Abstract

Rotary sensors are an essential component in numerous applications where a rotation movement has to be detected. With optical encoders, a high angular resolution can be achieved. As a disadvantage, the resolution enhancement is associated with increasing cost. To overcome this issue, a coding principle is presented that uses a diffractive solid measure on a microstructured plastic disc. Like a DVD, this encoder disc can be manufactured in a cost effective injection molding process. For this approach, a differential incremental code, as well as an absolute code, has been developed.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Renishaw, “Non-contact position encoders,” (2011) www.renishaw.com.
  2. L. Silberbauer and M. Plankensteiner, “Datenbus ersetzt mechanische Lenksäule,” Mechatronik F&M 12, 58–61 (2006).
  3. W. J. Fleming, “Overview of automotive sensors,” IEEE Sens. J. 1, 296–308 (2001).
    [CrossRef]
  4. P. R. Belanger, P. Dobrovolny, A. Helmy, and X. Zhang, “Estimation of angular velocity and acceleration from shaft-encoder measurements,” Internat. J. Robotics Res. 17, 1225–1233 (1998).
    [CrossRef]
  5. T. Kojima, Y. Kikuchi, S. Seki, and H. Wakiwaka, “Study on high accuracy optical encoder with 30 bits,” in 8th IEEE International Workshop on Advanced Motion Control, 2004. AMC ’04 (IEEE, 2004), pp. 493–498.
    [CrossRef]
  6. Hengstler, “Drehgeber für die industrielle Automation,” (2011) www.hengstler.com.
  7. IFM, “Optimierung und Lösung von technischen Abläufen durch Sensorik, Kommunikations- und Steuerungssysteme; Schulungsunterlagen Drehgeber; V1.5,” (2010) www.ifm-electronic.com.
  8. Hengstler, “Wind energy; Drehgeber für die optimale Ausrichtung,” (2009) www.hengstler.com.
  9. Hengstler, “Sicher hoch hinaus; Drehgeber-Einsatz Windenergieanlagen,” Konstruktionspraxis 6, 46–48 (2004).
  10. Heidenhain, “Sicherheitsbezogene Positionsmesssysteme,” (2010) www.heidenhain.de.
  11. Pepperl+Fuchs, “Mit dem richtigen Dreh zur funktionalen Sicherheit; Safety-Drehgeber von Pepperl+Fuchs,” (2011) www.pepperl-fuchs.com.
  12. Megatron, “Gesamtprogramm Winkelsensoren,” (2011) www.megatron.de.
  13. Pepperl+Fuchs, “Übersicht Drehgeber,” (2011) www.pepperl-fuchs.com.
  14. Temicon, “Your access to the microscale,” (2011) www.temicon.de.
  15. Renishaw, “The accuracy of angle encoders,” (2011) www.renishaw.com.
  16. J. Seitz, “Kontrastprogramm im Drehgebermarkt: Absolut Highend oder inkremental günstig,” IEE 49, 24–25 (2004).
  17. Heidenhain, “Drehgeber,” (2010) www.heidenhain.de.
  18. Heidenhain, “Optimierte Abtastung bei absoluten Drehgebern; technische Information,” (2006) www.heidenhain.de.
  19. K. Fujita, T. Nakayama, and Y. Matsuzoe, “Recent encoder technology,” Fuji Elect. J. 46, 57–62 (1999).
  20. V. Mayer, “Untersuchungen zu optischen Drehgebern mit mikrostrukturierten Maßverkörperungen aus Kunststoff,” Institut für Zeitmesstechnik, Fein- und Mikrotechnik, Universität Stuttgart (2009).
  21. Mediatechnics, “CD & DVD Glass Mastering,” (2011) www.mediatechnics.com.
  22. M. Otsuka, “HD DVD disc manufacturing process development,” in International Symposium on Optical Memory and Optical Data Storage, OSA Technical Digest Series (Optical Society America, 2005), pp. 1–2.
  23. T. Botzelmann, V. Mayer, D. Warkentin, and H. Kück, “Injection moulding of micro patterned polymer discs for optical rotary encoders,” in Proceedings of the 5th International Conference on Multi-Material Micro Manufacture 4M (2009).
  24. F. Nikolajeff, S. Jacobsson, S. Hård, A. Billman, L. Lundbladh, and C. Lindell, “Replication of continuous-relief diffractive optical elements by conventional compact disc injection-molding techniques,” Appl. Opt. 36, 4655–4659 (1997).
    [CrossRef] [PubMed]
  25. V. Mayer, T. Botzelmann, K.-P. Fritz, J. Seybold, and H. Kück, “A new concept for an absolutely encoded angular resolver,” in Proceedings of the 3th International Conference on Multi-Material Micro Manufacture 4M (2007).
  26. W. S. Beich, L. Fendrock, C. Smock, and N. Turner, “Recent trends in precision polymer optics fabrication,” in Optical Fabrication and Testing (Optical Society of America, 2008).
  27. H. E. Lai and P. J. Wang, “Study of process parameters on optical qualities for injection-molded plastic lenses,” Appl. Opt. 47, 2017–2027 (2008).
    [CrossRef] [PubMed]
  28. J. Seybold, V. Mayer, H. Kück, D. Hopp, C. Pruss, and W. Osten, “Hochauflösender optischer Drehgeber mit MID-Optikmodul,” presented at 6. Paderborner Workshop “Entwurf mechatronischer Systeme,” Paderborn, Germany, 2009.
  29. D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Optical incremental rotary encoder in low cost design,” presented at Sensor & Test Opto., Nürnberg, Germany, 2009.
  30. D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Optischer inkrementaler Drehgeber in Low-Cost-Bauweise,” Tech. Mess. 77, 358–363 (2010).
    [CrossRef]
  31. D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Hochauflösender optischer Drehgeber in Low-Cost-Bauweise,” DGaO, Esslingen, Germany, 2008.
  32. V. Mayer, M. Schneider, J. Seybold, T. Botzelmann, and H. Kück, “New high resolution optical incremental rotary encoder,” in Smart Systems Integration (VDE Verlag GmbH, 2008).
  33. V. Mayer, M. Schneider, J. Seybold, T. Botzelmann, and H. Kück, “Innovativer hochauflösender inkrementeller optischer Drehgeber,” in VDI/VDE ITG Fachtagung Sensoren und Messsysteme, Ludwigsburg (VDI Verlag GmbH, 2008).
  34. S. Held, “Die Referenzfahrt entscheidet; Absolute und inkrementale Drehgeber im Vergleich,” KEM , 134–136 (2004).
  35. LaserComponents, “Positionsmessung: PSD oder CCD?” (2010) http://www.lasercomponents.com.

