Abstract

For smoothing and shaping the on-target laser patterns flexibly in high-power laser drivers, a scheme has been developed that includes a zoom lens array and two-dimensional smoothing by spectral dispersion (SSD). The size of the target pattern can be controlled handily by adjusting the focal length of the zoom lens array, while the profile of the pattern can be shaped by fine tuning the distance between the target and the focal plane of the principal focusing lens. High-frequency stripes inside the pattern caused by beamlet interference are wiped off by spectral dispersion. Detailed simulations indicate that SSD works somewhat differently for spots of different sizes. For small spots, SSD mainly smooths the intensity modulation of low-to-middle spatial frequency, while for large spots, SSD sweeps the fine speckle structure to reduce nonuniformity of middle-to-high frequency. Spatial spectra of the target patterns are given and their uniformity is evaluated.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Skupsky and K. Lee, “Uniformity of energy deposition for laser driven fusion,” J. Appl. Phys. 54, 3662–3672 (1983).
    [CrossRef]
  2. Y. Lin, T. J. Kessler, and G. N. Lawrence, “Distributed phase plates for super-Gaussian focal-plane irradiance profiles,” Opt. Lett. 20, 764–766 (1995).
    [CrossRef] [PubMed]
  3. Y. Lin, T. J. Kessler, and G. N. Lawrence, “Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance,” Opt. Lett. 21, 1703–1705 (1996).
    [CrossRef] [PubMed]
  4. Y. Arieli, “A continuous phase plate for non-uniform illumination beam shaping using the inverse phase contrast method,” Opt. Commun. 180, 239–245 (2000).
    [CrossRef]
  5. J. Néauport, X. Ribeyre, J. Daurios, D. Valla, M. Lavergne, V. Beau, and L. Videau, “Design and optical characterization of a large continuous phase plate for laser integration line and laser megajoule facilities,” Appl. Opt. 42, 2377–2382 (2003).
    [CrossRef] [PubMed]
  6. X. Deng, X. Liang, Z. Chen, W. Yu, and R. Ma, “Uniform illumination of large targets using a lens array,” Appl. Opt. 25, 377–381 (1986).
    [CrossRef] [PubMed]
  7. N. Nishi, T. Jitsuno, M. Nakatsuka, and S. Nakai, “Improvement of laser-beam irradiation-intensity distribution using multi lens array and edge-shaped plates,” Opt. Rev. 5, 285–290 (1998).
    [CrossRef]
  8. N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, “Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of ICF target,” Opt. Rev. 7, 216–220 (2000).
    [CrossRef]
  9. S. Fu, Y. Sun, X. Huang, J. Wu, G. Zhou, and Y. Gu, “Optimizing design for uniform irradiation system on target surface of Shenguang-II facility,” Chin. J. Laser. 30, 129–133 (2003).
  10. X. Huang, S. Fu, J. Wu, Y. Gu, M. Ma, H. She, H. Zhou, J. Ye, J. He, and G. Wan, “Experimental researches on planarity of shock wave directly driven by 2ω laser beam of Shenguang-II facility,” High Power Laser Part. Beams 18, 811–814 (2006).
  11. S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
    [CrossRef]
  12. S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6, 2157–2163 (1999).
    [CrossRef]
  13. S. Zhou, J. Zhu, X. Li, Z. Lin, and Y. Dai, “Experimental study of smoothing by spectral dispersion,” Chin. J. Laser. 33, 321–325 (2006).
  14. S. Zhou, Z. Lin, and X. Jiang, “Beam smoothing by lens array with spectral dispersion,” Opt. Commun. 272, 186–191 (2007).
    [CrossRef]
  15. X. Jiang, S. Zhou, and Z. Lin, “Improved uniformity of target illumination by combining a lens array and the technique of spectral dispersion,” J. Appl. Phys. 101, 023109–5 (2007).
    [CrossRef]
  16. J. Li, H. Zhang, S. Zhou, W. Feng, J. Zhu, and Z. Lin, “Effect of smoothing by spectral dispersion considering the hole used in spacial filter,” Acta Opt. Sin. 30, 827–832 (2010).
    [CrossRef]
  17. J. Zheng, Q. Yu, Y. Lu, and S. Guan, “Improved lens arrays optical system with controllable focus width for uniform irradiation,” Chin. J. Laser. 34, 331–336 (2007).
  18. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  19. J. W. Goodman, Introduction to Fourier Optics, 1st ed. (McGraw-Hill Book Company, 1968).
  20. S. P. Regan, J. A. Marozas, R. S. Craxton, J. H. Kelly, W. R. Donaldson, P. A. Jaanimagi, D. Jacobs-Perkins, R. L. Keck, T. J. Kessler, D. D. Meyerhofer, T. C. Sangster, W. Seka, V. A. Smalyuk, S. Skupsky, and J. D. Zuegel, “Performance of 1 THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams,” J. Opt. Soc. Am. B 22, 998–1002 (2005).
    [CrossRef]

