Abstract

In this paper, we present our investigations of the effects of vertical-sidewall roughness (VSR) on guided-mode resonance (GMR) filters made of subwavelength grating for applications to ultrasensitive biosensors operated under IR illumination. We designed the spectral FWHM of the grating filter to be as narrow as possible in order to emphasize the sensitivity and VSR effects. Three types of VSR morphologies on the grating—in terms of the correlation length ξ and the rms of the maximum roughness deviation σ—were considered and evaluated. Rigorous coupled-wave analysis was then implemented to quantify the shifts in the reflective resonance peak wavelength value (PWV) of the grating filter. Our simulations show that for specific ξ values, the PWVs remain constant even if σ becomes as large as 10nm; this indicates dramatic bandgaplike stripes, which are similar to the bandgaps observed in the band diagrams of photonic crystals in the ξσ diagram that we have proposed in this study. In other words, the effects of VSR on the GMR biosensor performance are insignificant when ξ is located at certain bands; therefore, this type of roughness is highly tolerable even if the linewidth of the filter is decreased to only a few tens of nanometers.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12, 5661–5674 (2004).
    [CrossRef] [PubMed]
  2. Y. Ding and R. Magnusson, “Use of nondegenerate resonant leaky modes to fashion diverse optical spectra,” Opt. Express 12, 1885–1891 (2004).
    [CrossRef] [PubMed]
  3. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
    [CrossRef]
  4. B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B 85, 219–226 (2002).
    [CrossRef]
  5. B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
    [CrossRef]
  6. J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23, 3006–3010 (2005).
    [CrossRef]
  7. K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel-based guided-mode resonance humidity sensor,” IEEE Sens. J. 7, 409–414 (2007).
    [CrossRef]
  8. R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
    [CrossRef]
  9. K. J. Lee, J. Jin, B.-S. Bae, and R. Magnusson, “Optical filters fabricated in hybrimer media with soft lithography,” Opt. Lett. 34, 2510–2512 (2009).
    [CrossRef] [PubMed]
  10. J. Viheriala, T. Niemi, J. Laukkanen, M. Karjalainen, and M. Pessa, “Large-area nanoperforated SiN membranes for optical and mechanical filtering,” Microelectron. Eng. 87, 1620–1622(2010).
    [CrossRef]
  11. S. Wei and F. Li, “Measurement of photoresist grating profiles based on multiwavelength scatterometry and artificial neural network,” Appl. Opt. 47, 2524–2532 (2008).
    [CrossRef] [PubMed]
  12. International Technology Roadmap for Semiconductors, http://www.itrs.net/Links/2009ITRS/Home2009.htm (2009).
  13. T. Schuster, S. Rafler, V. F. Paz, K. Frenner, and W. Osten, “Fieldstitching with Kirchhoff-boundaries as a model-based description for line edge roughness (LER) in scatterometry,” Microelectron. Eng. 86, 1029–1032 (2009).
    [CrossRef]
  14. B. C. Bergner, T. A. Germer, and T. J. Suleski, “Effective medium approximations for modeling optical reflectance from gratings with rough edges,” J. Opt. Soc. Am. A 27, 1083–1090 (2010).
    [CrossRef]
  15. A. Talneau, F. Lemarchand, A.-L. Fehrembach, and A. Sentenac, “Impact of electron-beam lithography irregularities across millimeter-scale resonant grating filter performances,” Appl. Opt. 49, 658–662 (2010).
    [CrossRef] [PubMed]
  16. M. K. Poutous, Z. Roth, K. Buhl, A. Pung, R. C. Rumpf, and E. G. Johnson, “Correlation of fabrication tolerances with the performance of guided-mode-resonance micro-optical components,” Proc. SPIE 7205, 72050Y (2009).
    [CrossRef]
  17. T. Prasad, V. L. Colvin, and D. M. Mittleman, “Effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy,” Opt. Express 15, 16954–16965 (2007).
    [CrossRef] [PubMed]
  18. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
    [CrossRef]
  19. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings—enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).
    [CrossRef]
  20. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  21. K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40 nm bandwidth,” IEEE Photon. Technol. Lett. 20, 1857–1859 (2008).
    [CrossRef]
  22. D. H. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng. 37, 2634–2646 (1998).
    [CrossRef]
  23. V. Constantoudis, G. P. Patsis, L. H. A. Leunissen, and E. Gogolides, “Towards a complete description of line width roughness: a comparison of different methods for vertical and spatial LER and LWR analysis and CD variation,” Proc. SPIE 5375, 967–977 (2004).
    [CrossRef]
  24. D. Marcuse, “Theory of dielectric optical waveguides,” in Quantum Electronics—Principles and Applications (Academic, 1991).
  25. T. A. Germer, “Effect of line and trench profile variation on specular and diffuse reflectance from a periodic structure,” J. Opt. Soc. Am. A 24, 696–701 (2007).
    [CrossRef]
  26. E. Gogolides, V. Constantoudis, G. P. Patsis, and A. Tserepi, “A review of line edge roughness and surface nanotexture resulting from patterning processes,” Microelectron. Eng. 83, 1067–1072 (2006).
    [CrossRef]
  27. I. Abdulhalim, “Simplified optical scatterometry for periodic nanoarrays in the near-quasi-static limit,” Appl. Opt. 46, 2219–2228 (2007).
    [CrossRef] [PubMed]