2010 (1)

D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Optischer inkrementaler Drehgeber in Low-Cost-Bauweise,” Tech. Mess. 77, 358–363 (2010).
[CrossRef]

2008 (1)

2006 (1)

L. Silberbauer and M. Plankensteiner, “Datenbus ersetzt mechanische Lenksäule,” Mechatronik F&M 12, 58–61 (2006).

2004 (3)

S. Held, “Die Referenzfahrt entscheidet; Absolute und inkrementale Drehgeber im Vergleich,” KEM , 134–136 (2004).

Hengstler, “Sicher hoch hinaus; Drehgeber-Einsatz Windenergieanlagen,” Konstruktionspraxis 6, 46–48 (2004).

J. Seitz, “Kontrastprogramm im Drehgebermarkt: Absolut Highend oder inkremental günstig,” IEE 49, 24–25 (2004).

2001 (1)

W. J. Fleming, “Overview of automotive sensors,” IEEE Sens. J. 1, 296–308 (2001).
[CrossRef]

1999 (1)

K. Fujita, T. Nakayama, and Y. Matsuzoe, “Recent encoder technology,” Fuji Elect. J. 46, 57–62 (1999).

1998 (1)

P. R. Belanger, P. Dobrovolny, A. Helmy, and X. Zhang, “Estimation of angular velocity and acceleration from shaft-encoder measurements,” Internat. J. Robotics Res. 17, 1225–1233 (1998).
[CrossRef]

1997 (1)

Beich, W. S.

W. S. Beich, L. Fendrock, C. Smock, and N. Turner, “Recent trends in precision polymer optics fabrication,” in Optical Fabrication and Testing (Optical Society of America, 2008).