2010

J. Li, H. Zhang, S. Zhou, W. Feng, J. Zhu, and Z. Lin, “Effect of smoothing by spectral dispersion considering the hole used in spacial filter,” Acta Opt. Sin. 30, 827–832 (2010).
[CrossRef]

2007

J. Zheng, Q. Yu, Y. Lu, and S. Guan, “Improved lens arrays optical system with controllable focus width for uniform irradiation,” Chin. J. Laser. 34, 331–336 (2007).

S. Zhou, Z. Lin, and X. Jiang, “Beam smoothing by lens array with spectral dispersion,” Opt. Commun. 272, 186–191 (2007).
[CrossRef]

X. Jiang, S. Zhou, and Z. Lin, “Improved uniformity of target illumination by combining a lens array and the technique of spectral dispersion,” J. Appl. Phys. 101, 023109–5 (2007).
[CrossRef]

2006

X. Huang, S. Fu, J. Wu, Y. Gu, M. Ma, H. She, H. Zhou, J. Ye, J. He, and G. Wan, “Experimental researches on planarity of shock wave directly driven by 2ω laser beam of Shenguang-II facility,” High Power Laser Part. Beams 18, 811–814 (2006).

S. Zhou, J. Zhu, X. Li, Z. Lin, and Y. Dai, “Experimental study of smoothing by spectral dispersion,” Chin. J. Laser. 33, 321–325 (2006).

2005

2003

J. Néauport, X. Ribeyre, J. Daurios, D. Valla, M. Lavergne, V. Beau, and L. Videau, “Design and optical characterization of a large continuous phase plate for laser integration line and laser megajoule facilities,” Appl. Opt. 42, 2377–2382 (2003).
[CrossRef] [PubMed]

S. Fu, Y. Sun, X. Huang, J. Wu, G. Zhou, and Y. Gu, “Optimizing design for uniform irradiation system on target surface of Shenguang-II facility,” Chin. J. Laser. 30, 129–133 (2003).

2000

N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, “Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of ICF target,” Opt. Rev. 7, 216–220 (2000).
[CrossRef]

Y. Arieli, “A continuous phase plate for non-uniform illumination beam shaping using the inverse phase contrast method,” Opt. Commun. 180, 239–245 (2000).
[CrossRef]

1999

S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6, 2157–2163 (1999).
[CrossRef]

1998

N. Nishi, T. Jitsuno, M. Nakatsuka, and S. Nakai, “Improvement of laser-beam irradiation-intensity distribution using multi lens array and edge-shaped plates,” Opt. Rev. 5, 285–290 (1998).
[CrossRef]

1996

1995

1989

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

1986

1983

S. Skupsky and K. Lee, “Uniformity of energy deposition for laser driven fusion,” J. Appl. Phys. 54, 3662–3672 (1983).
[CrossRef]

Arieli, Y.

Y. Arieli, “A continuous phase plate for non-uniform illumination beam shaping using the inverse phase contrast method,” Opt. Commun. 180, 239–245 (2000).
[CrossRef]

Beau, V.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Chen, Z.

