Abstract

A general analytical form of the round trip phase shift in grating feedback diode lasers is proposed. Using the new form, it is obvious that the round trip phase shift can be independent of rotation angle in first order approximation when only one restriction condition is met. We call this the quasi synchronous tuning (QST) condition. In the QST region, a considerably large mode hopping free tuning range can be obtained. An adjustment structure with only one freedom is needed to accurately find and locate the quasi synchronous pivot, which is not strictly confined on the grating surface and its extension. It means that the external cavity diode lasers design can be easier and the laser can be more stable and reliable.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. S. Bhatia, G. R. Welch, and M. O. Scully, “A single-mode semiconductor diode laser operating in the strong optical feedback regime and tunable within the D1 line of the Cs atom,” Opt. Commun. 189, 321–336 (2001).
    [CrossRef]
  2. P. Mills and R. Plastow, “Single-mode operation of 1.55 μm semiconductor lasers using a volume holographic grating,” Electron. Lett. 21, 648–649 (1985).
    [CrossRef]
  3. I. D. Lindsay, C. Petridis, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave pump-enhanced singly resonant optical parametric oscillator pumped by an extended-cavity diode laser,” Appl. Phys. Lett. 78, 871–873 (2001).
    [CrossRef]
  4. C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72, 3811–3815 (2001).
    [CrossRef]
  5. M. G. Littman and H. J. Metcalf, “Spectrally narrow pulsed dye laser without beam expander,” Appl. Opt. 17, 2224–2227(1978).
    [CrossRef] [PubMed]
  6. T. W. Hansch, “Repetitively pulsed tunable dye laser for high resolution spectroscopy,” Appl. Opt. 11, 895–898 (1972).
    [CrossRef] [PubMed]
  7. K. Liu and M. G. Littman, “Novel geometry for single-mode scanning of tunable lasers,” Opt. Lett. 6, 117–118(1981).
    [CrossRef] [PubMed]
  8. P. McNicholl and H. J. Metcalf, “Synchronous cavity mode and feedback wavelength scanning in dye laser oscillators with gratings,” Appl. Opt. 24, 2757–2761 (1985).
    [CrossRef] [PubMed]
  9. M. G. Littman, “Single-mode operation of grazing-incidence pulsed dye laser,” Opt. Lett. 3, 138–140 (1978).
    [CrossRef] [PubMed]
  10. M. de Labachelerie and G. Passedat, “Mode-hop suppression of Littrow grating-tuned lasers,” Appl. Opt. 32, 269–274(1993).
    [CrossRef] [PubMed]
  11. H. Lotem, “Mode-hop suppression of Littrow grating-tuned lasers: comment,” Appl. Opt. 33, 3816 (1994).
    [CrossRef] [PubMed]
  12. M. de Labachelerie, H. Sasada, and G. Passedat, “Mode-hop suppression of Littrow grating-tuned lasers: erratum,” Appl. Opt. 33, 3817–3819 (1994).
    [CrossRef] [PubMed]
  13. F. Favre and D. Le Guen, “82 nm of continuous tunability for an external cavity semiconductor laser,” Electron. Lett. 27, 183–184 (1991).
    [CrossRef]
  14. T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity 630 nm laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267–270 (1998).
    [CrossRef]
  15. L. Levin, “Mode-hop-free electro-optically tuned diode laser,” Opt. Lett. 27, 237–239 (2002).
    [CrossRef]
  16. G. Owen and W. R. Trutna, “Synchronous acousto-optic tuning of free-space external-cavity lasers,” Appl. Opt. 44, 4972–4975(2005).
    [CrossRef] [PubMed]
  17. G. Fortin and N. McCarthy, “Technique for continuous tuning of an extended-cavity diode laser,” Opt. Lett. 34, 3322–3324(2009).
    [CrossRef] [PubMed]
  18. W. R. Trutna and L. F. Stokes, “Continuously tuned external cavity semiconductor laser,” J. Lightwave Technol. 11, 1279–1286 (1993).
    [CrossRef]
  19. L. Nilse, H. J. Davies, and C. S. Adams, “Synchronous tuning of extended cavity diode lasers: the case for an optimum pivot point,” Appl. Opt. 38, 548–553 (1999).
    [CrossRef]
  20. Z. Yang, P. Yu, Y. Tao, L. Ye, W. Qiang, M. Fei, C. Jian-Ping, F. Zhan-Jun, L. Tian-Chu, and Z. Er-Jun, “External cavity diode laser with kilohertz linewidth by a monolithic folded Fabry—Perot cavity optical feedback,” Opt. Lett. 36, 34–36(2010).
    [CrossRef]

2010

2009

2005

2002

2001

I. D. Lindsay, C. Petridis, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave pump-enhanced singly resonant optical parametric oscillator pumped by an extended-cavity diode laser,” Appl. Phys. Lett. 78, 871–873 (2001).
[CrossRef]

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72, 3811–3815 (2001).
[CrossRef]