Belanger, P. R.

P. R. Belanger, P. Dobrovolny, A. Helmy, and X. Zhang, “Estimation of angular velocity and acceleration from shaft-encoder measurements,” Internat. J. Robotics Res. 17, 1225–1233 (1998).
[CrossRef]

Billman, A.

Botzelmann, T.

V. Mayer, T. Botzelmann, K.-P. Fritz, J. Seybold, and H. Kück, “A new concept for an absolutely encoded angular resolver,” in Proceedings of the 3th International Conference on Multi-Material Micro Manufacture 4M (2007).

T. Botzelmann, V. Mayer, D. Warkentin, and H. Kück, “Injection moulding of micro patterned polymer discs for optical rotary encoders,” in Proceedings of the 5th International Conference on Multi-Material Micro Manufacture 4M (2009).

V. Mayer, M. Schneider, J. Seybold, T. Botzelmann, and H. Kück, “New high resolution optical incremental rotary encoder,” in Smart Systems Integration (VDE Verlag GmbH, 2008).

V. Mayer, M. Schneider, J. Seybold, T. Botzelmann, and H. Kück, “Innovativer hochauflösender inkrementeller optischer Drehgeber,” in VDI/VDE ITG Fachtagung Sensoren und Messsysteme, Ludwigsburg (VDI Verlag GmbH, 2008).

Dobrovolny, P.

P. R. Belanger, P. Dobrovolny, A. Helmy, and X. Zhang, “Estimation of angular velocity and acceleration from shaft-encoder measurements,” Internat. J. Robotics Res. 17, 1225–1233 (1998).
[CrossRef]

Fendrock, L.

W. S. Beich, L. Fendrock, C. Smock, and N. Turner, “Recent trends in precision polymer optics fabrication,” in Optical Fabrication and Testing (Optical Society of America, 2008).

Fleming, W. J.

W. J. Fleming, “Overview of automotive sensors,” IEEE Sens. J. 1, 296–308 (2001).
[CrossRef]

Fritz, K.-P.

V. Mayer, T. Botzelmann, K.-P. Fritz, J. Seybold, and H. Kück, “A new concept for an absolutely encoded angular resolver,” in Proceedings of the 3th International Conference on Multi-Material Micro Manufacture 4M (2007).

Fujita, K.

K. Fujita, T. Nakayama, and Y. Matsuzoe, “Recent encoder technology,” Fuji Elect. J. 46, 57–62 (1999).

Hård, S.

Held, S.

S. Held, “Die Referenzfahrt entscheidet; Absolute und inkrementale Drehgeber im Vergleich,” KEM , 134–136 (2004).

Helmy, A.

P. R. Belanger, P. Dobrovolny, A. Helmy, and X. Zhang, “Estimation of angular velocity and acceleration from shaft-encoder measurements,” Internat. J. Robotics Res. 17, 1225–1233 (1998).
[CrossRef]

Hopp, D.

D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Optischer inkrementaler Drehgeber in Low-Cost-Bauweise,” Tech. Mess. 77, 358–363 (2010).
[CrossRef]

D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Optical incremental rotary encoder in low cost design,” presented at Sensor & Test Opto., Nürnberg, Germany, 2009.

J. Seybold, V. Mayer, H. Kück, D. Hopp, C. Pruss, and W. Osten, “Hochauflösender optischer Drehgeber mit MID-Optikmodul,” presented at 6. Paderborner Workshop “Entwurf mechatronischer Systeme,” Paderborn, Germany, 2009.

D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Hochauflösender optischer Drehgeber in Low-Cost-Bauweise,” DGaO, Esslingen, Germany, 2008.

Jacobsson, S.

Kikuchi, Y.

T. Kojima, Y. Kikuchi, S. Seki, and H. Wakiwaka, “Study on high accuracy optical encoder with 30 bits,” in 8th IEEE International Workshop on Advanced Motion Control, 2004. AMC ’04 (IEEE, 2004), pp. 493–498.
[CrossRef]

Kojima, T.