Craxton, R. S.

S. P. Regan, J. A. Marozas, R. S. Craxton, J. H. Kelly, W. R. Donaldson, P. A. Jaanimagi, D. Jacobs-Perkins, R. L. Keck, T. J. Kessler, D. D. Meyerhofer, T. C. Sangster, W. Seka, V. A. Smalyuk, S. Skupsky, and J. D. Zuegel, “Performance of 1 THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams,” J. Opt. Soc. Am. B 22, 998–1002 (2005).
[CrossRef]

S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6, 2157–2163 (1999).
[CrossRef]

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Dai, Y.

S. Zhou, J. Zhu, X. Li, Z. Lin, and Y. Dai, “Experimental study of smoothing by spectral dispersion,” Chin. J. Laser. 33, 321–325 (2006).

Daurios, J.

Deng, X.

Donaldson, W. R.

Feng, W.

J. Li, H. Zhang, S. Zhou, W. Feng, J. Zhu, and Z. Lin, “Effect of smoothing by spectral dispersion considering the hole used in spacial filter,” Acta Opt. Sin. 30, 827–832 (2010).
[CrossRef]

Fu, S.

X. Huang, S. Fu, J. Wu, Y. Gu, M. Ma, H. She, H. Zhou, J. Ye, J. He, and G. Wan, “Experimental researches on planarity of shock wave directly driven by 2ω laser beam of Shenguang-II facility,” High Power Laser Part. Beams 18, 811–814 (2006).

S. Fu, Y. Sun, X. Huang, J. Wu, G. Zhou, and Y. Gu, “Optimizing design for uniform irradiation system on target surface of Shenguang-II facility,” Chin. J. Laser. 30, 129–133 (2003).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 1st ed. (McGraw-Hill Book Company, 1968).

Gu, Y.

X. Huang, S. Fu, J. Wu, Y. Gu, M. Ma, H. She, H. Zhou, J. Ye, J. He, and G. Wan, “Experimental researches on planarity of shock wave directly driven by 2ω laser beam of Shenguang-II facility,” High Power Laser Part. Beams 18, 811–814 (2006).

S. Fu, Y. Sun, X. Huang, J. Wu, G. Zhou, and Y. Gu, “Optimizing design for uniform irradiation system on target surface of Shenguang-II facility,” Chin. J. Laser. 30, 129–133 (2003).

Guan, S.

J. Zheng, Q. Yu, Y. Lu, and S. Guan, “Improved lens arrays optical system with controllable focus width for uniform irradiation,” Chin. J. Laser. 34, 331–336 (2007).

He, J.

X. Huang, S. Fu, J. Wu, Y. Gu, M. Ma, H. She, H. Zhou, J. Ye, J. He, and G. Wan, “Experimental researches on planarity of shock wave directly driven by 2ω laser beam of Shenguang-II facility,” High Power Laser Part. Beams 18, 811–814 (2006).

Huang, X.

X. Huang, S. Fu, J. Wu, Y. Gu, M. Ma, H. She, H. Zhou, J. Ye, J. He, and G. Wan, “Experimental researches on planarity of shock wave directly driven by 2ω laser beam of Shenguang-II facility,” High Power Laser Part. Beams 18, 811–814 (2006).

S. Fu, Y. Sun, X. Huang, J. Wu, G. Zhou, and Y. Gu, “Optimizing design for uniform irradiation system on target surface of Shenguang-II facility,” Chin. J. Laser. 30, 129–133 (2003).

Jaanimagi, P. A.

Jacobs-Perkins, D.

Jiang, X.

X. Jiang, S. Zhou, and Z. Lin, “Improved uniformity of target illumination by combining a lens array and the technique of spectral dispersion,” J. Appl. Phys. 101, 023109–5 (2007).
[CrossRef]

S. Zhou, Z. Lin, and X. Jiang, “Beam smoothing by lens array with spectral dispersion,” Opt. Commun. 272, 186–191 (2007).
[CrossRef]

Jitsuno, T.

