Abstract

Time-accurate velocity measurements in unseeded air are made by tagging nitrogen with a femtosecond-duration laser pulse and monitoring the displacement of the molecules with a time-delayed, fast-gated camera. Centimeter-long lines are written through the focal region of a 1mJ, 810nm laser and are produced by nonlinear excitation and dissociation of nitrogen. Negligible heating is associated with this interaction. The emission arises from recombining nitrogen atoms and lasts for tens of microseconds in natural air. It falls into the 560 to 660nm spectral region and consists of multiple spectral lines associated with first positive nitrogen transitions. The feasibility of this concept is demonstrated with lines written across a free jet, yielding instantaneous and averaged velocity profiles. The use of high-intensity femtosecond pulses for flow tagging allows the accurate determination of velocity profiles with a single laser system and camera.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Miles, C. Cohen, P. Howard, S. Huang, E. Markovitz, and G. Russell, “Velocity measurements by vibrational tagging and fluorescent probing of oxygen,” Opt. Lett. 12, 861–863 (1987).
    [CrossRef] [PubMed]
  2. R. B. Miles, J. J. Connors, E. C. Markovitz, P. J. Howard, and G. J. Roth, “Instantaneous profiles and turbulence statistics of supersonic free shear layers by Raman excitation plus laser-induced electronic fluorescence (RELIEF),” Exp. Fluids 8, 17–24 (1989).
    [CrossRef]
  3. R. B. Miles, J. Grinstead, R. H. Kohl, and G. Diskin, “The RELIEF flow tagging technique and its application in engine testing facilities and in helium-air mixing studies,” Meas. Sci. Technol. 11, 1272–1281 (2000).
    [CrossRef]
  4. N. Dam, R. J. H. Klein-Douwel, N. M. Sijtsema, and J. J. ter Meulen, “Nitric oxide flow tagging in unseeded air,” Opt. Lett. 26, 36–38 (2001).
    [CrossRef]
  5. R. Sanchez-Gonzalez, R. Srinivasan, R. D. W. Bowersox, and S. W. North, “Simultaneous velocity and temperature measurements in gaseous flow fields using the VENOM technique,” Opt. Lett. 36, 196–198 (2011).
    [CrossRef] [PubMed]
  6. R. W. Pitz, T. M. Brown, S. P. Nandula, P. A. Skaggs, P. A. DeBarber, M. S. Brown, and J. Segall, “Unseeded velocity measurement by ozone tagging velocimetry,” Opt. Lett. 21, 755–757 (1996).
    [CrossRef] [PubMed]
  7. R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. B. Batliwala, P. A. DeBarber, S. Deusch, and P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Technol. 11, 1259–1271 (2000).
    [CrossRef]
  8. B. Hiller, R. A. Booman, C. Hassa, and R. K. Hanson, “Velocity visualization in gas flows using laser-induced phosphorescence of biacetyl,” Rev. Sci. Instrum. 55, 1964–1967 (1984).
    [CrossRef]
  9. L. R. Boedeker, “Velocity measurement by H2O photolysis and laser-induced fluorescence of OH,” Opt. Lett. 14, 473–475(1989).
    [CrossRef] [PubMed]
  10. J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, and R. W. Pitz, “Flame flow tagging velocimetry with 193 nmH2O photodissociation,” Appl. Opt. 38, 6912–6917 (1999).
    [CrossRef]
  11. W. R. Lempert, P. Ronney, K. Magee, R. Gee, and R. P. Haughland, “Flow tagging velocimetry in incompressible flow using photo-activated nonintrusive tracking of molecular motion (PHANTOMM),” Exp. Fluids 18, 249–257 (1995).
    [CrossRef]
  12. M. M. Koochesfahani, R. K. Cohn, C. P. Gendrich, and D. G. Nocera, “Molecular tagging diagnostics for the study of kinematics and mixing in liquid phase flows,” in Developments in Laser Techniques and Fluid Mechanics, R.Adrian, D.F. G.Durao, F.Durst, M.V.Heitor, M.Maeda, and J.H.Whitelaw, eds. (Springer-Verlag, 1997), pp. 125–145.
  13. A. Noullez, G. Wallace, W. Lempert, R. B. Miles, and U. Frisch, “Transverse velocity increments in turbulent flow using the RELIEF technique,” J. Fluid Mech. 339, 287–307 (1997).
    [CrossRef]
  14. R. B. Miles, J. Connors, E. Markovitz, P. Howard, and G. Roth, “Instantaneous supersonic velocity profiles in an underexpanded jet by oxygen flow tagging,” Phys. Fluids A 1, 389–393(1989).
    [CrossRef]
  15. J. Amorim, “Lewis–Rayleigh and pink afterglow,” IEEE Trans. Plasma Sci. 33, 368–369 (2005).
    [CrossRef]
  16. E. Es-sebbar, Y. Benilan, A. Jolly, and M. C. Gazeau, “Characterization of an N2 flowing microwave post-discharge by OES spectroscopy and determination of absolute ground-state nitrogen atom densities by TALIF,” J. Phys. D 42, 135206 (2009).
    [CrossRef]
  17. J. Levaton, J. Amorim, A. R. Souza, D. Franco, and A. Ricard, “Kinetics of atoms, metastable, radiative and ionic species in the nitrogen pink afterglow,” J. Phys. D 35, 689–699 (2002).
    [CrossRef]
  18. C. R. Stanley, “A new method for the production of active nitrogen and its application to the study of collision effects in the nitrogen molecular spectrum,” Proc. Phys. Soc. A 67, 821–827 (1954).
    [CrossRef]
  19. J. F. Noxon, “Active nitrogen at high pressure,” J. Chem. Phys. 36, 926–940 (1962).
    [CrossRef]
  20. K. D. Bayes and G. B. Kistiakowsky, “On the mechanism of the Lewis–Rayleigh nitrogen afterglow,” J. Chem. Phys. 32, 992–1000 (1960).
    [CrossRef]