2010 (4)

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[CrossRef]

B. C. Bergner, T. A. Germer, and T. J. Suleski, “Effective medium approximations for modeling optical reflectance from gratings with rough edges,” J. Opt. Soc. Am. A 27, 1083–1090 (2010).
[CrossRef]

A. Talneau, F. Lemarchand, A.-L. Fehrembach, and A. Sentenac, “Impact of electron-beam lithography irregularities across millimeter-scale resonant grating filter performances,” Appl. Opt. 49, 658–662 (2010).
[CrossRef] [PubMed]

J. Viheriala, T. Niemi, J. Laukkanen, M. Karjalainen, and M. Pessa, “Large-area nanoperforated SiN membranes for optical and mechanical filtering,” Microelectron. Eng. 87, 1620–1622(2010).
[CrossRef]

2009 (3)

M. K. Poutous, Z. Roth, K. Buhl, A. Pung, R. C. Rumpf, and E. G. Johnson, “Correlation of fabrication tolerances with the performance of guided-mode-resonance micro-optical components,” Proc. SPIE 7205, 72050Y (2009).
[CrossRef]

K. J. Lee, J. Jin, B.-S. Bae, and R. Magnusson, “Optical filters fabricated in hybrimer media with soft lithography,” Opt. Lett. 34, 2510–2512 (2009).
[CrossRef] [PubMed]

T. Schuster, S. Rafler, V. F. Paz, K. Frenner, and W. Osten, “Fieldstitching with Kirchhoff-boundaries as a model-based description for line edge roughness (LER) in scatterometry,” Microelectron. Eng. 86, 1029–1032 (2009).
[CrossRef]

2008 (2)

S. Wei and F. Li, “Measurement of photoresist grating profiles based on multiwavelength scatterometry and artificial neural network,” Appl. Opt. 47, 2524–2532 (2008).
[CrossRef] [PubMed]

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40 nm bandwidth,” IEEE Photon. Technol. Lett. 20, 1857–1859 (2008).
[CrossRef]

2007 (4)

2006 (1)

E. Gogolides, V. Constantoudis, G. P. Patsis, and A. Tserepi, “A review of line edge roughness and surface nanotexture resulting from patterning processes,” Microelectron. Eng. 83, 1067–1072 (2006).
[CrossRef]

2005 (1)

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23, 3006–3010 (2005).
[CrossRef]

2004 (4)

Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12, 5661–5674 (2004).
[CrossRef] [PubMed]

Y. Ding and R. Magnusson, “Use of nondegenerate resonant leaky modes to fashion diverse optical spectra,” Opt. Express 12, 1885–1891 (2004).
[CrossRef] [PubMed]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

V. Constantoudis, G. P. Patsis, L. H. A. Leunissen, and E. Gogolides, “Towards a complete description of line width roughness: a comparison of different methods for vertical and spatial LER and LWR analysis and CD variation,” Proc. SPIE 5375, 967–977 (2004).
[CrossRef]

2002 (2)

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B 85, 219–226 (2002).
[CrossRef]

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
[CrossRef]

1998 (1)

D. H. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng. 37, 2634–2646 (1998).
[CrossRef]

1997 (1)

1995 (2)

Abdulhalim, I.

Bae, B.-S.

Bergner, B. C.

Britton, B.

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40 nm bandwidth,” IEEE Photon. Technol. Lett. 20, 1857–1859 (2008).
[CrossRef]

Buhl, K.

M. K. Poutous, Z. Roth, K. Buhl, A. Pung, R. C. Rumpf, and E. G. Johnson, “Correlation of fabrication tolerances with the performance of guided-mode-resonance micro-optical components,” Proc. SPIE 7205, 72050Y (2009).
[CrossRef]

Chang-Hasnain, C. J.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

Chen, L.

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23, 3006–3010 (2005).
[CrossRef]

Colvin, V. L.

Constantoudis, V.

E. Gogolides, V. Constantoudis, G. P. Patsis, and A. Tserepi, “A review of line edge roughness and surface nanotexture resulting from patterning processes,” Microelectron. Eng. 83, 1067–1072 (2006).
[CrossRef]

V. Constantoudis, G. P. Patsis, L. H. A. Leunissen, and E. Gogolides, “Towards a complete description of line width roughness: a comparison of different methods for vertical and spatial LER and LWR analysis and CD variation,” Proc. SPIE 5375, 967–977 (2004).
[CrossRef]

Cunningham, B.

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
[CrossRef]

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B 85, 219–226 (2002).
[CrossRef]

Deng, X.

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23, 3006–3010 (2005).
[CrossRef]

Deng, Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

Ding, Y.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[CrossRef]

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40 nm bandwidth,” IEEE Photon. Technol. Lett. 20, 1857–1859 (2008).
[CrossRef]

Y. Ding and R. Magnusson, “Use of nondegenerate resonant leaky modes to fashion diverse optical spectra,” Opt. Express 12, 1885–1891 (2004).
[CrossRef] [PubMed]

Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12, 5661–5674 (2004).
[CrossRef] [PubMed]

Donkor, E.

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40 nm bandwidth,” IEEE Photon. Technol. Lett. 20, 1857–1859 (2008).
[CrossRef]

Fehrembach, A.-L.

Frenner, K.

T. Schuster, S. Rafler, V. F. Paz, K. Frenner, and W. Osten, “Fieldstitching with Kirchhoff-boundaries as a model-based description for line edge roughness (LER) in scatterometry,” Microelectron. Eng. 86, 1029–1032 (2009).
[CrossRef]

Gaylord, T. K.

Germer, T. A.

Gogolides, E.

E. Gogolides, V. Constantoudis, G. P. Patsis, and A. Tserepi, “A review of line edge roughness and surface nanotexture resulting from patterning processes,” Microelectron. Eng. 83, 1067–1072 (2006).
[CrossRef]

V. Constantoudis, G. P. Patsis, L. H. A. Leunissen, and E. Gogolides, “Towards a complete description of line width roughness: a comparison of different methods for vertical and spatial LER and LWR analysis and CD variation,” Proc. SPIE 5375, 967–977 (2004).
[CrossRef]

Grann, E. B.

Huang, M. C. Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

Hugh, B.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B 85, 219–226 (2002).
[CrossRef]

Jin, J.

