Abstract

The quantum efficiency equations of two different structure reflection-mode GaAs photocathodes with back interface recombination velocity have been solved from the diffusion equations. One structure consists of GaAs substrate and an epitaxial GaAs active layer (GaAs-GaAs) and another structure consists of GaAs substrate, an epitaxial AlGaAs buffer layer, and a GaAs active layer (AlGaAs-GaAs). The experimental results show that the quantum efficiency of long-wavelength photons and the integral sensitivities for GaAs-GaAs cathodes both increase with the increase in the active layer thickness, which is due to the increase of electron diffusion length. The quantum efficiency of long-wavelength photons and the integral sensitivity of AlGaAs-GaAs cathodes are greater than those of GaAs-GaAs cathodes with an identical active layer thickness, which is attributed to the AlGaAs buffer layer. The buffer layer can reflect electrons and improve the quality of the GaAs active layer. Through the theoretical simulation, we found the active layer thickness for AlGaAs-GaAs cathodes has an optimum value at which the cathodes achieve the maximum sensitivity.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
    [CrossRef]
  2. J. P. Estrera, E. J. Bender, A. Giordana, J. W. Glesener, M. J. Iosue, P. P. Lin, and T. W. Sinor, “Long lifetime generation IV image intensifiers with unfilmed microchannel plate,” Proc. SPIE 4128, 46–53 (2000).
    [CrossRef]
  3. H.-J. Drouhin, C. Hermann, and G. Lampel, “Photoemission from activated gallium arsenide. I. very-high-resolution energy distribution curves,” Phys. Rev. B 31, 3859–3871 (1985).
    [CrossRef]
  4. Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs-NF3 activated GaAs (100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92, 241107 (2008).
    [CrossRef]
  5. J. J. Zou, Y. J. Zhang, Z. Yang, and B. K. Chang, “Degradation model of GaAs vacuum electron sources,” Acta Phys. Sin. 60, 017902 (2011).
  6. T. Maruyama, A. Brachmann, J. E. Clendenin, T. Desikan, E. L. Garwin, R. E. Kirby, D.-A. Luh, J. Turner, and R. Prepost, “A very high charge, high polarization gradient-doped strained GaAs photocathode,” Nucl. Instrum. Methods Phys. Res. A 492, 199–211 (2002).
    [CrossRef]
  7. W. E. Spicer, “Photoemissive, photoconductive, and absorption studies of alkali-antimony compounds,” Phys. Rev. 112, 114–122 (1958).
    [CrossRef]
  8. W. E. Spicer and A. Herrera-Gómez, “Modern theory and application of photocathodes,” Proc. SPIE 2022, 18–33 (1993).
    [CrossRef]
  9. G. A. Antypas, L. W. James, and J. J. Uebbing, “Operation of III–V semiconductor photocathodes in the semitransparent mode,” J. Appl. Phys. 41, 2888–2894 (1970).
    [CrossRef]
  10. Y. Z. Liu, J. L. Moll, and W. E. Spicer, “Quantum yield of GaAs semitransparent photocathodes,” Appl. Phys. Lett. 17, 60–62(1970).
    [CrossRef]
  11. Y. Z. Liu, C. D. Hollish, and W. W. Stein, “LPE GaAs/(Ga, Al)As/GaAs transmission photocathodes and a simplified formula for transmission quantum yield,” J. Appl. Phys. 44, 5619–5621 (1973).
    [CrossRef]
  12. C. Y. Su, W. E. Spicer, and I. Lindau, “Photoelectron spectroscopic determination of the structure of (Cs, O) activated GaAs (110) surface,” J. Appl. Phys. 54, 1413–1422 (1983).
    [CrossRef]
  13. C. Y. Su, I. Lindau, and W. E. Spicer, “Photoemission studies of the oxidation of Cs identification of the multiple structures of oxygen species,” Chem. Phys. Lett. 87, 523–527 (1982).
    [CrossRef]
  14. B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “The automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218(2003).
    [CrossRef]
  15. J. J. Zou, B. K. Chang, Y. J. Zhang, and Z. Yang, “Variation of spectral response from Cs-covered GaAs and band features contained within the spectral response,” Appl. Opt. 49, 2561–2565 (2010).
    [CrossRef]
  16. J. J. Zou, L. Feng, G. Y. Lin, Y. T. Rao, Z. Yang, Y. S. Qian, and B. K. Chang, “On-line measurement system of GaAs photocathodes and its application,” Proc. SPIE 6782, 67823D (2007).
    [CrossRef]
  17. F. Proix, A. Akremi, and Z. T. Zhong, “Effects of vacuum annealing on the electronic properties of cleaved GaAs,” J. Phys. C 16, 5449–5463 (1983).
    [CrossRef]
  18. Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
    [CrossRef]
  19. S. Moré, S. Tanaka, S. Tanaka, Y. Fujii, and M. Kamada, “Interaction of Cs and O with GaAs(100) at the overlayer—substrate interface during negative electron affinity type activations,” Surf. Sci. 527, 41–50 (2003).
    [CrossRef]
  20. A. A. Turnbull and G. B. Evans, “Photoemission from GaAs-Cs-O,” J. Phys. D: Appl. Phys. 1, 155–160 (1968).
    [CrossRef]

