Abstract

Large-scale stockpiles are a common means for the storage of bulk material and their shape mea surement is a prerequisite for effective transportation and logistics management. This paper proposes a projection-aided videometric method that is based on stereo vision and makes use of projections and epipolar geometry constraints to solve the correspondence problem. A prototype measuring system was developed that can work in real time and achieve measuring accuracy of 0.71mm in terms of the flatness deviation and 0.54mm in terms of the depth error, as proven by the experimental results.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Ren, B. Denby, and R. N. Singh, “Applying knowledge-based expert systems to provide guidance for the safe storage of coal,” Min. Sci. Technol. 12, 253–263 (1991).
    [CrossRef]
  2. C. Choi, K. Lee, K. Shin, K. S. Hong, and H. Ahn, “Automatic landing method of a reclaimer on the stockpile,” IEEE Trans. Syst. Man Cybern. 29, 308–314 (1999).
    [CrossRef]
  3. G. Sansoni, M. Trebeschi, and F. Docchio, “State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation,” Sensors 9, 568–601 (2009).
    [CrossRef]
  4. G. Sansoni and F. Docchio, “3-D optical measurements in the field of cultural heritage: the case of the Vittoria Alata of Brescia,” IEEE Trans. Instrum. Meas. 54, 359–368 (2005).
    [CrossRef]
  5. S. H. R. Ali, “Probing system characteristics in coordinate metrology,” Measurement Science Review 10, 120–129 (2010).
    [CrossRef]
  6. F. Blais, “A review of 20 years of range sensor development,” Proc. SPIE 5013, 62–76 (2003).
    [CrossRef]
  7. F. Remondino, A. Guarnieri, and A. Vettore, “3D modeling of close-range objects: photogrammetry or laser scanning?” Proc. SPIE 5665, 216–225 (2005).
    [CrossRef]
  8. K. H. Lee, H. J. Bae, and S. J. Hong, “Approximation of optimal moving paths of huge robot reclaimer with a 3D range finder,” in Computational Science and Its Applications—ICCSA 2006, Pt. 1, M.Gavrilova, O.Gervasi, V.Kumar, C.J. K.Tan, D.Taniar, A.Lagana, Y.Mun, and H.Choo, eds. (Springer-Verlag, 2006), pp. 151–160.
    [CrossRef]
  9. C. Daofang, L. Houjun, and M. Weijian, “Bulk terminal stockpile automatic modeling based on 3D scanning technology,” in 2010 International Conference on Future Information Technology and Management Engineering (FITME) (FITME, 2010), pp. 67–70.
    [CrossRef]
  10. R. Y. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE J. Robot. Autom. 3, 323–344(1987).
    [CrossRef]
  11. Q. F. Yu, X. L. Liu, and X. Y. Sun, “Generalized spin filtering and an improved derivative-sign binary image method for the extraction of fringe skeletons,” Appl. Opt. 37, 4504–4509(1998).
    [CrossRef]
  12. R. I. Hartley, “Projective reconstruction and invariants from multiple images,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 1036–1041 (1994).
    [CrossRef]
  13. E. H. Kim, J. Hahn, H. Kim, and B. Lee, “Profilometry without phase unwrapping using multi-frequency and four-step phase-shift sinusoidal fringe projection,” Opt. Express 17, 7818–7830 (2009).
    [CrossRef] [PubMed]
  14. K. C. Fan and F. J. Shiou, “An optical flatness measurement system for medium-sized surface plates,” Precis. Eng. 21, 102–112 (1997).
    [CrossRef]

2010 (1)

S. H. R. Ali, “Probing system characteristics in coordinate metrology,” Measurement Science Review 10, 120–129 (2010).
[CrossRef]

2009 (2)

G. Sansoni, M. Trebeschi, and F. Docchio, “State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation,” Sensors 9, 568–601 (2009).
[CrossRef]

E. H. Kim, J. Hahn, H. Kim, and B. Lee, “Profilometry without phase unwrapping using multi-frequency and four-step phase-shift sinusoidal fringe projection,” Opt. Express 17, 7818–7830 (2009).
[CrossRef] [PubMed]

2005 (2)

G. Sansoni and F. Docchio, “3-D optical measurements in the field of cultural heritage: the case of the Vittoria Alata of Brescia,” IEEE Trans. Instrum. Meas. 54, 359–368 (2005).
[CrossRef]