T. Kojima, Y. Kikuchi, S. Seki, and H. Wakiwaka, “Study on high accuracy optical encoder with 30 bits,” in 8th IEEE International Workshop on Advanced Motion Control, 2004. AMC ’04 (IEEE, 2004), pp. 493–498.
[CrossRef]

Kück, H.

D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Optischer inkrementaler Drehgeber in Low-Cost-Bauweise,” Tech. Mess. 77, 358–363 (2010).
[CrossRef]

V. Mayer, M. Schneider, J. Seybold, T. Botzelmann, and H. Kück, “New high resolution optical incremental rotary encoder,” in Smart Systems Integration (VDE Verlag GmbH, 2008).

D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Hochauflösender optischer Drehgeber in Low-Cost-Bauweise,” DGaO, Esslingen, Germany, 2008.

J. Seybold, V. Mayer, H. Kück, D. Hopp, C. Pruss, and W. Osten, “Hochauflösender optischer Drehgeber mit MID-Optikmodul,” presented at 6. Paderborner Workshop “Entwurf mechatronischer Systeme,” Paderborn, Germany, 2009.

D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Optical incremental rotary encoder in low cost design,” presented at Sensor & Test Opto., Nürnberg, Germany, 2009.

T. Botzelmann, V. Mayer, D. Warkentin, and H. Kück, “Injection moulding of micro patterned polymer discs for optical rotary encoders,” in Proceedings of the 5th International Conference on Multi-Material Micro Manufacture 4M (2009).

V. Mayer, T. Botzelmann, K.-P. Fritz, J. Seybold, and H. Kück, “A new concept for an absolutely encoded angular resolver,” in Proceedings of the 3th International Conference on Multi-Material Micro Manufacture 4M (2007).

V. Mayer, M. Schneider, J. Seybold, T. Botzelmann, and H. Kück, “Innovativer hochauflösender inkrementeller optischer Drehgeber,” in VDI/VDE ITG Fachtagung Sensoren und Messsysteme, Ludwigsburg (VDI Verlag GmbH, 2008).

Lai, H. E.

Lindell, C.

Lundbladh, L.

Matsuzoe, Y.

K. Fujita, T. Nakayama, and Y. Matsuzoe, “Recent encoder technology,” Fuji Elect. J. 46, 57–62 (1999).

Mayer, V.

D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Optischer inkrementaler Drehgeber in Low-Cost-Bauweise,” Tech. Mess. 77, 358–363 (2010).
[CrossRef]

V. Mayer, M. Schneider, J. Seybold, T. Botzelmann, and H. Kück, “New high resolution optical incremental rotary encoder,” in Smart Systems Integration (VDE Verlag GmbH, 2008).

V. Mayer, M. Schneider, J. Seybold, T. Botzelmann, and H. Kück, “Innovativer hochauflösender inkrementeller optischer Drehgeber,” in VDI/VDE ITG Fachtagung Sensoren und Messsysteme, Ludwigsburg (VDI Verlag GmbH, 2008).

J. Seybold, V. Mayer, H. Kück, D. Hopp, C. Pruss, and W. Osten, “Hochauflösender optischer Drehgeber mit MID-Optikmodul,” presented at 6. Paderborner Workshop “Entwurf mechatronischer Systeme,” Paderborn, Germany, 2009.

D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Optical incremental rotary encoder in low cost design,” presented at Sensor & Test Opto., Nürnberg, Germany, 2009.

V. Mayer, “Untersuchungen zu optischen Drehgebern mit mikrostrukturierten Maßverkörperungen aus Kunststoff,” Institut für Zeitmesstechnik, Fein- und Mikrotechnik, Universität Stuttgart (2009).

T. Botzelmann, V. Mayer, D. Warkentin, and H. Kück, “Injection moulding of micro patterned polymer discs for optical rotary encoders,” in Proceedings of the 5th International Conference on Multi-Material Micro Manufacture 4M (2009).

V. Mayer, T. Botzelmann, K.-P. Fritz, J. Seybold, and H. Kück, “A new concept for an absolutely encoded angular resolver,” in Proceedings of the 3th International Conference on Multi-Material Micro Manufacture 4M (2007).

D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Hochauflösender optischer Drehgeber in Low-Cost-Bauweise,” DGaO, Esslingen, Germany, 2008.