2011 (1)

J. J. Zou, Y. J. Zhang, Z. Yang, and B. K. Chang, “Degradation model of GaAs vacuum electron sources,” Acta Phys. Sin. 60, 017902 (2011).

2010 (2)

J. J. Zou, B. K. Chang, Y. J. Zhang, and Z. Yang, “Variation of spectral response from Cs-covered GaAs and band features contained within the spectral response,” Appl. Opt. 49, 2561–2565 (2010).
[CrossRef]

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

2008 (1)

Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs-NF3 activated GaAs (100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92, 241107 (2008).
[CrossRef]

2007 (2)

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

J. J. Zou, L. Feng, G. Y. Lin, Y. T. Rao, Z. Yang, Y. S. Qian, and B. K. Chang, “On-line measurement system of GaAs photocathodes and its application,” Proc. SPIE 6782, 67823D (2007).
[CrossRef]

2003 (2)

S. Moré, S. Tanaka, S. Tanaka, Y. Fujii, and M. Kamada, “Interaction of Cs and O with GaAs(100) at the overlayer—substrate interface during negative electron affinity type activations,” Surf. Sci. 527, 41–50 (2003).
[CrossRef]

B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “The automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218(2003).
[CrossRef]

2002 (1)

T. Maruyama, A. Brachmann, J. E. Clendenin, T. Desikan, E. L. Garwin, R. E. Kirby, D.-A. Luh, J. Turner, and R. Prepost, “A very high charge, high polarization gradient-doped strained GaAs photocathode,” Nucl. Instrum. Methods Phys. Res. A 492, 199–211 (2002).
[CrossRef]

2000 (1)

J. P. Estrera, E. J. Bender, A. Giordana, J. W. Glesener, M. J. Iosue, P. P. Lin, and T. W. Sinor, “Long lifetime generation IV image intensifiers with unfilmed microchannel plate,” Proc. SPIE 4128, 46–53 (2000).
[CrossRef]

1993 (1)

W. E. Spicer and A. Herrera-Gómez, “Modern theory and application of photocathodes,” Proc. SPIE 2022, 18–33 (1993).
[CrossRef]

1985 (1)

H.-J. Drouhin, C. Hermann, and G. Lampel, “Photoemission from activated gallium arsenide. I. very-high-resolution energy distribution curves,” Phys. Rev. B 31, 3859–3871 (1985).
[CrossRef]

1983 (2)

F. Proix, A. Akremi, and Z. T. Zhong, “Effects of vacuum annealing on the electronic properties of cleaved GaAs,” J. Phys. C 16, 5449–5463 (1983).
[CrossRef]

C. Y. Su, W. E. Spicer, and I. Lindau, “Photoelectron spectroscopic determination of the structure of (Cs, O) activated GaAs (110) surface,” J. Appl. Phys. 54, 1413–1422 (1983).
[CrossRef]

1982 (1)

C. Y. Su, I. Lindau, and W. E. Spicer, “Photoemission studies of the oxidation of Cs identification of the multiple structures of oxygen species,” Chem. Phys. Lett. 87, 523–527 (1982).
[CrossRef]

1973 (1)

Y. Z. Liu, C. D. Hollish, and W. W. Stein, “LPE GaAs/(Ga, Al)As/GaAs transmission photocathodes and a simplified formula for transmission quantum yield,” J. Appl. Phys. 44, 5619–5621 (1973).
[CrossRef]

1970 (2)

G. A. Antypas, L. W. James, and J. J. Uebbing, “Operation of III–V semiconductor photocathodes in the semitransparent mode,” J. Appl. Phys. 41, 2888–2894 (1970).
[CrossRef]

Y. Z. Liu, J. L. Moll, and W. E. Spicer, “Quantum yield of GaAs semitransparent photocathodes,” Appl. Phys. Lett. 17, 60–62(1970).
[CrossRef]

1968 (1)

A. A. Turnbull and G. B. Evans, “Photoemission from GaAs-Cs-O,” J. Phys. D: Appl. Phys. 1, 155–160 (1968).
[CrossRef]

1958 (1)

W. E. Spicer, “Photoemissive, photoconductive, and absorption studies of alkali-antimony compounds,” Phys. Rev. 112, 114–122 (1958).
[CrossRef]

Akremi, A.