N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, “Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of ICF target,” Opt. Rev. 7, 216–220 (2000).
[CrossRef]

N. Nishi, T. Jitsuno, M. Nakatsuka, and S. Nakai, “Improvement of laser-beam irradiation-intensity distribution using multi lens array and edge-shaped plates,” Opt. Rev. 5, 285–290 (1998).
[CrossRef]

Keck, R. L.

Kelly, J. H.

Kessler, T.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Kessler, T. J.

Lavergne, M.

Lawrence, G. N.

Lee, K.

S. Skupsky and K. Lee, “Uniformity of energy deposition for laser driven fusion,” J. Appl. Phys. 54, 3662–3672 (1983).
[CrossRef]

Letzring, S.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Li, J.

J. Li, H. Zhang, S. Zhou, W. Feng, J. Zhu, and Z. Lin, “Effect of smoothing by spectral dispersion considering the hole used in spacial filter,” Acta Opt. Sin. 30, 827–832 (2010).
[CrossRef]

Li, X.

S. Zhou, J. Zhu, X. Li, Z. Lin, and Y. Dai, “Experimental study of smoothing by spectral dispersion,” Chin. J. Laser. 33, 321–325 (2006).

Liang, X.

Lin, Y.

Lin, Z.

J. Li, H. Zhang, S. Zhou, W. Feng, J. Zhu, and Z. Lin, “Effect of smoothing by spectral dispersion considering the hole used in spacial filter,” Acta Opt. Sin. 30, 827–832 (2010).
[CrossRef]

S. Zhou, Z. Lin, and X. Jiang, “Beam smoothing by lens array with spectral dispersion,” Opt. Commun. 272, 186–191 (2007).
[CrossRef]

X. Jiang, S. Zhou, and Z. Lin, “Improved uniformity of target illumination by combining a lens array and the technique of spectral dispersion,” J. Appl. Phys. 101, 023109–5 (2007).
[CrossRef]

S. Zhou, J. Zhu, X. Li, Z. Lin, and Y. Dai, “Experimental study of smoothing by spectral dispersion,” Chin. J. Laser. 33, 321–325 (2006).

Lu, Y.

J. Zheng, Q. Yu, Y. Lu, and S. Guan, “Improved lens arrays optical system with controllable focus width for uniform irradiation,” Chin. J. Laser. 34, 331–336 (2007).

Ma, M.

X. Huang, S. Fu, J. Wu, Y. Gu, M. Ma, H. She, H. Zhou, J. Ye, J. He, and G. Wan, “Experimental researches on planarity of shock wave directly driven by 2ω laser beam of Shenguang-II facility,” High Power Laser Part. Beams 18, 811–814 (2006).

Ma, R.

Marozas, J. A.

Matsuoka, S.

N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, “Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of ICF target,” Opt. Rev. 7, 216–220 (2000).
[CrossRef]

Meyerhofer, D. D.

Miyanaga, N.

N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, “Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of ICF target,” Opt. Rev. 7, 216–220 (2000).
[CrossRef]

Nakai, S.

N. Nishi, T. Jitsuno, M. Nakatsuka, and S. Nakai, “Improvement of laser-beam irradiation-intensity distribution using multi lens array and edge-shaped plates,” Opt. Rev. 5, 285–290 (1998).
[CrossRef]

Nakatsuka, M.

N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, “Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of ICF target,” Opt. Rev. 7, 216–220 (2000).
[CrossRef]

N. Nishi, T. Jitsuno, M. Nakatsuka, and S. Nakai, “Improvement of laser-beam irradiation-intensity distribution using multi lens array and edge-shaped plates,” Opt. Rev. 5, 285–290 (1998).
[CrossRef]

Néauport, J.

Nishi, N.

N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, “Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of ICF target,” Opt. Rev. 7, 216–220 (2000).
[CrossRef]

N. Nishi, T. Jitsuno, M. Nakatsuka, and S. Nakai, “Improvement of laser-beam irradiation-intensity distribution using multi lens array and edge-shaped plates,” Opt. Rev. 5, 285–290 (1998).
[CrossRef]

Regan, S. P.