Johnson, E. G.

M. K. Poutous, Z. Roth, K. Buhl, A. Pung, R. C. Rumpf, and E. G. Johnson, “Correlation of fabrication tolerances with the performance of guided-mode-resonance micro-optical components,” Proc. SPIE 7205, 72050Y (2009).
[CrossRef]

Karjalainen, M.

J. Viheriala, T. Niemi, J. Laukkanen, M. Karjalainen, and M. Pessa, “Large-area nanoperforated SiN membranes for optical and mechanical filtering,” Microelectron. Eng. 87, 1620–1622(2010).
[CrossRef]

Kim, S.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[CrossRef]

Kwan, S.

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23, 3006–3010 (2005).
[CrossRef]

LaComb, R.

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40 nm bandwidth,” IEEE Photon. Technol. Lett. 20, 1857–1859 (2008).
[CrossRef]

Laukkanen, J.

J. Viheriala, T. Niemi, J. Laukkanen, M. Karjalainen, and M. Pessa, “Large-area nanoperforated SiN membranes for optical and mechanical filtering,” Microelectron. Eng. 87, 1620–1622(2010).
[CrossRef]

Lee, K. J.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[CrossRef]

K. J. Lee, J. Jin, B.-S. Bae, and R. Magnusson, “Optical filters fabricated in hybrimer media with soft lithography,” Opt. Lett. 34, 2510–2512 (2009).
[CrossRef] [PubMed]

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40 nm bandwidth,” IEEE Photon. Technol. Lett. 20, 1857–1859 (2008).
[CrossRef]

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel-based guided-mode resonance humidity sensor,” IEEE Sens. J. 7, 409–414 (2007).
[CrossRef]

Lemarchand, F.

Leunissen, L. H. A.

V. Constantoudis, G. P. Patsis, L. H. A. Leunissen, and E. Gogolides, “Towards a complete description of line width roughness: a comparison of different methods for vertical and spatial LER and LWR analysis and CD variation,” Proc. SPIE 5375, 967–977 (2004).
[CrossRef]

Li, F.

Li, L.

Li, P.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B 85, 219–226 (2002).
[CrossRef]

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
[CrossRef]

Lin, B.

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
[CrossRef]

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B 85, 219–226 (2002).
[CrossRef]

Liu, F.

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23, 3006–3010 (2005).
[CrossRef]

Magnusson, R.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[CrossRef]

K. J. Lee, J. Jin, B.-S. Bae, and R. Magnusson, “Optical filters fabricated in hybrimer media with soft lithography,” Opt. Lett. 34, 2510–2512 (2009).
[CrossRef] [PubMed]

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40 nm bandwidth,” IEEE Photon. Technol. Lett. 20, 1857–1859 (2008).
[CrossRef]

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel-based guided-mode resonance humidity sensor,” IEEE Sens. J. 7, 409–414 (2007).
[CrossRef]

Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12, 5661–5674 (2004).
[CrossRef] [PubMed]

Y. Ding and R. Magnusson, “Use of nondegenerate resonant leaky modes to fashion diverse optical spectra,” Opt. Express 12, 1885–1891 (2004).
[CrossRef] [PubMed]

D. H. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng. 37, 2634–2646 (1998).
[CrossRef]

Maldonado, T. A.

D. H. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng. 37, 2634–2646 (1998).
[CrossRef]

Marcuse, D.

D. Marcuse, “Theory of dielectric optical waveguides,” in Quantum Electronics—Principles and Applications (Academic, 1991).

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

Mittleman, D. M.

Moharam, M. G.

Neureuther, A. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

Niemi, T.

J. Viheriala, T. Niemi, J. Laukkanen, M. Karjalainen, and M. Pessa, “Large-area nanoperforated SiN membranes for optical and mechanical filtering,” Microelectron. Eng. 87, 1620–1622(2010).
[CrossRef]

Osten, W.

