian pulse centered at a / λ = 0.38 . Both PCWs guide the light and no light arrives to the drop channels.

Fig. 8
Fig. 8

Normalized intensity plot of the e-field along the x axis.

Fig. 9
Fig. 9

E-field variation at the two detector places, D 1 and D 2 . Pulses of light with different center frequencies are sent through PCWs and the amount of light reached to the detection point is recorded in time.

Fig. 10
Fig. 10

Power transmission coefficient of detector planes D 1 and D 2 .

Fig. 11
Fig. 11

The e-field plot of the waveguide mode when the PCW parameters are selected to be (a)  a / λ = 0.38 , r / a = 0.22 ; (b)  a / λ = 0.38 , r / a = 0.16 ; and (c)  a / λ = 0.32 , r / a = 0.22 .

Metrics