F. Proix, A. Akremi, and Z. T. Zhong, “Effects of vacuum annealing on the electronic properties of cleaved GaAs,” J. Phys. C 16, 5449–5463 (1983).
[CrossRef]

Antypas, G. A.

G. A. Antypas, L. W. James, and J. J. Uebbing, “Operation of III–V semiconductor photocathodes in the semitransparent mode,” J. Appl. Phys. 41, 2888–2894 (1970).
[CrossRef]

Bender, E. J.

J. P. Estrera, E. J. Bender, A. Giordana, J. W. Glesener, M. J. Iosue, P. P. Lin, and T. W. Sinor, “Long lifetime generation IV image intensifiers with unfilmed microchannel plate,” Proc. SPIE 4128, 46–53 (2000).
[CrossRef]

Bo, C.

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Brachmann, A.

T. Maruyama, A. Brachmann, J. E. Clendenin, T. Desikan, E. L. Garwin, R. E. Kirby, D.-A. Luh, J. Turner, and R. Prepost, “A very high charge, high polarization gradient-doped strained GaAs photocathode,” Nucl. Instrum. Methods Phys. Res. A 492, 199–211 (2002).
[CrossRef]

Chang, B. K.

J. J. Zou, Y. J. Zhang, Z. Yang, and B. K. Chang, “Degradation model of GaAs vacuum electron sources,” Acta Phys. Sin. 60, 017902 (2011).

J. J. Zou, B. K. Chang, Y. J. Zhang, and Z. Yang, “Variation of spectral response from Cs-covered GaAs and band features contained within the spectral response,” Appl. Opt. 49, 2561–2565 (2010).
[CrossRef]

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

J. J. Zou, L. Feng, G. Y. Lin, Y. T. Rao, Z. Yang, Y. S. Qian, and B. K. Chang, “On-line measurement system of GaAs photocathodes and its application,” Proc. SPIE 6782, 67823D (2007).
[CrossRef]

B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “The automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218(2003).
[CrossRef]

Cheng, H. C.

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Clendenin, J. E.

T. Maruyama, A. Brachmann, J. E. Clendenin, T. Desikan, E. L. Garwin, R. E. Kirby, D.-A. Luh, J. Turner, and R. Prepost, “A very high charge, high polarization gradient-doped strained GaAs photocathode,” Nucl. Instrum. Methods Phys. Res. A 492, 199–211 (2002).
[CrossRef]

Desikan, T.

T. Maruyama, A. Brachmann, J. E. Clendenin, T. Desikan, E. L. Garwin, R. E. Kirby, D.-A. Luh, J. Turner, and R. Prepost, “A very high charge, high polarization gradient-doped strained GaAs photocathode,” Nucl. Instrum. Methods Phys. Res. A 492, 199–211 (2002).
[CrossRef]

Drouhin, H.-J.

H.-J. Drouhin, C. Hermann, and G. Lampel, “Photoemission from activated gallium arsenide. I. very-high-resolution energy distribution curves,” Phys. Rev. B 31, 3859–3871 (1985).
[CrossRef]

Du, X. Q.

B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “The automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218(2003).
[CrossRef]

Estrera, J. P.

J. P. Estrera, E. J. Bender, A. Giordana, J. W. Glesener, M. J. Iosue, P. P. Lin, and T. W. Sinor, “Long lifetime generation IV image intensifiers with unfilmed microchannel plate,” Proc. SPIE 4128, 46–53 (2000).
[CrossRef]

Evans, G. B.

A. A. Turnbull and G. B. Evans, “Photoemission from GaAs-Cs-O,” J. Phys. D: Appl. Phys. 1, 155–160 (1968).
[CrossRef]

Feng, L.

J. J. Zou, L. Feng, G. Y. Lin, Y. T. Rao, Z. Yang, Y. S. Qian, and B. K. Chang, “On-line measurement system of GaAs photocathodes and its application,” Proc. SPIE 6782, 67823D (2007).
[CrossRef]

Fu, R. G.

B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “The automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218(2003).
[CrossRef]

Fujii, Y.