F. Remondino, A. Guarnieri, and A. Vettore, “3D modeling of close-range objects: photogrammetry or laser scanning?” Proc. SPIE 5665, 216–225 (2005).
[CrossRef]

2003 (1)

F. Blais, “A review of 20 years of range sensor development,” Proc. SPIE 5013, 62–76 (2003).
[CrossRef]

1999 (1)

C. Choi, K. Lee, K. Shin, K. S. Hong, and H. Ahn, “Automatic landing method of a reclaimer on the stockpile,” IEEE Trans. Syst. Man Cybern. 29, 308–314 (1999).
[CrossRef]

1998 (1)

1997 (1)

K. C. Fan and F. J. Shiou, “An optical flatness measurement system for medium-sized surface plates,” Precis. Eng. 21, 102–112 (1997).
[CrossRef]

1994 (1)

R. I. Hartley, “Projective reconstruction and invariants from multiple images,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 1036–1041 (1994).
[CrossRef]

1991 (1)

T. Ren, B. Denby, and R. N. Singh, “Applying knowledge-based expert systems to provide guidance for the safe storage of coal,” Min. Sci. Technol. 12, 253–263 (1991).
[CrossRef]

1987 (1)

R. Y. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE J. Robot. Autom. 3, 323–344(1987).
[CrossRef]

Ahn, H.

C. Choi, K. Lee, K. Shin, K. S. Hong, and H. Ahn, “Automatic landing method of a reclaimer on the stockpile,” IEEE Trans. Syst. Man Cybern. 29, 308–314 (1999).
[CrossRef]

Ali, S. H. R.

S. H. R. Ali, “Probing system characteristics in coordinate metrology,” Measurement Science Review 10, 120–129 (2010).
[CrossRef]

Bae, H. J.

K. H. Lee, H. J. Bae, and S. J. Hong, “Approximation of optimal moving paths of huge robot reclaimer with a 3D range finder,” in Computational Science and Its Applications—ICCSA 2006, Pt. 1, M.Gavrilova, O.Gervasi, V.Kumar, C.J. K.Tan, D.Taniar, A.Lagana, Y.Mun, and H.Choo, eds. (Springer-Verlag, 2006), pp. 151–160.
[CrossRef]

Blais, F.

F. Blais, “A review of 20 years of range sensor development,” Proc. SPIE 5013, 62–76 (2003).
[CrossRef]

Choi, C.

C. Choi, K. Lee, K. Shin, K. S. Hong, and H. Ahn, “Automatic landing method of a reclaimer on the stockpile,” IEEE Trans. Syst. Man Cybern. 29, 308–314 (1999).
[CrossRef]

Daofang, C.

C. Daofang, L. Houjun, and M. Weijian, “Bulk terminal stockpile automatic modeling based on 3D scanning technology,” in 2010 International Conference on Future Information Technology and Management Engineering (FITME) (FITME, 2010), pp. 67–70.
[CrossRef]

Denby, B.

T. Ren, B. Denby, and R. N. Singh, “Applying knowledge-based expert systems to provide guidance for the safe storage of coal,” Min. Sci. Technol. 12, 253–263 (1991).
[CrossRef]

Docchio, F.

G. Sansoni, M. Trebeschi, and F. Docchio, “State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation,” Sensors 9, 568–601 (2009).
[CrossRef]

G. Sansoni and F. Docchio, “3-D optical measurements in the field of cultural heritage: the case of the Vittoria Alata of Brescia,” IEEE Trans. Instrum. Meas. 54, 359–368 (2005).
[CrossRef]

Fan, K. C.

K. C. Fan and F. J. Shiou, “An optical flatness measurement system for medium-sized surface plates,” Precis. Eng. 21, 102–112 (1997).
[CrossRef]

Guarnieri, A.

F. Remondino, A. Guarnieri, and A. Vettore, “3D modeling of close-range objects: photogrammetry or laser scanning?” Proc. SPIE 5665, 216–225 (2005).
[CrossRef]

Hahn, J.

Hartley, R. I.

R. I. Hartley, “Projective reconstruction and invariants from multiple images,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 1036–1041 (1994).
[CrossRef]

Hong, K. S.

C. Choi, K. Lee, K. Shin, K. S. Hong, and H. Ahn, “Automatic landing method of a reclaimer on the stockpile,” IEEE Trans. Syst. Man Cybern. 29, 308–314 (1999).
[CrossRef]

Hong, S. J.