2011

2009

E. Es-sebbar, Y. Benilan, A. Jolly, and M. C. Gazeau, “Characterization of an N2 flowing microwave post-discharge by OES spectroscopy and determination of absolute ground-state nitrogen atom densities by TALIF,” J. Phys. D 42, 135206 (2009).
[CrossRef]

2005

J. Amorim, “Lewis–Rayleigh and pink afterglow,” IEEE Trans. Plasma Sci. 33, 368–369 (2005).
[CrossRef]

2002

J. Levaton, J. Amorim, A. R. Souza, D. Franco, and A. Ricard, “Kinetics of atoms, metastable, radiative and ionic species in the nitrogen pink afterglow,” J. Phys. D 35, 689–699 (2002).
[CrossRef]

2001

2000

R. B. Miles, J. Grinstead, R. H. Kohl, and G. Diskin, “The RELIEF flow tagging technique and its application in engine testing facilities and in helium-air mixing studies,” Meas. Sci. Technol. 11, 1272–1281 (2000).
[CrossRef]

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. B. Batliwala, P. A. DeBarber, S. Deusch, and P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Technol. 11, 1259–1271 (2000).
[CrossRef]

1999

1997

A. Noullez, G. Wallace, W. Lempert, R. B. Miles, and U. Frisch, “Transverse velocity increments in turbulent flow using the RELIEF technique,” J. Fluid Mech. 339, 287–307 (1997).
[CrossRef]

1996

1995

W. R. Lempert, P. Ronney, K. Magee, R. Gee, and R. P. Haughland, “Flow tagging velocimetry in incompressible flow using photo-activated nonintrusive tracking of molecular motion (PHANTOMM),” Exp. Fluids 18, 249–257 (1995).
[CrossRef]

1989

R. B. Miles, J. J. Connors, E. C. Markovitz, P. J. Howard, and G. J. Roth, “Instantaneous profiles and turbulence statistics of supersonic free shear layers by Raman excitation plus laser-induced electronic fluorescence (RELIEF),” Exp. Fluids 8, 17–24 (1989).
[CrossRef]

R. B. Miles, J. Connors, E. Markovitz, P. Howard, and G. Roth, “Instantaneous supersonic velocity profiles in an underexpanded jet by oxygen flow tagging,” Phys. Fluids A 1, 389–393(1989).
[CrossRef]