S. Moré, S. Tanaka, S. Tanaka, Y. Fujii, and M. Kamada, “Interaction of Cs and O with GaAs(100) at the overlayer—substrate interface during negative electron affinity type activations,” Surf. Sci. 527, 41–50 (2003).
[CrossRef]

Garwin, E. L.

T. Maruyama, A. Brachmann, J. E. Clendenin, T. Desikan, E. L. Garwin, R. E. Kirby, D.-A. Luh, J. Turner, and R. Prepost, “A very high charge, high polarization gradient-doped strained GaAs photocathode,” Nucl. Instrum. Methods Phys. Res. A 492, 199–211 (2002).
[CrossRef]

Giordana, A.

J. P. Estrera, E. J. Bender, A. Giordana, J. W. Glesener, M. J. Iosue, P. P. Lin, and T. W. Sinor, “Long lifetime generation IV image intensifiers with unfilmed microchannel plate,” Proc. SPIE 4128, 46–53 (2000).
[CrossRef]

Glesener, J. W.

J. P. Estrera, E. J. Bender, A. Giordana, J. W. Glesener, M. J. Iosue, P. P. Lin, and T. W. Sinor, “Long lifetime generation IV image intensifiers with unfilmed microchannel plate,” Proc. SPIE 4128, 46–53 (2000).
[CrossRef]

Hermann, C.

H.-J. Drouhin, C. Hermann, and G. Lampel, “Photoemission from activated gallium arsenide. I. very-high-resolution energy distribution curves,” Phys. Rev. B 31, 3859–3871 (1985).
[CrossRef]

Herrera-Gómez, A.

W. E. Spicer and A. Herrera-Gómez, “Modern theory and application of photocathodes,” Proc. SPIE 2022, 18–33 (1993).
[CrossRef]

Hollish, C. D.

Y. Z. Liu, C. D. Hollish, and W. W. Stein, “LPE GaAs/(Ga, Al)As/GaAs transmission photocathodes and a simplified formula for transmission quantum yield,” J. Appl. Phys. 44, 5619–5621 (1973).
[CrossRef]

Iosue, M. J.

J. P. Estrera, E. J. Bender, A. Giordana, J. W. Glesener, M. J. Iosue, P. P. Lin, and T. W. Sinor, “Long lifetime generation IV image intensifiers with unfilmed microchannel plate,” Proc. SPIE 4128, 46–53 (2000).
[CrossRef]

James, L. W.

G. A. Antypas, L. W. James, and J. J. Uebbing, “Operation of III–V semiconductor photocathodes in the semitransparent mode,” J. Appl. Phys. 41, 2888–2894 (1970).
[CrossRef]

Kamada, M.

S. Moré, S. Tanaka, S. Tanaka, Y. Fujii, and M. Kamada, “Interaction of Cs and O with GaAs(100) at the overlayer—substrate interface during negative electron affinity type activations,” Surf. Sci. 527, 41–50 (2003).
[CrossRef]

Kirby, R. E.

T. Maruyama, A. Brachmann, J. E. Clendenin, T. Desikan, E. L. Garwin, R. E. Kirby, D.-A. Luh, J. Turner, and R. Prepost, “A very high charge, high polarization gradient-doped strained GaAs photocathode,” Nucl. Instrum. Methods Phys. Res. A 492, 199–211 (2002).
[CrossRef]

Kuriki, M.

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Kuwahara, M.

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Lampel, G.

H.-J. Drouhin, C. Hermann, and G. Lampel, “Photoemission from activated gallium arsenide. I. very-high-resolution energy distribution curves,” Phys. Rev. B 31, 3859–3871 (1985).
[CrossRef]

Lin, G. Y.

J. J. Zou, L. Feng, G. Y. Lin, Y. T. Rao, Z. Yang, Y. S. Qian, and B. K. Chang, “On-line measurement system of GaAs photocathodes and its application,” Proc. SPIE 6782, 67823D (2007).
[CrossRef]

Lin, P. P.

J. P. Estrera, E. J. Bender, A. Giordana, J. W. Glesener, M. J. Iosue, P. P. Lin, and T. W. Sinor, “Long lifetime generation IV image intensifiers with unfilmed microchannel plate,” Proc. SPIE 4128, 46–53 (2000).
[CrossRef]

Lindau, I.