Nakayama, T.

K. Fujita, T. Nakayama, and Y. Matsuzoe, “Recent encoder technology,” Fuji Elect. J. 46, 57–62 (1999).

Nikolajeff, F.

Osten, W.

D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Optischer inkrementaler Drehgeber in Low-Cost-Bauweise,” Tech. Mess. 77, 358–363 (2010).
[CrossRef]

D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Hochauflösender optischer Drehgeber in Low-Cost-Bauweise,” DGaO, Esslingen, Germany, 2008.

D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Optical incremental rotary encoder in low cost design,” presented at Sensor & Test Opto., Nürnberg, Germany, 2009.

J. Seybold, V. Mayer, H. Kück, D. Hopp, C. Pruss, and W. Osten, “Hochauflösender optischer Drehgeber mit MID-Optikmodul,” presented at 6. Paderborner Workshop “Entwurf mechatronischer Systeme,” Paderborn, Germany, 2009.

Otsuka, M.

M. Otsuka, “HD DVD disc manufacturing process development,” in International Symposium on Optical Memory and Optical Data Storage, OSA Technical Digest Series (Optical Society America, 2005), pp. 1–2.

Plankensteiner, M.

L. Silberbauer and M. Plankensteiner, “Datenbus ersetzt mechanische Lenksäule,” Mechatronik F&M 12, 58–61 (2006).

Pruss, C.

D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Optischer inkrementaler Drehgeber in Low-Cost-Bauweise,” Tech. Mess. 77, 358–363 (2010).
[CrossRef]

D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Optical incremental rotary encoder in low cost design,” presented at Sensor & Test Opto., Nürnberg, Germany, 2009.

J. Seybold, V. Mayer, H. Kück, D. Hopp, C. Pruss, and W. Osten, “Hochauflösender optischer Drehgeber mit MID-Optikmodul,” presented at 6. Paderborner Workshop “Entwurf mechatronischer Systeme,” Paderborn, Germany, 2009.

D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Hochauflösender optischer Drehgeber in Low-Cost-Bauweise,” DGaO, Esslingen, Germany, 2008.

Schneider, M.

V. Mayer, M. Schneider, J. Seybold, T. Botzelmann, and H. Kück, “Innovativer hochauflösender inkrementeller optischer Drehgeber,” in VDI/VDE ITG Fachtagung Sensoren und Messsysteme, Ludwigsburg (VDI Verlag GmbH, 2008).

V. Mayer, M. Schneider, J. Seybold, T. Botzelmann, and H. Kück, “New high resolution optical incremental rotary encoder,” in Smart Systems Integration (VDE Verlag GmbH, 2008).

Seitz, J.

J. Seitz, “Kontrastprogramm im Drehgebermarkt: Absolut Highend oder inkremental günstig,” IEE 49, 24–25 (2004).

Seki, S.

T. Kojima, Y. Kikuchi, S. Seki, and H. Wakiwaka, “Study on high accuracy optical encoder with 30 bits,” in 8th IEEE International Workshop on Advanced Motion Control, 2004. AMC ’04 (IEEE, 2004), pp. 493–498.
[CrossRef]

Seybold, J.

D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Optischer inkrementaler Drehgeber in Low-Cost-Bauweise,” Tech. Mess. 77, 358–363 (2010).
[CrossRef]

D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Hochauflösender optischer Drehgeber in Low-Cost-Bauweise,” DGaO, Esslingen, Germany, 2008.

V. Mayer, M. Schneider, J. Seybold, T. Botzelmann, and H. Kück, “New high resolution optical incremental rotary encoder,” in Smart Systems Integration (VDE Verlag GmbH, 2008).

V. Mayer, M. Schneider, J. Seybold, T. Botzelmann, and H. Kück, “Innovativer hochauflösender inkrementeller optischer Drehgeber,” in VDI/VDE ITG Fachtagung Sensoren und Messsysteme, Ludwigsburg (VDI Verlag GmbH, 2008).

J. Seybold, V. Mayer, H. Kück, D. Hopp, C. Pruss, and W. Osten, “Hochauflösender optischer Drehgeber mit MID-Optikmodul,” presented at 6. Paderborner Workshop “Entwurf mechatronischer Systeme,” Paderborn, Germany, 2009.