L. R. Boedeker, “Velocity measurement by H2O photolysis and laser-induced fluorescence of OH,” Opt. Lett. 14, 473–475(1989).
[CrossRef] [PubMed]

1987

1984

B. Hiller, R. A. Booman, C. Hassa, and R. K. Hanson, “Velocity visualization in gas flows using laser-induced phosphorescence of biacetyl,” Rev. Sci. Instrum. 55, 1964–1967 (1984).
[CrossRef]

1962

J. F. Noxon, “Active nitrogen at high pressure,” J. Chem. Phys. 36, 926–940 (1962).
[CrossRef]

1960

K. D. Bayes and G. B. Kistiakowsky, “On the mechanism of the Lewis–Rayleigh nitrogen afterglow,” J. Chem. Phys. 32, 992–1000 (1960).
[CrossRef]

1954

C. R. Stanley, “A new method for the production of active nitrogen and its application to the study of collision effects in the nitrogen molecular spectrum,” Proc. Phys. Soc. A 67, 821–827 (1954).
[CrossRef]

Amorim, J.

J. Amorim, “Lewis–Rayleigh and pink afterglow,” IEEE Trans. Plasma Sci. 33, 368–369 (2005).
[CrossRef]

J. Levaton, J. Amorim, A. R. Souza, D. Franco, and A. Ricard, “Kinetics of atoms, metastable, radiative and ionic species in the nitrogen pink afterglow,” J. Phys. D 35, 689–699 (2002).
[CrossRef]

Batliwala, F. B.

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. B. Batliwala, P. A. DeBarber, S. Deusch, and P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Technol. 11, 1259–1271 (2000).
[CrossRef]

Bayes, K. D.

K. D. Bayes and G. B. Kistiakowsky, “On the mechanism of the Lewis–Rayleigh nitrogen afterglow,” J. Chem. Phys. 32, 992–1000 (1960).
[CrossRef]

Benilan, Y.

E. Es-sebbar, Y. Benilan, A. Jolly, and M. C. Gazeau, “Characterization of an N2 flowing microwave post-discharge by OES spectroscopy and determination of absolute ground-state nitrogen atom densities by TALIF,” J. Phys. D 42, 135206 (2009).
[CrossRef]

Boedeker, L. R.

Booman, R. A.

B. Hiller, R. A. Booman, C. Hassa, and R. K. Hanson, “Velocity visualization in gas flows using laser-induced phosphorescence of biacetyl,” Rev. Sci. Instrum. 55, 1964–1967 (1984).
[CrossRef]

Bowersox, R. D. W.

Brown, M. S.

Brown, T. M.

Cohen, C.

Cohn, R. K.

M. M. Koochesfahani, R. K. Cohn, C. P. Gendrich, and D. G. Nocera, “Molecular tagging diagnostics for the study of kinematics and mixing in liquid phase flows,” in Developments in Laser Techniques and Fluid Mechanics, R.Adrian, D.F. G.Durao, F.Durst, M.V.Heitor, M.Maeda, and J.H.Whitelaw, eds. (Springer-Verlag, 1997), pp. 125–145.

Connors, J.

R. B. Miles, J. Connors, E. Markovitz, P. Howard, and G. Roth, “Instantaneous supersonic velocity profiles in an underexpanded jet by oxygen flow tagging,” Phys. Fluids A 1, 389–393(1989).
[CrossRef]

Connors, J. J.

R. B. Miles, J. J. Connors, E. C. Markovitz, P. J. Howard, and G. J. Roth, “Instantaneous profiles and turbulence statistics of supersonic free shear layers by Raman excitation plus laser-induced electronic fluorescence (RELIEF),” Exp. Fluids 8, 17–24 (1989).
[CrossRef]

Dam, N.

DeBarber, P. A.

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. B. Batliwala, P. A. DeBarber, S. Deusch, and P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Technol. 11, 1259–1271 (2000).
[CrossRef]

R. W. Pitz, T. M. Brown, S. P. Nandula, P. A. Skaggs, P. A. DeBarber, M. S. Brown, and J. Segall, “Unseeded velocity measurement by ozone tagging velocimetry,” Opt. Lett. 21, 755–757 (1996).
[CrossRef] [PubMed]

Deusch, S.