C. Y. Su, W. E. Spicer, and I. Lindau, “Photoelectron spectroscopic determination of the structure of (Cs, O) activated GaAs (110) surface,” J. Appl. Phys. 54, 1413–1422 (1983).
[CrossRef]

C. Y. Su, I. Lindau, and W. E. Spicer, “Photoemission studies of the oxidation of Cs identification of the multiple structures of oxygen species,” Chem. Phys. Lett. 87, 523–527 (1982).
[CrossRef]

Liu, L.

B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “The automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218(2003).
[CrossRef]

Liu, Y. Z.

Y. Z. Liu, C. D. Hollish, and W. W. Stein, “LPE GaAs/(Ga, Al)As/GaAs transmission photocathodes and a simplified formula for transmission quantum yield,” J. Appl. Phys. 44, 5619–5621 (1973).
[CrossRef]

Y. Z. Liu, J. L. Moll, and W. E. Spicer, “Quantum yield of GaAs semitransparent photocathodes,” Appl. Phys. Lett. 17, 60–62(1970).
[CrossRef]

Liu, Z.

Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs-NF3 activated GaAs (100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92, 241107 (2008).
[CrossRef]

Luh, D.-A.

T. Maruyama, A. Brachmann, J. E. Clendenin, T. Desikan, E. L. Garwin, R. E. Kirby, D.-A. Luh, J. Turner, and R. Prepost, “A very high charge, high polarization gradient-doped strained GaAs photocathode,” Nucl. Instrum. Methods Phys. Res. A 492, 199–211 (2002).
[CrossRef]

Mano, A.

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Maruyama, T.

T. Maruyama, A. Brachmann, J. E. Clendenin, T. Desikan, E. L. Garwin, R. E. Kirby, D.-A. Luh, J. Turner, and R. Prepost, “A very high charge, high polarization gradient-doped strained GaAs photocathode,” Nucl. Instrum. Methods Phys. Res. A 492, 199–211 (2002).
[CrossRef]

Moll, J. L.

Y. Z. Liu, J. L. Moll, and W. E. Spicer, “Quantum yield of GaAs semitransparent photocathodes,” Appl. Phys. Lett. 17, 60–62(1970).
[CrossRef]

Moré, S.

S. Moré, S. Tanaka, S. Tanaka, Y. Fujii, and M. Kamada, “Interaction of Cs and O with GaAs(100) at the overlayer—substrate interface during negative electron affinity type activations,” Surf. Sci. 527, 41–50 (2003).
[CrossRef]

Morino, T.

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Nakanishi, T.

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Niu, J.

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Okumi, S.

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Peterson, S.

Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs-NF3 activated GaAs (100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92, 241107 (2008).
[CrossRef]

Pianetta, P.

Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs-NF3 activated GaAs (100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92, 241107 (2008).
[CrossRef]

Prepost, R.

T. Maruyama, A. Brachmann, J. E. Clendenin, T. Desikan, E. L. Garwin, R. E. Kirby, D.-A. Luh, J. Turner, and R. Prepost, “A very high charge, high polarization gradient-doped strained GaAs photocathode,” Nucl. Instrum. Methods Phys. Res. A 492, 199–211 (2002).
[CrossRef]

Proix, F.

F. Proix, A. Akremi, and Z. T. Zhong, “Effects of vacuum annealing on the electronic properties of cleaved GaAs,” J. Phys. C 16, 5449–5463 (1983).
[CrossRef]

Qian, Y. S.

J. J. Zou, L. Feng, G. Y. Lin, Y. T. Rao, Z. Yang, Y. S. Qian, and B. K. Chang, “On-line measurement system of GaAs photocathodes and its application,” Proc. SPIE 6782, 67823D (2007).
[CrossRef]

B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “The automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218(2003).
[CrossRef]

Rao, Y. T.

J. J. Zou, L. Feng, G. Y. Lin, Y. T. Rao, Z. Yang, Y. S. Qian, and B. K. Chang, “On-line measurement system of GaAs photocathodes and its application,” Proc. SPIE 6782, 67823D (2007).
[CrossRef]

Sakai, R.

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Shi, F.

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Sinor, T. W.

J. P. Estrera, E. J. Bender, A. Giordana, J. W. Glesener, M. J. Iosue, P. P. Lin, and T. W. Sinor, “Long lifetime generation IV image intensifiers with unfilmed microchannel plate,” Proc. SPIE 4128, 46–53 (2000).
[CrossRef]

Spicer, W. E.