Ribeyre, X.

Sangster, T. C.

Seka, W.

She, H.

X. Huang, S. Fu, J. Wu, Y. Gu, M. Ma, H. She, H. Zhou, J. Ye, J. He, and G. Wan, “Experimental researches on planarity of shock wave directly driven by 2ω laser beam of Shenguang-II facility,” High Power Laser Part. Beams 18, 811–814 (2006).

Short, R. W.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Skupsky, S.

S. P. Regan, J. A. Marozas, R. S. Craxton, J. H. Kelly, W. R. Donaldson, P. A. Jaanimagi, D. Jacobs-Perkins, R. L. Keck, T. J. Kessler, D. D. Meyerhofer, T. C. Sangster, W. Seka, V. A. Smalyuk, S. Skupsky, and J. D. Zuegel, “Performance of 1 THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams,” J. Opt. Soc. Am. B 22, 998–1002 (2005).
[CrossRef]

S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6, 2157–2163 (1999).
[CrossRef]

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

S. Skupsky and K. Lee, “Uniformity of energy deposition for laser driven fusion,” J. Appl. Phys. 54, 3662–3672 (1983).
[CrossRef]

Smalyuk, V. A.

Soures, J. M.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Sun, Y.

S. Fu, Y. Sun, X. Huang, J. Wu, G. Zhou, and Y. Gu, “Optimizing design for uniform irradiation system on target surface of Shenguang-II facility,” Chin. J. Laser. 30, 129–133 (2003).

Tsubakimoto, K.

N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, “Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of ICF target,” Opt. Rev. 7, 216–220 (2000).
[CrossRef]

Valla, D.

Videau, L.

Wan, G.

X. Huang, S. Fu, J. Wu, Y. Gu, M. Ma, H. She, H. Zhou, J. Ye, J. He, and G. Wan, “Experimental researches on planarity of shock wave directly driven by 2ω laser beam of Shenguang-II facility,” High Power Laser Part. Beams 18, 811–814 (2006).

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Wu, J.

X. Huang, S. Fu, J. Wu, Y. Gu, M. Ma, H. She, H. Zhou, J. Ye, J. He, and G. Wan, “Experimental researches on planarity of shock wave directly driven by 2ω laser beam of Shenguang-II facility,” High Power Laser Part. Beams 18, 811–814 (2006).

S. Fu, Y. Sun, X. Huang, J. Wu, G. Zhou, and Y. Gu, “Optimizing design for uniform irradiation system on target surface of Shenguang-II facility,” Chin. J. Laser. 30, 129–133 (2003).

Ye, J.

X. Huang, S. Fu, J. Wu, Y. Gu, M. Ma, H. She, H. Zhou, J. Ye, J. He, and G. Wan, “Experimental researches on planarity of shock wave directly driven by 2ω laser beam of Shenguang-II facility,” High Power Laser Part. Beams 18, 811–814 (2006).

Yu, Q.

J. Zheng, Q. Yu, Y. Lu, and S. Guan, “Improved lens arrays optical system with controllable focus width for uniform irradiation,” Chin. J. Laser. 34, 331–336 (2007).

Yu, W.

Zhang, H.

J. Li, H. Zhang, S. Zhou, W. Feng, J. Zhu, and Z. Lin, “Effect of smoothing by spectral dispersion considering the hole used in spacial filter,” Acta Opt. Sin. 30, 827–832 (2010).
[CrossRef]

Zheng, J.

J. Zheng, Q. Yu, Y. Lu, and S. Guan, “Improved lens arrays optical system with controllable focus width for uniform irradiation,” Chin. J. Laser. 34, 331–336 (2007).

Zhou, G.

S. Fu, Y. Sun, X. Huang, J. Wu, G. Zhou, and Y. Gu, “Optimizing design for uniform irradiation system on target surface of Shenguang-II facility,” Chin. J. Laser. 30, 129–133 (2003).

Zhou, H.