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. B. Batliwala, P. A. DeBarber, S. Deusch, and P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Technol. 11, 1259–1271 (2000).
[CrossRef]

Dimotakis, P. E.

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. B. Batliwala, P. A. DeBarber, S. Deusch, and P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Technol. 11, 1259–1271 (2000).
[CrossRef]

Diskin, G.

R. B. Miles, J. Grinstead, R. H. Kohl, and G. Diskin, “The RELIEF flow tagging technique and its application in engine testing facilities and in helium-air mixing studies,” Meas. Sci. Technol. 11, 1272–1281 (2000).
[CrossRef]

Es-sebbar, E.

E. Es-sebbar, Y. Benilan, A. Jolly, and M. C. Gazeau, “Characterization of an N2 flowing microwave post-discharge by OES spectroscopy and determination of absolute ground-state nitrogen atom densities by TALIF,” J. Phys. D 42, 135206 (2009).
[CrossRef]

Franco, D.

J. Levaton, J. Amorim, A. R. Souza, D. Franco, and A. Ricard, “Kinetics of atoms, metastable, radiative and ionic species in the nitrogen pink afterglow,” J. Phys. D 35, 689–699 (2002).
[CrossRef]

Frisch, U.

A. Noullez, G. Wallace, W. Lempert, R. B. Miles, and U. Frisch, “Transverse velocity increments in turbulent flow using the RELIEF technique,” J. Fluid Mech. 339, 287–307 (1997).
[CrossRef]

Gazeau, M. C.

E. Es-sebbar, Y. Benilan, A. Jolly, and M. C. Gazeau, “Characterization of an N2 flowing microwave post-discharge by OES spectroscopy and determination of absolute ground-state nitrogen atom densities by TALIF,” J. Phys. D 42, 135206 (2009).
[CrossRef]

Gee, R.

W. R. Lempert, P. Ronney, K. Magee, R. Gee, and R. P. Haughland, “Flow tagging velocimetry in incompressible flow using photo-activated nonintrusive tracking of molecular motion (PHANTOMM),” Exp. Fluids 18, 249–257 (1995).
[CrossRef]

Gendrich, C. P.

M. M. Koochesfahani, R. K. Cohn, C. P. Gendrich, and D. G. Nocera, “Molecular tagging diagnostics for the study of kinematics and mixing in liquid phase flows,” in Developments in Laser Techniques and Fluid Mechanics, R.Adrian, D.F. G.Durao, F.Durst, M.V.Heitor, M.Maeda, and J.H.Whitelaw, eds. (Springer-Verlag, 1997), pp. 125–145.

Grinstead, J.

R. B. Miles, J. Grinstead, R. H. Kohl, and G. Diskin, “The RELIEF flow tagging technique and its application in engine testing facilities and in helium-air mixing studies,” Meas. Sci. Technol. 11, 1272–1281 (2000).
[CrossRef]

Hanson, R. K.

B. Hiller, R. A. Booman, C. Hassa, and R. K. Hanson, “Velocity visualization in gas flows using laser-induced phosphorescence of biacetyl,” Rev. Sci. Instrum. 55, 1964–1967 (1984).
[CrossRef]

Hassa, C.

B. Hiller, R. A. Booman, C. Hassa, and R. K. Hanson, “Velocity visualization in gas flows using laser-induced phosphorescence of biacetyl,” Rev. Sci. Instrum. 55, 1964–1967 (1984).
[CrossRef]

Haughland, R. P.

W. R. Lempert, P. Ronney, K. Magee, R. Gee, and R. P. Haughland, “Flow tagging velocimetry in incompressible flow using photo-activated nonintrusive tracking of molecular motion (PHANTOMM),” Exp. Fluids 18, 249–257 (1995).
[CrossRef]

Hiller, B.

B. Hiller, R. A. Booman, C. Hassa, and R. K. Hanson, “Velocity visualization in gas flows using laser-induced phosphorescence of biacetyl,” Rev. Sci. Instrum. 55, 1964–1967 (1984).
[CrossRef]

Howard, P.