T. Schuster, S. Rafler, V. F. Paz, K. Frenner, and W. Osten, “Fieldstitching with Kirchhoff-boundaries as a model-based description for line edge roughness (LER) in scatterometry,” Microelectron. Eng. 86, 1029–1032 (2009).
[CrossRef]

Patsis, G. P.

E. Gogolides, V. Constantoudis, G. P. Patsis, and A. Tserepi, “A review of line edge roughness and surface nanotexture resulting from patterning processes,” Microelectron. Eng. 83, 1067–1072 (2006).
[CrossRef]

V. Constantoudis, G. P. Patsis, L. H. A. Leunissen, and E. Gogolides, “Towards a complete description of line width roughness: a comparison of different methods for vertical and spatial LER and LWR analysis and CD variation,” Proc. SPIE 5375, 967–977 (2004).
[CrossRef]

Paz, V. F.

T. Schuster, S. Rafler, V. F. Paz, K. Frenner, and W. Osten, “Fieldstitching with Kirchhoff-boundaries as a model-based description for line edge roughness (LER) in scatterometry,” Microelectron. Eng. 86, 1029–1032 (2009).
[CrossRef]

Pepper, J.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B 85, 219–226 (2002).
[CrossRef]

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
[CrossRef]

Pessa, M.

J. Viheriala, T. Niemi, J. Laukkanen, M. Karjalainen, and M. Pessa, “Large-area nanoperforated SiN membranes for optical and mechanical filtering,” Microelectron. Eng. 87, 1620–1622(2010).
[CrossRef]

Pommet, D. A.

Poutous, M. K.

M. K. Poutous, Z. Roth, K. Buhl, A. Pung, R. C. Rumpf, and E. G. Johnson, “Correlation of fabrication tolerances with the performance of guided-mode-resonance micro-optical components,” Proc. SPIE 7205, 72050Y (2009).
[CrossRef]

Prasad, T.

Priambodo, P. S.

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel-based guided-mode resonance humidity sensor,” IEEE Sens. J. 7, 409–414 (2007).
[CrossRef]

Pung, A.

M. K. Poutous, Z. Roth, K. Buhl, A. Pung, R. C. Rumpf, and E. G. Johnson, “Correlation of fabrication tolerances with the performance of guided-mode-resonance micro-optical components,” Proc. SPIE 7205, 72050Y (2009).
[CrossRef]

Qiu, J.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B 85, 219–226 (2002).
[CrossRef]

Rafler, S.

T. Schuster, S. Rafler, V. F. Paz, K. Frenner, and W. Osten, “Fieldstitching with Kirchhoff-boundaries as a model-based description for line edge roughness (LER) in scatterometry,” Microelectron. Eng. 86, 1029–1032 (2009).
[CrossRef]

Roth, Z.

M. K. Poutous, Z. Roth, K. Buhl, A. Pung, R. C. Rumpf, and E. G. Johnson, “Correlation of fabrication tolerances with the performance of guided-mode-resonance micro-optical components,” Proc. SPIE 7205, 72050Y (2009).
[CrossRef]

Rumpf, R. C.

M. K. Poutous, Z. Roth, K. Buhl, A. Pung, R. C. Rumpf, and E. G. Johnson, “Correlation of fabrication tolerances with the performance of guided-mode-resonance micro-optical components,” Proc. SPIE 7205, 72050Y (2009).
[CrossRef]

Schuster, T.

T. Schuster, S. Rafler, V. F. Paz, K. Frenner, and W. Osten, “Fieldstitching with Kirchhoff-boundaries as a model-based description for line edge roughness (LER) in scatterometry,” Microelectron. Eng. 86, 1029–1032 (2009).
[CrossRef]

Sentenac, A.

Shin, D. H.

D. H. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng. 37, 2634–2646 (1998).
[CrossRef]

Shokooh-Saremi, M.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[CrossRef]

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40 nm bandwidth,” IEEE Photon. Technol. Lett. 20, 1857–1859 (2008).
[CrossRef]

Silva, H.