D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Optical incremental rotary encoder in low cost design,” presented at Sensor & Test Opto., Nürnberg, Germany, 2009.

V. Mayer, T. Botzelmann, K.-P. Fritz, J. Seybold, and H. Kück, “A new concept for an absolutely encoded angular resolver,” in Proceedings of the 3th International Conference on Multi-Material Micro Manufacture 4M (2007).

Silberbauer, L.

L. Silberbauer and M. Plankensteiner, “Datenbus ersetzt mechanische Lenksäule,” Mechatronik F&M 12, 58–61 (2006).

Smock, C.

W. S. Beich, L. Fendrock, C. Smock, and N. Turner, “Recent trends in precision polymer optics fabrication,” in Optical Fabrication and Testing (Optical Society of America, 2008).

Turner, N.

W. S. Beich, L. Fendrock, C. Smock, and N. Turner, “Recent trends in precision polymer optics fabrication,” in Optical Fabrication and Testing (Optical Society of America, 2008).

Wakiwaka, H.

T. Kojima, Y. Kikuchi, S. Seki, and H. Wakiwaka, “Study on high accuracy optical encoder with 30 bits,” in 8th IEEE International Workshop on Advanced Motion Control, 2004. AMC ’04 (IEEE, 2004), pp. 493–498.
[CrossRef]

Wang, P. J.

Warkentin, D.

T. Botzelmann, V. Mayer, D. Warkentin, and H. Kück, “Injection moulding of micro patterned polymer discs for optical rotary encoders,” in Proceedings of the 5th International Conference on Multi-Material Micro Manufacture 4M (2009).

Zhang, X.

P. R. Belanger, P. Dobrovolny, A. Helmy, and X. Zhang, “Estimation of angular velocity and acceleration from shaft-encoder measurements,” Internat. J. Robotics Res. 17, 1225–1233 (1998).
[CrossRef]

Appl. Opt. (2)

Fuji Elect. J. (1)

K. Fujita, T. Nakayama, and Y. Matsuzoe, “Recent encoder technology,” Fuji Elect. J. 46, 57–62 (1999).

IEE (1)

J. Seitz, “Kontrastprogramm im Drehgebermarkt: Absolut Highend oder inkremental günstig,” IEE 49, 24–25 (2004).

IEEE Sens. J. (1)

W. J. Fleming, “Overview of automotive sensors,” IEEE Sens. J. 1, 296–308 (2001).
[CrossRef]

Internat. J. Robotics Res. (1)

P. R. Belanger, P. Dobrovolny, A. Helmy, and X. Zhang, “Estimation of angular velocity and acceleration from shaft-encoder measurements,” Internat. J. Robotics Res. 17, 1225–1233 (1998).
[CrossRef]

KEM (1)

S. Held, “Die Referenzfahrt entscheidet; Absolute und inkrementale Drehgeber im Vergleich,” KEM , 134–136 (2004).

Konstruktionspraxis (1)

Hengstler, “Sicher hoch hinaus; Drehgeber-Einsatz Windenergieanlagen,” Konstruktionspraxis 6, 46–48 (2004).

Mechatronik F&M (1)

L. Silberbauer and M. Plankensteiner, “Datenbus ersetzt mechanische Lenksäule,” Mechatronik F&M 12, 58–61 (2006).

Tech. Mess. (1)

D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Optischer inkrementaler Drehgeber in Low-Cost-Bauweise,” Tech. Mess. 77, 358–363 (2010).
[CrossRef]

Other (25)

D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Hochauflösender optischer Drehgeber in Low-Cost-Bauweise,” DGaO, Esslingen, Germany, 2008.

V. Mayer, M. Schneider, J. Seybold, T. Botzelmann, and H. Kück, “New high resolution optical incremental rotary encoder,” in Smart Systems Integration (VDE Verlag GmbH, 2008).

V. Mayer, M. Schneider, J. Seybold, T. Botzelmann, and H. Kück, “Innovativer hochauflösender inkrementeller optischer Drehgeber,” in VDI/VDE ITG Fachtagung Sensoren und Messsysteme, Ludwigsburg (VDI Verlag GmbH, 2008).