X. Huang, S. Fu, J. Wu, Y. Gu, M. Ma, H. She, H. Zhou, J. Ye, J. He, and G. Wan, “Experimental researches on planarity of shock wave directly driven by 2ω laser beam of Shenguang-II facility,” High Power Laser Part. Beams 18, 811–814 (2006).

Zhou, S.

J. Li, H. Zhang, S. Zhou, W. Feng, J. Zhu, and Z. Lin, “Effect of smoothing by spectral dispersion considering the hole used in spacial filter,” Acta Opt. Sin. 30, 827–832 (2010).
[CrossRef]

X. Jiang, S. Zhou, and Z. Lin, “Improved uniformity of target illumination by combining a lens array and the technique of spectral dispersion,” J. Appl. Phys. 101, 023109–5 (2007).
[CrossRef]

S. Zhou, Z. Lin, and X. Jiang, “Beam smoothing by lens array with spectral dispersion,” Opt. Commun. 272, 186–191 (2007).
[CrossRef]

S. Zhou, J. Zhu, X. Li, Z. Lin, and Y. Dai, “Experimental study of smoothing by spectral dispersion,” Chin. J. Laser. 33, 321–325 (2006).

Zhu, J.

J. Li, H. Zhang, S. Zhou, W. Feng, J. Zhu, and Z. Lin, “Effect of smoothing by spectral dispersion considering the hole used in spacial filter,” Acta Opt. Sin. 30, 827–832 (2010).
[CrossRef]

S. Zhou, J. Zhu, X. Li, Z. Lin, and Y. Dai, “Experimental study of smoothing by spectral dispersion,” Chin. J. Laser. 33, 321–325 (2006).

Zuegel, J. D.

Acta Opt. Sin.

J. Li, H. Zhang, S. Zhou, W. Feng, J. Zhu, and Z. Lin, “Effect of smoothing by spectral dispersion considering the hole used in spacial filter,” Acta Opt. Sin. 30, 827–832 (2010).
[CrossRef]

Appl. Opt.

Chin. J. Laser.

J. Zheng, Q. Yu, Y. Lu, and S. Guan, “Improved lens arrays optical system with controllable focus width for uniform irradiation,” Chin. J. Laser. 34, 331–336 (2007).

S. Fu, Y. Sun, X. Huang, J. Wu, G. Zhou, and Y. Gu, “Optimizing design for uniform irradiation system on target surface of Shenguang-II facility,” Chin. J. Laser. 30, 129–133 (2003).

S. Zhou, J. Zhu, X. Li, Z. Lin, and Y. Dai, “Experimental study of smoothing by spectral dispersion,” Chin. J. Laser. 33, 321–325 (2006).

High Power Laser Part. Beams

X. Huang, S. Fu, J. Wu, Y. Gu, M. Ma, H. She, H. Zhou, J. Ye, J. He, and G. Wan, “Experimental researches on planarity of shock wave directly driven by 2ω laser beam of Shenguang-II facility,” High Power Laser Part. Beams 18, 811–814 (2006).

J. Appl. Phys.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

S. Skupsky and K. Lee, “Uniformity of energy deposition for laser driven fusion,” J. Appl. Phys. 54, 3662–3672 (1983).
[CrossRef]

X. Jiang, S. Zhou, and Z. Lin, “Improved uniformity of target illumination by combining a lens array and the technique of spectral dispersion,” J. Appl. Phys. 101, 023109–5 (2007).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

Y. Arieli, “A continuous phase plate for non-uniform illumination beam shaping using the inverse phase contrast method,” Opt. Commun. 180, 239–245 (2000).
[CrossRef]

S. Zhou, Z. Lin, and X. Jiang, “Beam smoothing by lens array with spectral dispersion,” Opt. Commun. 272, 186–191 (2007).
[CrossRef]

Opt. Lett.

Opt. Rev.