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40 nm bandwidth,” IEEE Photon. Technol. Lett. 20, 1857–1859 (2008).
[CrossRef]

Song, S. H.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[CrossRef]

Suleski, T. J.

Talneau, A.

Tibuleac, S.

D. H. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng. 37, 2634–2646 (1998).
[CrossRef]

Tserepi, A.

E. Gogolides, V. Constantoudis, G. P. Patsis, and A. Tserepi, “A review of line edge roughness and surface nanotexture resulting from patterning processes,” Microelectron. Eng. 83, 1067–1072 (2006).
[CrossRef]

Ussery, D.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[CrossRef]

Viheriala, J.

J. Viheriala, T. Niemi, J. Laukkanen, M. Karjalainen, and M. Pessa, “Large-area nanoperforated SiN membranes for optical and mechanical filtering,” Microelectron. Eng. 87, 1620–1622(2010).
[CrossRef]

Wang, J. J.

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23, 3006–3010 (2005).
[CrossRef]

Wawro, D.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[CrossRef]

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel-based guided-mode resonance humidity sensor,” IEEE Sens. J. 7, 409–414 (2007).
[CrossRef]

Wei, S.

Zimmerman, S.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[CrossRef]

Appl. Opt. (3)

IEEE Photon. Technol. Lett. (2)

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40 nm bandwidth,” IEEE Photon. Technol. Lett. 20, 1857–1859 (2008).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

IEEE Sens. J. (1)

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel-based guided-mode resonance humidity sensor,” IEEE Sens. J. 7, 409–414 (2007).
[CrossRef]

J. Opt. Soc. Am. A (5)

J. Vac. Sci. Technol. B (1)

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23, 3006–3010 (2005).
[CrossRef]

Microelectron. Eng. (3)

J. Viheriala, T. Niemi, J. Laukkanen, M. Karjalainen, and M. Pessa, “Large-area nanoperforated SiN membranes for optical and mechanical filtering,” Microelectron. Eng. 87, 1620–1622(2010).
[CrossRef]

T. Schuster, S. Rafler, V. F. Paz, K. Frenner, and W. Osten, “Fieldstitching with Kirchhoff-boundaries as a model-based description for line edge roughness (LER) in scatterometry,” Microelectron. Eng. 86, 1029–1032 (2009).
[CrossRef]

E. Gogolides, V. Constantoudis, G. P. Patsis, and A. Tserepi, “A review of line edge roughness and surface nanotexture resulting from patterning processes,” Microelectron. Eng. 83, 1067–1072 (2006).
[CrossRef]

Opt. Eng. (1)

D. H. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng. 37, 2634–2646 (1998).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (3)

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[CrossRef]

M. K. Poutous, Z. Roth, K. Buhl, A. Pung, R. C. Rumpf, and E. G. Johnson, “Correlation of fabrication tolerances with the performance of guided-mode-resonance micro-optical components,” Proc. SPIE 7205, 72050Y (2009).
[CrossRef]

V. Constantoudis, G. P. Patsis, L. H. A. Leunissen, and E. Gogolides, “Towards a complete description of line width roughness: a comparison of different methods for vertical and spatial LER and LWR analysis and CD variation,” Proc. SPIE 5375, 967–977 (2004).
[CrossRef]

Sens. Actuators B (2)

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B 85, 219–226 (2002).
[CrossRef]

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
[CrossRef]

Other (2)

International Technology Roadmap for Semiconductors, http://www.itrs.net/Links/2009ITRS/Home2009.htm (2009).

D. Marcuse, “Theory of dielectric optical waveguides,” in Quantum Electronics—Principles and Applications (Academic, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic illustration of the GMR sensor structure discussed in this study. The parameters are as follows: h 1 = 390 nm , waveguide layer thickness; h 2 = 600 nm , grating height; p = 900 nm , grating period; f = 0.1 , fill factor within the period; n H = 1.97 , refractive index of Si 3 Ni 4 in both waveguide and grating layers; n S = 1.44 , refractive index of SiO 2 in the substrate layer; and the plane wave is in normal incidence.