R. B. Miles, J. Connors, E. Markovitz, P. Howard, and G. Roth, “Instantaneous supersonic velocity profiles in an underexpanded jet by oxygen flow tagging,” Phys. Fluids A 1, 389–393(1989).
[CrossRef]

R. Miles, C. Cohen, P. Howard, S. Huang, E. Markovitz, and G. Russell, “Velocity measurements by vibrational tagging and fluorescent probing of oxygen,” Opt. Lett. 12, 861–863 (1987).
[CrossRef] [PubMed]

Howard, P. J.

R. B. Miles, J. J. Connors, E. C. Markovitz, P. J. Howard, and G. J. Roth, “Instantaneous profiles and turbulence statistics of supersonic free shear layers by Raman excitation plus laser-induced electronic fluorescence (RELIEF),” Exp. Fluids 8, 17–24 (1989).
[CrossRef]

Huang, S.

Jolly, A.

E. Es-sebbar, Y. Benilan, A. Jolly, and M. C. Gazeau, “Characterization of an N2 flowing microwave post-discharge by OES spectroscopy and determination of absolute ground-state nitrogen atom densities by TALIF,” J. Phys. D 42, 135206 (2009).
[CrossRef]

Kistiakowsky, G. B.

K. D. Bayes and G. B. Kistiakowsky, “On the mechanism of the Lewis–Rayleigh nitrogen afterglow,” J. Chem. Phys. 32, 992–1000 (1960).
[CrossRef]

Klein-Douwel, R. J. H.

Kohl, R. H.

R. B. Miles, J. Grinstead, R. H. Kohl, and G. Diskin, “The RELIEF flow tagging technique and its application in engine testing facilities and in helium-air mixing studies,” Meas. Sci. Technol. 11, 1272–1281 (2000).
[CrossRef]

Koochesfahani, M. M.

M. M. Koochesfahani, R. K. Cohn, C. P. Gendrich, and D. G. Nocera, “Molecular tagging diagnostics for the study of kinematics and mixing in liquid phase flows,” in Developments in Laser Techniques and Fluid Mechanics, R.Adrian, D.F. G.Durao, F.Durst, M.V.Heitor, M.Maeda, and J.H.Whitelaw, eds. (Springer-Verlag, 1997), pp. 125–145.

Lempert, W.

A. Noullez, G. Wallace, W. Lempert, R. B. Miles, and U. Frisch, “Transverse velocity increments in turbulent flow using the RELIEF technique,” J. Fluid Mech. 339, 287–307 (1997).
[CrossRef]

Lempert, W. R.

W. R. Lempert, P. Ronney, K. Magee, R. Gee, and R. P. Haughland, “Flow tagging velocimetry in incompressible flow using photo-activated nonintrusive tracking of molecular motion (PHANTOMM),” Exp. Fluids 18, 249–257 (1995).
[CrossRef]

Levaton, J.

J. Levaton, J. Amorim, A. R. Souza, D. Franco, and A. Ricard, “Kinetics of atoms, metastable, radiative and ionic species in the nitrogen pink afterglow,” J. Phys. D 35, 689–699 (2002).
[CrossRef]

Magee, K.

W. R. Lempert, P. Ronney, K. Magee, R. Gee, and R. P. Haughland, “Flow tagging velocimetry in incompressible flow using photo-activated nonintrusive tracking of molecular motion (PHANTOMM),” Exp. Fluids 18, 249–257 (1995).
[CrossRef]

Markovitz, E.

R. B. Miles, J. Connors, E. Markovitz, P. Howard, and G. Roth, “Instantaneous supersonic velocity profiles in an underexpanded jet by oxygen flow tagging,” Phys. Fluids A 1, 389–393(1989).
[CrossRef]

R. Miles, C. Cohen, P. Howard, S. Huang, E. Markovitz, and G. Russell, “Velocity measurements by vibrational tagging and fluorescent probing of oxygen,” Opt. Lett. 12, 861–863 (1987).
[CrossRef] [PubMed]

Markovitz, E. C.

R. B. Miles, J. J. Connors, E. C. Markovitz, P. J. Howard, and G. J. Roth, “Instantaneous profiles and turbulence statistics of supersonic free shear layers by Raman excitation plus laser-induced electronic fluorescence (RELIEF),” Exp. Fluids 8, 17–24 (1989).
[CrossRef]

Miles, R.

Miles, R. B.