K. H. Lee, H. J. Bae, and S. J. Hong, “Approximation of optimal moving paths of huge robot reclaimer with a 3D range finder,” in Computational Science and Its Applications—ICCSA 2006, Pt. 1, M.Gavrilova, O.Gervasi, V.Kumar, C.J. K.Tan, D.Taniar, A.Lagana, Y.Mun, and H.Choo, eds. (Springer-Verlag, 2006), pp. 151–160.
[CrossRef]

Houjun, L.

C. Daofang, L. Houjun, and M. Weijian, “Bulk terminal stockpile automatic modeling based on 3D scanning technology,” in 2010 International Conference on Future Information Technology and Management Engineering (FITME) (FITME, 2010), pp. 67–70.
[CrossRef]

Kim, E. H.

Kim, H.

Lee, B.

Lee, K.

C. Choi, K. Lee, K. Shin, K. S. Hong, and H. Ahn, “Automatic landing method of a reclaimer on the stockpile,” IEEE Trans. Syst. Man Cybern. 29, 308–314 (1999).
[CrossRef]

Lee, K. H.

K. H. Lee, H. J. Bae, and S. J. Hong, “Approximation of optimal moving paths of huge robot reclaimer with a 3D range finder,” in Computational Science and Its Applications—ICCSA 2006, Pt. 1, M.Gavrilova, O.Gervasi, V.Kumar, C.J. K.Tan, D.Taniar, A.Lagana, Y.Mun, and H.Choo, eds. (Springer-Verlag, 2006), pp. 151–160.
[CrossRef]

Liu, X. L.

Remondino, F.

F. Remondino, A. Guarnieri, and A. Vettore, “3D modeling of close-range objects: photogrammetry or laser scanning?” Proc. SPIE 5665, 216–225 (2005).
[CrossRef]

Ren, T.

T. Ren, B. Denby, and R. N. Singh, “Applying knowledge-based expert systems to provide guidance for the safe storage of coal,” Min. Sci. Technol. 12, 253–263 (1991).
[CrossRef]

Sansoni, G.

G. Sansoni, M. Trebeschi, and F. Docchio, “State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation,” Sensors 9, 568–601 (2009).
[CrossRef]

G. Sansoni and F. Docchio, “3-D optical measurements in the field of cultural heritage: the case of the Vittoria Alata of Brescia,” IEEE Trans. Instrum. Meas. 54, 359–368 (2005).
[CrossRef]

Shin, K.

C. Choi, K. Lee, K. Shin, K. S. Hong, and H. Ahn, “Automatic landing method of a reclaimer on the stockpile,” IEEE Trans. Syst. Man Cybern. 29, 308–314 (1999).
[CrossRef]

Shiou, F. J.

K. C. Fan and F. J. Shiou, “An optical flatness measurement system for medium-sized surface plates,” Precis. Eng. 21, 102–112 (1997).
[CrossRef]

Singh, R. N.

T. Ren, B. Denby, and R. N. Singh, “Applying knowledge-based expert systems to provide guidance for the safe storage of coal,” Min. Sci. Technol. 12, 253–263 (1991).
[CrossRef]

Sun, X. Y.

Trebeschi, M.

G. Sansoni, M. Trebeschi, and F. Docchio, “State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation,” Sensors 9, 568–601 (2009).
[CrossRef]

Tsai, R. Y.

R. Y. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE J. Robot. Autom. 3, 323–344(1987).
[CrossRef]

Vettore, A.

F. Remondino, A. Guarnieri, and A. Vettore, “3D modeling of close-range objects: photogrammetry or laser scanning?” Proc. SPIE 5665, 216–225 (2005).
[CrossRef]

Weijian, M.

C. Daofang, L. Houjun, and M. Weijian, “Bulk terminal stockpile automatic modeling based on 3D scanning technology,” in 2010 International Conference on Future Information Technology and Management Engineering (FITME) (FITME, 2010), pp. 67–70.
[CrossRef]

Yu, Q. F.