J. Seybold, V. Mayer, H. Kück, D. Hopp, C. Pruss, and W. Osten, “Hochauflösender optischer Drehgeber mit MID-Optikmodul,” presented at 6. Paderborner Workshop “Entwurf mechatronischer Systeme,” Paderborn, Germany, 2009.

D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Optical incremental rotary encoder in low cost design,” presented at Sensor & Test Opto., Nürnberg, Germany, 2009.

V. Mayer, T. Botzelmann, K.-P. Fritz, J. Seybold, and H. Kück, “A new concept for an absolutely encoded angular resolver,” in Proceedings of the 3th International Conference on Multi-Material Micro Manufacture 4M (2007).

W. S. Beich, L. Fendrock, C. Smock, and N. Turner, “Recent trends in precision polymer optics fabrication,” in Optical Fabrication and Testing (Optical Society of America, 2008).

LaserComponents, “Positionsmessung: PSD oder CCD?” (2010) http://www.lasercomponents.com.

Renishaw, “Non-contact position encoders,” (2011) www.renishaw.com.

Heidenhain, “Drehgeber,” (2010) www.heidenhain.de.

Heidenhain, “Optimierte Abtastung bei absoluten Drehgebern; technische Information,” (2006) www.heidenhain.de.

V. Mayer, “Untersuchungen zu optischen Drehgebern mit mikrostrukturierten Maßverkörperungen aus Kunststoff,” Institut für Zeitmesstechnik, Fein- und Mikrotechnik, Universität Stuttgart (2009).

Mediatechnics, “CD & DVD Glass Mastering,” (2011) www.mediatechnics.com.

M. Otsuka, “HD DVD disc manufacturing process development,” in International Symposium on Optical Memory and Optical Data Storage, OSA Technical Digest Series (Optical Society America, 2005), pp. 1–2.

T. Botzelmann, V. Mayer, D. Warkentin, and H. Kück, “Injection moulding of micro patterned polymer discs for optical rotary encoders,” in Proceedings of the 5th International Conference on Multi-Material Micro Manufacture 4M (2009).

Heidenhain, “Sicherheitsbezogene Positionsmesssysteme,” (2010) www.heidenhain.de.

Pepperl+Fuchs, “Mit dem richtigen Dreh zur funktionalen Sicherheit; Safety-Drehgeber von Pepperl+Fuchs,” (2011) www.pepperl-fuchs.com.

Megatron, “Gesamtprogramm Winkelsensoren,” (2011) www.megatron.de.

Pepperl+Fuchs, “Übersicht Drehgeber,” (2011) www.pepperl-fuchs.com.

Temicon, “Your access to the microscale,” (2011) www.temicon.de.

Renishaw, “The accuracy of angle encoders,” (2011) www.renishaw.com.

T. Kojima, Y. Kikuchi, S. Seki, and H. Wakiwaka, “Study on high accuracy optical encoder with 30 bits,” in 8th IEEE International Workshop on Advanced Motion Control, 2004. AMC ’04 (IEEE, 2004), pp. 493–498.
[CrossRef]

Hengstler, “Drehgeber für die industrielle Automation,” (2011) www.hengstler.com.

IFM, “Optimierung und Lösung von technischen Abläufen durch Sensorik, Kommunikations- und Steuerungssysteme; Schulungsunterlagen Drehgeber; V1.5,” (2010) www.ifm-electronic.com.

Hengstler, “Wind energy; Drehgeber für die optimale Ausrichtung,” (2009) www.hengstler.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Example of a sequence of diffractive gratings on the circumference of an injection-molded encoder disc. Microstructured areas take turns with nonstructured areas to generate a periodical code.

Fig. 2
Fig. 2

Illumination of an injection-molded encoder disc. On the back side of the disc there is the microstructured solid measure. An aluminum coating reflects the diffracted light onto a detector plane.

Fig. 3
Fig. 3

Generation of a single incremental signal by the interaction between a Gaussian illumination spot and a periodical set of structured and unstructured fields. The variation of intensity of the first diffraction order directly provides an incremental signal.