R. B. Miles, J. Grinstead, R. H. Kohl, and G. Diskin, “The RELIEF flow tagging technique and its application in engine testing facilities and in helium-air mixing studies,” Meas. Sci. Technol. 11, 1272–1281 (2000).
[CrossRef]

A. Noullez, G. Wallace, W. Lempert, R. B. Miles, and U. Frisch, “Transverse velocity increments in turbulent flow using the RELIEF technique,” J. Fluid Mech. 339, 287–307 (1997).
[CrossRef]

R. B. Miles, J. J. Connors, E. C. Markovitz, P. J. Howard, and G. J. Roth, “Instantaneous profiles and turbulence statistics of supersonic free shear layers by Raman excitation plus laser-induced electronic fluorescence (RELIEF),” Exp. Fluids 8, 17–24 (1989).
[CrossRef]

R. B. Miles, J. Connors, E. Markovitz, P. Howard, and G. Roth, “Instantaneous supersonic velocity profiles in an underexpanded jet by oxygen flow tagging,” Phys. Fluids A 1, 389–393(1989).
[CrossRef]

Nandula, S. P.

Nocera, D. G.

M. M. Koochesfahani, R. K. Cohn, C. P. Gendrich, and D. G. Nocera, “Molecular tagging diagnostics for the study of kinematics and mixing in liquid phase flows,” in Developments in Laser Techniques and Fluid Mechanics, R.Adrian, D.F. G.Durao, F.Durst, M.V.Heitor, M.Maeda, and J.H.Whitelaw, eds. (Springer-Verlag, 1997), pp. 125–145.

North, S. W.

Noullez, A.

A. Noullez, G. Wallace, W. Lempert, R. B. Miles, and U. Frisch, “Transverse velocity increments in turbulent flow using the RELIEF technique,” J. Fluid Mech. 339, 287–307 (1997).
[CrossRef]

Noxon, J. F.

J. F. Noxon, “Active nitrogen at high pressure,” J. Chem. Phys. 36, 926–940 (1962).
[CrossRef]

Oguss, D. A.

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. B. Batliwala, P. A. DeBarber, S. Deusch, and P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Technol. 11, 1259–1271 (2000).
[CrossRef]

J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, and R. W. Pitz, “Flame flow tagging velocimetry with 193 nmH2O photodissociation,” Appl. Opt. 38, 6912–6917 (1999).
[CrossRef]

Pitz, R. W.

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. B. Batliwala, P. A. DeBarber, S. Deusch, and P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Technol. 11, 1259–1271 (2000).
[CrossRef]

J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, and R. W. Pitz, “Flame flow tagging velocimetry with 193 nmH2O photodissociation,” Appl. Opt. 38, 6912–6917 (1999).
[CrossRef]

R. W. Pitz, T. M. Brown, S. P. Nandula, P. A. Skaggs, P. A. DeBarber, M. S. Brown, and J. Segall, “Unseeded velocity measurement by ozone tagging velocimetry,” Opt. Lett. 21, 755–757 (1996).
[CrossRef] [PubMed]

Ribarov, L. A.

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. B. Batliwala, P. A. DeBarber, S. Deusch, and P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Technol. 11, 1259–1271 (2000).
[CrossRef]

J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, and R. W. Pitz, “Flame flow tagging velocimetry with 193 nmH2O photodissociation,” Appl. Opt. 38, 6912–6917 (1999).
[CrossRef]

Ricard, A.

J. Levaton, J. Amorim, A. R. Souza, D. Franco, and A. Ricard, “Kinetics of atoms, metastable, radiative and ionic species in the nitrogen pink afterglow,” J. Phys. D 35, 689–699 (2002).
[CrossRef]

Ronney, P.

W. R. Lempert, P. Ronney, K. Magee, R. Gee, and R. P. Haughland, “Flow tagging velocimetry in incompressible flow using photo-activated nonintrusive tracking of molecular motion (PHANTOMM),” Exp. Fluids 18, 249–257 (1995).
[CrossRef]

Roth, G.

R. B. Miles, J. Connors, E. Markovitz, P. Howard, and G. Roth, “Instantaneous supersonic velocity profiles in an underexpanded jet by oxygen flow tagging,” Phys. Fluids A 1, 389–393(1989).
[CrossRef]

Roth, G. J.