W. E. Spicer and A. Herrera-Gómez, “Modern theory and application of photocathodes,” Proc. SPIE 2022, 18–33 (1993).
[CrossRef]

C. Y. Su, W. E. Spicer, and I. Lindau, “Photoelectron spectroscopic determination of the structure of (Cs, O) activated GaAs (110) surface,” J. Appl. Phys. 54, 1413–1422 (1983).
[CrossRef]

C. Y. Su, I. Lindau, and W. E. Spicer, “Photoemission studies of the oxidation of Cs identification of the multiple structures of oxygen species,” Chem. Phys. Lett. 87, 523–527 (1982).
[CrossRef]

Y. Z. Liu, J. L. Moll, and W. E. Spicer, “Quantum yield of GaAs semitransparent photocathodes,” Appl. Phys. Lett. 17, 60–62(1970).
[CrossRef]

W. E. Spicer, “Photoemissive, photoconductive, and absorption studies of alkali-antimony compounds,” Phys. Rev. 112, 114–122 (1958).
[CrossRef]

Stein, W. W.

Y. Z. Liu, C. D. Hollish, and W. W. Stein, “LPE GaAs/(Ga, Al)As/GaAs transmission photocathodes and a simplified formula for transmission quantum yield,” J. Appl. Phys. 44, 5619–5621 (1973).
[CrossRef]

Su, C. Y.

C. Y. Su, W. E. Spicer, and I. Lindau, “Photoelectron spectroscopic determination of the structure of (Cs, O) activated GaAs (110) surface,” J. Appl. Phys. 54, 1413–1422 (1983).
[CrossRef]

C. Y. Su, I. Lindau, and W. E. Spicer, “Photoemission studies of the oxidation of Cs identification of the multiple structures of oxygen species,” Chem. Phys. Lett. 87, 523–527 (1982).
[CrossRef]

Sun, Y.

Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs-NF3 activated GaAs (100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92, 241107 (2008).
[CrossRef]

Takeda, Y.

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Tamagaki, K.

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Tanaka, S.

S. Moré, S. Tanaka, S. Tanaka, Y. Fujii, and M. Kamada, “Interaction of Cs and O with GaAs(100) at the overlayer—substrate interface during negative electron affinity type activations,” Surf. Sci. 527, 41–50 (2003).
[CrossRef]

S. Moré, S. Tanaka, S. Tanaka, Y. Fujii, and M. Kamada, “Interaction of Cs and O with GaAs(100) at the overlayer—substrate interface during negative electron affinity type activations,” Surf. Sci. 527, 41–50 (2003).
[CrossRef]

Turnbull, A. A.

A. A. Turnbull and G. B. Evans, “Photoemission from GaAs-Cs-O,” J. Phys. D: Appl. Phys. 1, 155–160 (1968).
[CrossRef]

Turner, J.

T. Maruyama, A. Brachmann, J. E. Clendenin, T. Desikan, E. L. Garwin, R. E. Kirby, D.-A. Luh, J. Turner, and R. Prepost, “A very high charge, high polarization gradient-doped strained GaAs photocathode,” Nucl. Instrum. Methods Phys. Res. A 492, 199–211 (2002).
[CrossRef]

Uebbing, J. J.

G. A. Antypas, L. W. James, and J. J. Uebbing, “Operation of III–V semiconductor photocathodes in the semitransparent mode,” J. Appl. Phys. 41, 2888–2894 (1970).
[CrossRef]

Ujihara, T.

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Utsu, A.

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Yamamoto, M.

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Yamamoto, N.

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Yang, Z.

J. J. Zou, Y. J. Zhang, Z. Yang, and B. K. Chang, “Degradation model of GaAs vacuum electron sources,” Acta Phys. Sin. 60, 017902 (2011).

J. J. Zou, B. K. Chang, Y. J. Zhang, and Z. Yang, “Variation of spectral response from Cs-covered GaAs and band features contained within the spectral response,” Appl. Opt. 49, 2561–2565 (2010).
[CrossRef]

J. J. Zou, L. Feng, G. Y. Lin, Y. T. Rao, Z. Yang, Y. S. Qian, and B. K. Chang, “On-line measurement system of GaAs photocathodes and its application,” Proc. SPIE 6782, 67823D (2007).
[CrossRef]

Zhang, Y. J.

J. J. Zou, Y. J. Zhang, Z. Yang, and B. K. Chang, “Degradation model of GaAs vacuum electron sources,” Acta Phys. Sin. 60, 017902 (2011).

J. J. Zou, B. K. Chang, Y. J. Zhang, and Z. Yang, “Variation of spectral response from Cs-covered GaAs and band features contained within the spectral response,” Appl. Opt. 49, 2561–2565 (2010).
[CrossRef]

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Zhao, J.

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Zhong, Z. T.