Fig. 4
Fig. 4

Illustration scheme of the model for the calculative anal ysis of the incremental signal generation with a diffractive solid measure.

Fig. 5
Fig. 5

Simulation showing the effects for different illumination spot sizes. The THD + N is decreasing for wider spots. The signal amplitude, on the contrary, reaches its maximum for smaller spots. An optimum trade-off can be found at a Gaussian spot size σ that is approximately equal to the solid measure period.

Fig. 6
Fig. 6

Exemplary normalized signals for a large-scale variation of the illumination spot width.

Fig. 7
Fig. 7

Detail of the incremental diffractive solid measure including four spatially separated gratings for the generation of the differential signals and one grating for the reference signal once per circumference.

Fig. 8
Fig. 8

Scheme of the diffractive incremental encoder setup. The light source and focusing lens as well as the photo detectors are positioned on a single plane on an optic module. The encoder disc with the aluminum coated diffractive solid measure on the back is illuminated with a Gaussian spot profile. The diffracted and reflected light hits the photo detectors.

Fig. 9
Fig. 9

Diffraction patterns of the four different gratings for the spatially separated generation of four first order spots. The images were captured with a CCD camera as a virtual detector plane in an experimental setup. The positions of the virtual photo detectors are marked in white boxes. Because of the usage of a test disc with a binary amplitude grating, the efficiency of the first order spots is not optimal. However, the relative variation of the intensity can be detected sufficiently well.

Fig. 10
Fig. 10

Signals of an assembled demonstrator sensor. The four sinusoidal intensity signals from the four different gratings of the solid measure are detected separately. The two differential signals A and B are calculated to form the desired sine and cosine signal. According to the deviation from the ideal signal, specifically the harmonic distortion, the signals can be processed with a 20-fold interpolation.

Fig. 11
Fig. 11

Variation of the grating period to control the diffraction angle of the first order to hit different positions on the detector plane. As an example, a set of 10 different diffraction angles are shown. To avoid interference effects with unwanted diffraction orders, each of these positions has to be situated between the zero order spot and the position of the closest second order.

Fig. 12
Fig. 12

Generation of a combined incremental and absolute signal using a variation of the grating period and angle to modify the diffraction angle and therewith the position of the first order spots on the detector plane. By using a PSD, it is possible to detect the position as well as the intensity of the first order spot. The position signal is used to build an absolute code. The intensity signal provides the incremental information.

Fig. 13
Fig. 13

Detail of the schematic illustration of the absolute coding with four nested tracks. Each track provides 10 different states that vary periodically. By cascading the four signals, an absolute Gray code with 2000 states is built.

Fig. 14
Fig. 14

Simulation of the four cascaded position signals of the absolute diffractive code. Each step of a signal is divided by 10 steps of the relative superior signal. The plots show a cutout of the code in which all signals are changing.

Fig. 15
Fig. 15

Example of a set of layout parameters for the gratings a and b. The graphs show the grating orientations and the grating periods for the generation of the first order spots for each of the ten positions on the position sensitive detectors.

Fig. 16
Fig. 16

To demonstrate the principle of the diffractive absolute position coding, the illumination on the solid measure has been defocused. With the resulting wider spot more than 10 periods of the code are illuminated.

Fig. 17
Fig. 17

Experimental results of the absolute coding scheme. (a) absolute signals and (b) incremental signals. The signals are detected by eight virtual detectors implemented by a CMOS camera in the detector plane. The detection of the incremental signals is done simultaneously to the detection of the cascaded absolute signals.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

THD + N [ % ] = P noise P total · 100.
g ( x ) = [ { [ rect ( x p / 2 ) * comb ( x p ) ] rect ( x b ) } * comb ( x a ) ] .
F ( x , x 0 ) = I { [ { [ rect ( x p / 2 ) * m δ ( x m p ) ] rect ( x b ) } * n δ ( x n a ) ] exp ( π ( x x 0 ) 2 σ ) } .
F ( f , x 0 ) = d b m n si ( m 2 ) si ( b n a b m p ) σ exp [ i 2 π ( f n a ) x 0 ] exp [ σ 2 π ( f n a ) 2 ]
f = x λ z .

Metrics