R. B. Miles, J. J. Connors, E. C. Markovitz, P. J. Howard, and G. J. Roth, “Instantaneous profiles and turbulence statistics of supersonic free shear layers by Raman excitation plus laser-induced electronic fluorescence (RELIEF),” Exp. Fluids 8, 17–24 (1989).
[CrossRef]

Russell, G.

Sanchez-Gonzalez, R.

Segall, J.

Sijtsema, N. M.

Skaggs, P. A.

Souza, A. R.

J. Levaton, J. Amorim, A. R. Souza, D. Franco, and A. Ricard, “Kinetics of atoms, metastable, radiative and ionic species in the nitrogen pink afterglow,” J. Phys. D 35, 689–699 (2002).
[CrossRef]

Srinivasan, R.

Stanley, C. R.

C. R. Stanley, “A new method for the production of active nitrogen and its application to the study of collision effects in the nitrogen molecular spectrum,” Proc. Phys. Soc. A 67, 821–827 (1954).
[CrossRef]

ter Meulen, J. J.

Wallace, G.

A. Noullez, G. Wallace, W. Lempert, R. B. Miles, and U. Frisch, “Transverse velocity increments in turbulent flow using the RELIEF technique,” J. Fluid Mech. 339, 287–307 (1997).
[CrossRef]

Wehrmeyer, J. A.

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. B. Batliwala, P. A. DeBarber, S. Deusch, and P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Technol. 11, 1259–1271 (2000).
[CrossRef]

J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, and R. W. Pitz, “Flame flow tagging velocimetry with 193 nmH2O photodissociation,” Appl. Opt. 38, 6912–6917 (1999).
[CrossRef]

Appl. Opt.

Exp. Fluids

R. B. Miles, J. J. Connors, E. C. Markovitz, P. J. Howard, and G. J. Roth, “Instantaneous profiles and turbulence statistics of supersonic free shear layers by Raman excitation plus laser-induced electronic fluorescence (RELIEF),” Exp. Fluids 8, 17–24 (1989).
[CrossRef]

W. R. Lempert, P. Ronney, K. Magee, R. Gee, and R. P. Haughland, “Flow tagging velocimetry in incompressible flow using photo-activated nonintrusive tracking of molecular motion (PHANTOMM),” Exp. Fluids 18, 249–257 (1995).
[CrossRef]

IEEE Trans. Plasma Sci.

J. Amorim, “Lewis–Rayleigh and pink afterglow,” IEEE Trans. Plasma Sci. 33, 368–369 (2005).
[CrossRef]

J. Chem. Phys.

J. F. Noxon, “Active nitrogen at high pressure,” J. Chem. Phys. 36, 926–940 (1962).
[CrossRef]

K. D. Bayes and G. B. Kistiakowsky, “On the mechanism of the Lewis–Rayleigh nitrogen afterglow,” J. Chem. Phys. 32, 992–1000 (1960).
[CrossRef]

J. Fluid Mech.

A. Noullez, G. Wallace, W. Lempert, R. B. Miles, and U. Frisch, “Transverse velocity increments in turbulent flow using the RELIEF technique,” J. Fluid Mech. 339, 287–307 (1997).
[CrossRef]

J. Phys. D

E. Es-sebbar, Y. Benilan, A. Jolly, and M. C. Gazeau, “Characterization of an N2 flowing microwave post-discharge by OES spectroscopy and determination of absolute ground-state nitrogen atom densities by TALIF,” J. Phys. D 42, 135206 (2009).
[CrossRef]

J. Levaton, J. Amorim, A. R. Souza, D. Franco, and A. Ricard, “Kinetics of atoms, metastable, radiative and ionic species in the nitrogen pink afterglow,” J. Phys. D 35, 689–699 (2002).
[CrossRef]

Meas. Sci. Technol.

R. B. Miles, J. Grinstead, R. H. Kohl, and G. Diskin, “The RELIEF flow tagging technique and its application in engine testing facilities and in helium-air mixing studies,” Meas. Sci. Technol. 11, 1272–1281 (2000).
[CrossRef]

R. W. Pitz, J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, F. B. Batliwala, P. A. DeBarber, S. Deusch, and P. E. Dimotakis, “Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry,” Meas. Sci. Technol. 11, 1259–1271 (2000).
[CrossRef]

Opt. Lett.