F. Proix, A. Akremi, and Z. T. Zhong, “Effects of vacuum annealing on the electronic properties of cleaved GaAs,” J. Phys. C 16, 5449–5463 (1983).
[CrossRef]

Zong, Z. Y.

B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “The automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218(2003).
[CrossRef]

Zou, J. J.

J. J. Zou, Y. J. Zhang, Z. Yang, and B. K. Chang, “Degradation model of GaAs vacuum electron sources,” Acta Phys. Sin. 60, 017902 (2011).

J. J. Zou, B. K. Chang, Y. J. Zhang, and Z. Yang, “Variation of spectral response from Cs-covered GaAs and band features contained within the spectral response,” Appl. Opt. 49, 2561–2565 (2010).
[CrossRef]

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

J. J. Zou, L. Feng, G. Y. Lin, Y. T. Rao, Z. Yang, Y. S. Qian, and B. K. Chang, “On-line measurement system of GaAs photocathodes and its application,” Proc. SPIE 6782, 67823D (2007).
[CrossRef]

Acta Phys. Sin. (1)

J. J. Zou, Y. J. Zhang, Z. Yang, and B. K. Chang, “Degradation model of GaAs vacuum electron sources,” Acta Phys. Sin. 60, 017902 (2011).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Y. Z. Liu, J. L. Moll, and W. E. Spicer, “Quantum yield of GaAs semitransparent photocathodes,” Appl. Phys. Lett. 17, 60–62(1970).
[CrossRef]

Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs-NF3 activated GaAs (100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92, 241107 (2008).
[CrossRef]

Chem. Phys. Lett. (1)

C. Y. Su, I. Lindau, and W. E. Spicer, “Photoemission studies of the oxidation of Cs identification of the multiple structures of oxygen species,” Chem. Phys. Lett. 87, 523–527 (1982).
[CrossRef]

J. Appl. Phys. (5)

Y. Z. Liu, C. D. Hollish, and W. W. Stein, “LPE GaAs/(Ga, Al)As/GaAs transmission photocathodes and a simplified formula for transmission quantum yield,” J. Appl. Phys. 44, 5619–5621 (1973).
[CrossRef]

C. Y. Su, W. E. Spicer, and I. Lindau, “Photoelectron spectroscopic determination of the structure of (Cs, O) activated GaAs (110) surface,” J. Appl. Phys. 54, 1413–1422 (1983).
[CrossRef]

G. A. Antypas, L. W. James, and J. J. Uebbing, “Operation of III–V semiconductor photocathodes in the semitransparent mode,” J. Appl. Phys. 41, 2888–2894 (1970).
[CrossRef]

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

J. Phys. C (1)

F. Proix, A. Akremi, and Z. T. Zhong, “Effects of vacuum annealing on the electronic properties of cleaved GaAs,” J. Phys. C 16, 5449–5463 (1983).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

A. A. Turnbull and G. B. Evans, “Photoemission from GaAs-Cs-O,” J. Phys. D: Appl. Phys. 1, 155–160 (1968).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

T. Maruyama, A. Brachmann, J. E. Clendenin, T. Desikan, E. L. Garwin, R. E. Kirby, D.-A. Luh, J. Turner, and R. Prepost, “A very high charge, high polarization gradient-doped strained GaAs photocathode,” Nucl. Instrum. Methods Phys. Res. A 492, 199–211 (2002).
[CrossRef]

Phys. Rev. (1)

W. E. Spicer, “Photoemissive, photoconductive, and absorption studies of alkali-antimony compounds,” Phys. Rev. 112, 114–122 (1958).
[CrossRef]

Phys. Rev. B (1)

H.-J. Drouhin, C. Hermann, and G. Lampel, “Photoemission from activated gallium arsenide. I. very-high-resolution energy distribution curves,” Phys. Rev. B 31, 3859–3871 (1985).
[CrossRef]

Proc. SPIE (4)

J. P. Estrera, E. J. Bender, A. Giordana, J. W. Glesener, M. J. Iosue, P. P. Lin, and T. W. Sinor, “Long lifetime generation IV image intensifiers with unfilmed microchannel plate,” Proc. SPIE 4128, 46–53 (2000).
[CrossRef]

W. E. Spicer and A. Herrera-Gómez, “Modern theory and application of photocathodes,” Proc. SPIE 2022, 18–33 (1993).
[CrossRef]

J. J. Zou, L. Feng, G. Y. Lin, Y. T. Rao, Z. Yang, Y. S. Qian, and B. K. Chang, “On-line measurement system of GaAs photocathodes and its application,” Proc. SPIE 6782, 67823D (2007).
[CrossRef]