Fig. 2
Fig. 2

Reflective spectral responses of TM and transverse-electric TE polarizations for the GMR sensor param eters shown in Fig. 1.

Fig. 3
Fig. 3

Reflective spectral responses of (a) TM and (b) TE when fill factor changes from 0 to 1 (the grating period is fixed at 900 nm ). The color scale represents the reflective intensity.

Fig. 4
Fig. 4

Reflective spectral responses of (a) TM and (b) TE when the period changes from 0.88 to 0.92 (the fill factor of the grating is fixed at 0.1). The color scale represents the reflective intensity.

Fig. 5
Fig. 5

Demonstration of (a) magnetic amplitudes of TM and (b) electric field amplitudes of TE for the GMR sensors at resonance as the field approaches maximum reflectance. The size of the region is 0.9 μm × 6 μm . Detailed (c) magnetic amplitudes of TM and (d) electric field amplitudes of TE plots for the cross section at x = 0 .

Fig. 6
Fig. 6

Spectral responses of (a) TM and (b) TE polarizations when the GMR sensor is covered by a virtual biolayer with t varied from 0.1 to 1 nm and with refractive index n bio = 1.5 ; the spectral responses of (c) TM and (d) TE polarizations when the GMR sensor is covered by liquid alcohol with the refractive index n varied from 1.36 to 1.361111 and the alcohol is full of the upper semi-infinite space.

Fig. 7
Fig. 7

(a) Configuration of the VSR distributed in the GMR biosensor. (b) Demonstration of the random VSR morphology at a fixed correlation length, ξ = 5 nm , with various values of rms of roughness σ. (c) Demonstration of the random VSR morphology at a fixed rms of roughness, σ = 1 nm , with various correlation lengths ξ.

Fig. 8
Fig. 8

ξ σ diagram of reflectance at the designed PWV for random VSR. (a) TM and (b) TE polarizations with changes in correlation lengths ξ and rms of roughness σ.

Fig. 9
Fig. 9

Spectral responses at different values of rms of roughness: (a)  σ = 1 nm , (b)  2.5 nm , (c)  3.5 nm , and (d)  5 nm , with variations in the correlation length ξ.

Fig. 10
Fig. 10

ξ σ diagram of reflectance at the designed PWV for sinusoidal VSR. (a) TM and (b) TE polarizations with changes in correlation lengths ξ and rms of roughness σ.

Fig. 11
Fig. 11

ξ σ diagram of reflectance at the designed PWV for effective VSR. (a) TM and (b) TE polarizations with changes in correlation lengths ξ and rms of roughness σ.

Fig. 12
Fig. 12

(a) TM and (b) TE polarization showing the redshifts of PWV that increase with the correlation length ξ, respectively.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ε ( x ) = i ε i exp j 2 π i x p ,
A ( μ ) = h ( z ) h ( z μ ) d z .
A ( μ ) = σ 2 exp | μ | ξ .
W ( k ) = A ( μ ) e i k μ d μ .
h ( z ) = W ( k ) 1 / 2 e ( i k z ) d k .
n x 0 = n y 0 = n o = n air 2 ( 1 f ) + f n R 2 ,
n z 0 = n e = n air n R n air 2 ( 1 f ) + f n R 2 .
n x 2 = n y 2 = { n o 2 + 1 3 [ π f ( 1 f ) ξ λ ] 2 ( n R 2 n air 2 ) 2 } 1 / 2 ,
n z 2 = { n e 2 + 1 3 [ π f ( 1 f ) ξ λ ] 2 ( 1 n R 2 1 n air 2 ) 2 n e 6 n o 2 } 1 / 2 .

Metrics