N. Nishi, T. Jitsuno, M. Nakatsuka, and S. Nakai, “Improvement of laser-beam irradiation-intensity distribution using multi lens array and edge-shaped plates,” Opt. Rev. 5, 285–290 (1998).
[CrossRef]

N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, “Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of ICF target,” Opt. Rev. 7, 216–220 (2000).
[CrossRef]

Phys. Plasmas

S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6, 2157–2163 (1999).
[CrossRef]

Other

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

J. W. Goodman, Introduction to Fourier Optics, 1st ed. (McGraw-Hill Book Company, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

2D SSD and the zoom LA in the laser driver.

Fig. 2
Fig. 2

Configuration of the optical system with a zoom LA.

Fig. 3
Fig. 3

(a) 2D intensity distribution of the target pattern ( a = 600 μm ) on the focal plane when the zoom LA is irradiated by a monochromatic laser beam. (b) and (c) are respectively the distribution across the center of the pattern along the x and y direction, and the dashed curves show the profiles. (d), (e) and (f) are as (a), (b), and (c), but LA is irradiated by the laser beam passed through 2D SSD.

Fig. 4
Fig. 4

As is in Fig. 3, but the target moving distance z 0 = 600 μm .

Fig. 5
Fig. 5

Intensity distribution of the target pattern when the LA is irradiated by the laser beam passed through 2D SSD: (a)–(c) the pattern size a = 300 μm ; (d)–(f) the pattern size a = 100 μm . The target moving distance z 0 = 600 μm .

Fig. 6
Fig. 6

The transverse positions of the target patterns generated by the fundamental frequency mode (dashed curve) and the highest frequency mode (solid curve) when SSD is used; the target moving distance z 0 = 600 μm . (a) Pattern size a = 600 μm . (b) Pattern size a = 100 μm . (The magnitude of the intensity of the highest frequency mode is much smaller than that of the fundamental frequency mode, and it is amplified in the figure for clarity).

Fig. 7
Fig. 7

Spectra of the target patterns. (a) the pattern size a = 600 μm , (b) the pattern size a = 300 μm , and (c) the pattern size a = 100 μm .

Fig. 8
Fig. 8

Nonuniformity versus the target moving distance z 0 . The solid, dashed and dotted curves are for the cases the pattern size a = 600 μm , 300 μm , and 100 μm , respectively.

Fig. 9
Fig. 9

Comparison of the intensity distribution of the target pattern ( a = 600 μm ) with 2D SSD: (a)–(c) the target moving distance z 0 = 250 μm . (d)–(f) the target moving distance z 0 = 1000 μm .

Fig. 10
Fig. 10

The distorted near-field pattern of SG-II taken with CCD experimentally. (a) 2D intensity distribution. (b) Three-dimensional intensity distribution.

Fig. 11
Fig. 11

Spectra (the solid curves) of the target patterns in the presence of near-field aberration. 2D SSD is used and the target moving distance z 0 = 600 μm . (a) Pattern size a = 600 μm , (b) pattern size a = 300 μm , and (c) pattern size a = 100 μm . The dashed curves, the counterpart spectra when there is no aberration, are given for comparison.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E ( x , y , t ) = E 0 ( t ) n 1 n 2 J n 1 ( δ 1 ) J n 2 ( δ 2 ) × exp ( i n 1 α 1 x + i n 2 α 2 y ) exp [ i ( ω 0 + n 1 ω 1 + n 2 ω 2 ) t ] ,
f = f 1 f 2 f 1 + f 2 s 1 ,
a = | d f a f | = | d f a ( f 1 + f 2 s 1 ) f 1 f 2 | .
T 1 ( x , y ) = m 1 m 2 P ( x m 1 d , y m 2 d ) × exp { i k 2 f [ ( x m 1 d ) 2 + ( y m 2 d ) 2 ] } ,
P ( x , y ) = { 1 inside the lens aperture 0 otherwise .
T 2 ( x , y ) = P ( x , y ) exp [ i k 2 f a ( x 2 + y 2 ) ] .
T ( x , y ) = T 1 ( x , y ) T 2 ( x , y ) .
E ( x , y , t ) = E ( x , y , t ) T ( x , y ) .

Metrics