Appl. Opt. (1)

IEEE J. Robot. Autom. (1)

R. Y. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE J. Robot. Autom. 3, 323–344(1987).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

G. Sansoni and F. Docchio, “3-D optical measurements in the field of cultural heritage: the case of the Vittoria Alata of Brescia,” IEEE Trans. Instrum. Meas. 54, 359–368 (2005).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

R. I. Hartley, “Projective reconstruction and invariants from multiple images,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 1036–1041 (1994).
[CrossRef]

IEEE Trans. Syst. Man Cybern. (1)

C. Choi, K. Lee, K. Shin, K. S. Hong, and H. Ahn, “Automatic landing method of a reclaimer on the stockpile,” IEEE Trans. Syst. Man Cybern. 29, 308–314 (1999).
[CrossRef]

Measurement Science Review (1)

S. H. R. Ali, “Probing system characteristics in coordinate metrology,” Measurement Science Review 10, 120–129 (2010).
[CrossRef]

Min. Sci. Technol. (1)

T. Ren, B. Denby, and R. N. Singh, “Applying knowledge-based expert systems to provide guidance for the safe storage of coal,” Min. Sci. Technol. 12, 253–263 (1991).
[CrossRef]

Opt. Express (1)

Precis. Eng. (1)

K. C. Fan and F. J. Shiou, “An optical flatness measurement system for medium-sized surface plates,” Precis. Eng. 21, 102–112 (1997).
[CrossRef]

Proc. SPIE (2)

F. Blais, “A review of 20 years of range sensor development,” Proc. SPIE 5013, 62–76 (2003).
[CrossRef]

F. Remondino, A. Guarnieri, and A. Vettore, “3D modeling of close-range objects: photogrammetry or laser scanning?” Proc. SPIE 5665, 216–225 (2005).
[CrossRef]

Sensors (1)

G. Sansoni, M. Trebeschi, and F. Docchio, “State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation,” Sensors 9, 568–601 (2009).
[CrossRef]

Other (2)

K. H. Lee, H. J. Bae, and S. J. Hong, “Approximation of optimal moving paths of huge robot reclaimer with a 3D range finder,” in Computational Science and Its Applications—ICCSA 2006, Pt. 1, M.Gavrilova, O.Gervasi, V.Kumar, C.J. K.Tan, D.Taniar, A.Lagana, Y.Mun, and H.Choo, eds. (Springer-Verlag, 2006), pp. 151–160.
[CrossRef]

C. Daofang, L. Houjun, and M. Weijian, “Bulk terminal stockpile automatic modeling based on 3D scanning technology,” in 2010 International Conference on Future Information Technology and Management Engineering (FITME) (FITME, 2010), pp. 67–70.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Configuration of independent measuring system.

Fig. 2
Fig. 2

Configuration of integrated measuring system.

Fig. 3
Fig. 3

Workflow of the measuring system.

Fig. 4
Fig. 4

Epipolar geometry constraints for the corresponding points.

Fig. 5
Fig. 5

(a) Image line in real image and (b) its extraction (the arrow depicts the gradient vector at the point).

Fig. 6
Fig. 6

Intersection point determination.

Fig. 7
Fig. 7

Photograph of practicality experiment.

Fig. 8
Fig. 8

Distribution of system resolution.

Fig. 9
Fig. 9

(a) Sand table with one scan line and (b) its reconstructed shape.

Fig. 10
Fig. 10

Photographs of accuracy tests: (a) flatness deviation test and (b) depth error test.

Fig. 11
Fig. 11

(a) Calibration frame with one scan line and (b) its reconstructed shape.

Tables (2)

Tables Icon

Table 1 Flatness Deviation Results of Reconstructed Planes 1 and 2

Tables Icon

Table 2 Comparison between the Relative Vertical Movement and Perpendicular Depth of 10 Different Positions

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

G ( i , j ) = G x ( i , j ) 2 + G y ( i , j ) 2 ,
A ( i , j ) = { sin 1 ( G y ( i , j ) / G ( i , j ) ) if     G x ( i , j ) 0 π sin 1 ( G y ( i , j ) / G ( i , j ) ) else .
G ( i , j ) = { G ( i , j ) , if     ( G ( i , j ) T G 1 ) 0 , else .
| G ( i , j ) G ( k , l ) | < T G 2 and | A ( i , j ) A ( k , l ) π | < T A
l epi = Fp i 1 ,
F = [ M 2 O 1 ] × M 2 M 1 + ,
M = [ α x 0 x 0 0 0 α y y 0 0 0 0 1 0 ] [ R t 0 T 1 ] ,
( a x k + b y k + c ) · ( a x k + 1 + b y k + 1 + c ) 0 ,

Metrics