B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “The automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218(2003).
[CrossRef]

Surf. Sci. (1)

S. Moré, S. Tanaka, S. Tanaka, Y. Fujii, and M. Kamada, “Interaction of Cs and O with GaAs(100) at the overlayer—substrate interface during negative electron affinity type activations,” Surf. Sci. 527, 41–50 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Band structure and surface potential barrier of r-mode GaAs photocathodes: (a) GaAs-GaAs photocathode, (b) AlGaAs-GaAs photocathode. E c is the conduction band minimum, E v is the valence band peak level, E g is the width of the band gap, E F is the Fermi level, E vac is the vacuum level, I and II are the surface potential barriers, T e is the active layer thickness, and h ν is the incident photon energy.

Fig. 2
Fig. 2

Epitaxial structure of r-mode GaAs cathodes.

Fig. 3
Fig. 3

Spectral response for the r-mode GaAs photocathodes: (a) GaAs-GaAs photocathodes, (b) AlGaAs-GaAs photocathodes. The experimental error in these measurements is less than 2% when photon energy is greater than 1.42 eV .

Fig. 4
Fig. 4

Comparison of spectral response between GaAs-GaAs and AlGaAs-GaAs photocathodes with an identical active layer thickness: (a)  1.6 μm active layer, (b)  2.0 μm active layer.

Fig. 5
Fig. 5

Theoretical integral sensitivities of GaAs-GaAs and AlGaAs-GaAs cathodes as a function of T e ; let the parameters for GaAs-GaAs cathodes be P = 0.5 , R = 0.3 , L 1 = 3 μm , L 2 = 1 μm , and S v = 10 4 cm / s , and the parameters for AlGaAs-GaAs cathodes P = 0.5 , R = 0.3 , L 1 = 3 μm , and S v = 10 4 cm / s .

Fig. 6
Fig. 6

Theoretical spectral response of GaAs-GaAs and AlGaAs-GaAs cathodes; let the parameters for GaAs-GaAs cathodes be P = 0.5 , R = 0.3 , L 1 = 3 μm , L 2 = 1 μm , S v = 10 4 cm / s , and T e = 2 μm , and the parameters for AlGaAs-GaAs cathodes P = 0.5 , R = 0.3 , L 1 = 3 μm , S v = 10 4 cm / s , and T e = 2 μm .

Tables (1)

Tables Icon

Table 1 Fitted performance parameters for GaAs-GaAs and AlGaAs-GaAs photocathodes with different active layer thicknesses a

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

D n d 2 n 1 ( x ) d x 2 n 1 ( x ) τ 1 + α · I 0 · ( 1 R ) · exp ( α x ) = 0 ( T e x 0 )
D n d 2 n 2 ( x ) d x 2 n 2 ( x ) τ 2 + α · I 0 · ( 1 R ) · exp ( α x ) = 0 ( x T e ) .
D n d n 1 ( x ) d x | x = T e + D n d n 2 ( x ) d x | x = T e = S v n 1 ( T e ) ,
Y R 1 ( h ν ) = J I 0 = P · ( 1 R ) × [ 1 1 + 1 α L 1 + α L 1 1 α 2 L 1 2 · exp ( α T e ) · ( α D n D n L 2 S v ) + exp ( T e L 1 ) · ( D n L 1 + D n L 2 + S v ) D n L 1 · cosh ( T e L 1 ) + ( D n L 2 + S v ) · sinh ( T e L 1 ) + α L 2 2 L 1 ( 1 α 2 L 2 2 ) · exp ( α T e ) · ( D n L 2 α D n ) D n L 1 · cosh ( T e L 1 ) + ( D n L 2 + S v ) · sinh ( T e L 1 ) ] ,
n 1 ( 0 ) = 0 , D n d n 1 ( x ) d x | x = T e = S v · n 1 ( T e ) .
Y R 2 ( h v ) = P · ( 1 R ) · α · L 1 α 2 L 1 2 1 × [ ( S v α D n ) · exp ( α T e ) D n L 1 · cosh ( T e L 1 ) + S v · sinh ( T e L 1 ) S v · cosh ( T e L 1 ) + D n L 1 · sinh ( T e L 1 ) D n L 1 · cosh ( T e L 1 ) + S v · sinh ( T e L 1 ) + α · L 1 ] .
Y R ( h ν ) = P · ( 1 R ) · 1 1 + 1 α L 1 .

Metrics