Phys. Fluids A

R. B. Miles, J. Connors, E. Markovitz, P. Howard, and G. Roth, “Instantaneous supersonic velocity profiles in an underexpanded jet by oxygen flow tagging,” Phys. Fluids A 1, 389–393(1989).
[CrossRef]

Proc. Phys. Soc. A

C. R. Stanley, “A new method for the production of active nitrogen and its application to the study of collision effects in the nitrogen molecular spectrum,” Proc. Phys. Soc. A 67, 821–827 (1954).
[CrossRef]

Rev. Sci. Instrum.

B. Hiller, R. A. Booman, C. Hassa, and R. K. Hanson, “Velocity visualization in gas flows using laser-induced phosphorescence of biacetyl,” Rev. Sci. Instrum. 55, 1964–1967 (1984).
[CrossRef]

Other

M. M. Koochesfahani, R. K. Cohn, C. P. Gendrich, and D. G. Nocera, “Molecular tagging diagnostics for the study of kinematics and mixing in liquid phase flows,” in Developments in Laser Techniques and Fluid Mechanics, R.Adrian, D.F. G.Durao, F.Durst, M.V.Heitor, M.Maeda, and J.H.Whitelaw, eds. (Springer-Verlag, 1997), pp. 125–145.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of laser focusing, intensified, gated camera position and the diverging jet position. Tagging and subsequent velocity determination were performed by focusing the laser at 1, 5, 10, and 15 mm above the jet exit.

Fig. 2
Fig. 2

Single-shot images of displaced lines at different downstream locations ( y / D = 1 , 5, 10, and 15) corresponding to heights above the jet exit of 1, 5, 10, and 15 mm . Fluorescence is collected 2 μs after the tagging laser, and the camera gate width is 1 μs . The unperturbed flow position is indicated by the fluorescent lines outside of the free jet.

Fig. 3
Fig. 3

Lifetime measurement of fluorescence in air with a bandpass-filtered PMT and the fast-gated ICCD with a 1 μs intensifier gate width. Emission allowing the determination of line position is evident at durations up to 30 μs after the femtosecond excitation laser pulse. The decays are bounded by a fast and slow exponential with lifetimes varying from τ F = 0.8 μs for a fit at t 5 μs and τ S = 8 μs for long times. A dual exponential fit results in τ A = 1.1 μs and τ B = 8.3 μs .

Fig. 4
Fig. 4

Spectrum of fluorescence in air indicating features of emission from the first positive system of nitrogen. This spectrum indicates the formation of vibrationally excited B-state nitrogen and subsequent emission. The resolution of the spectrometer is approximately 0.2 nm , and emission was collected over 100 excitation shots with the laser focal volume placed in front of the spectrometer slit.

Fig. 5
Fig. 5

Comparison of mean velocity profiles for y / D = 10 for two intensifier gate widths of 300 and 1000 ns .

Fig. 6
Fig. 6

Mean velocities at y / D = 1 , 5, and 10 for a 1 μs gate. The camera gate delay is 2 μs . The velocity is determined by displacement from the Rayleigh scattering line.

Fig. 7
Fig. 7

Mean of velocity deviation from the mean at streamwise locations y / D = 1 , 5, and 10. The gate delay was set to 2 μs with a gate width of 1 μs .

Fig. 8
Fig. 8

Example laser excitation grid for determination of multiple components of velocity in a single frame for a 1 μs gate with a gate delay of 10 μs . A 10 m / s mean flow is directed diagonally from the bottom right to the upper left in the image. (a) Rayleigh scattering position of the lasers. (b) Fluorescence from both lines in a lower right to upper left flow. Zero displacement is indicated in both (a) and (b) by thick dashed lines.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

N ( S 4 ) + N ( S 4 ) + M N 2 ( Σ g + ) 5 + M ,
N 2 ( Σ g + ) 5 + M N 2 ( B Π g 3 ) + M ,
N 2 ( B Π g 3 , v ) N 2 ( A Σ u + 3 , v ) + h ν .

Metrics