P. S. Bhatia, G. R. Welch, and M. O. Scully, “A single-mode semiconductor diode laser operating in the strong optical feedback regime and tunable within the D1 line of the Cs atom,” Opt. Commun. 189, 321–336 (2001).
[CrossRef]

1999

1998

T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity 630 nm laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267–270 (1998).
[CrossRef]

1994

1993

M. de Labachelerie and G. Passedat, “Mode-hop suppression of Littrow grating-tuned lasers,” Appl. Opt. 32, 269–274(1993).
[CrossRef] [PubMed]

W. R. Trutna and L. F. Stokes, “Continuously tuned external cavity semiconductor laser,” J. Lightwave Technol. 11, 1279–1286 (1993).
[CrossRef]

1991

F. Favre and D. Le Guen, “82 nm of continuous tunability for an external cavity semiconductor laser,” Electron. Lett. 27, 183–184 (1991).
[CrossRef]

1985

P. Mills and R. Plastow, “Single-mode operation of 1.55 μm semiconductor lasers using a volume holographic grating,” Electron. Lett. 21, 648–649 (1985).
[CrossRef]

P. McNicholl and H. J. Metcalf, “Synchronous cavity mode and feedback wavelength scanning in dye laser oscillators with gratings,” Appl. Opt. 24, 2757–2761 (1985).
[CrossRef] [PubMed]

1981

1978

1972

Adams, C. S.

Bhatia, P. S.

P. S. Bhatia, G. R. Welch, and M. O. Scully, “A single-mode semiconductor diode laser operating in the strong optical feedback regime and tunable within the D1 line of the Cs atom,” Opt. Commun. 189, 321–336 (2001).
[CrossRef]

Davies, H. J.

de Labachelerie, M.

Dunn, M. H.

I. D. Lindsay, C. Petridis, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave pump-enhanced singly resonant optical parametric oscillator pumped by an extended-cavity diode laser,” Appl. Phys. Lett. 78, 871–873 (2001).
[CrossRef]

Ebrahimzadeh, M.

I. D. Lindsay, C. Petridis, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave pump-enhanced singly resonant optical parametric oscillator pumped by an extended-cavity diode laser,” Appl. Phys. Lett. 78, 871–873 (2001).
[CrossRef]

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72, 3811–3815 (2001).
[CrossRef]

Er-Jun, Z.

Favre, F.

F. Favre and D. Le Guen, “82 nm of continuous tunability for an external cavity semiconductor laser,” Electron. Lett. 27, 183–184 (1991).
[CrossRef]

Fei, M.

Fortin, G.

Fujii, T.

T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity 630 nm laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267–270 (1998).
[CrossRef]

Hansch, T. W.

Jian-Ping, C.

Kourogi, M.

T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity 630 nm laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267–270 (1998).
[CrossRef]

Kozuma, M.

T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity 630 nm laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267–270 (1998).
[CrossRef]

Le Guen, D.

F. Favre and D. Le Guen, “82 nm of continuous tunability for an external cavity semiconductor laser,” Electron. Lett. 27, 183–184 (1991).
[CrossRef]

Levin, L.

Lindsay, I. D.

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72, 3811–3815 (2001).
[CrossRef]

I. D. Lindsay, C. Petridis, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave pump-enhanced singly resonant optical parametric oscillator pumped by an extended-cavity diode laser,” Appl. Phys. Lett. 78, 871–873 (2001).
[CrossRef]

Littman, M. G.

Liu, K.

Lotem, H.

McCarthy, N.

McNicholl, P.

Metcalf, H. J.

Mills, P.

P. Mills and R. Plastow, “Single-mode operation of 1.55 μm semiconductor lasers using a volume holographic grating,” Electron. Lett. 21, 648–649 (1985).
[CrossRef]

Nayuki, T.

T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity 630 nm laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267–270 (1998).
[CrossRef]

Nemoto, K.

T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity 630 nm laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267–270 (1998).
[CrossRef]

Nilse, L.

Ohtsu, M.

T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity 630 nm laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267–270 (1998).
[CrossRef]

Owen, G.

Passedat, G.

Petridis, C.

I. D. Lindsay, C. Petridis, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave pump-enhanced singly resonant optical parametric oscillator pumped by an extended-cavity diode laser,” Appl. Phys. Lett. 78, 871–873 (2001).
[CrossRef]

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72, 3811–3815 (2001).
[CrossRef]

Plastow, R.

P. Mills and R. Plastow, “Single-mode operation of 1.55 μm semiconductor lasers using a volume holographic grating,” Electron. Lett. 21, 648–649 (1985).
[CrossRef]

Qiang, W.

Sasada, H.

Scully, M. O.

P. S. Bhatia, G. R. Welch, and M. O. Scully, “A single-mode semiconductor diode laser operating in the strong optical feedback regime and tunable within the D1 line of the Cs atom,” Opt. Commun. 189, 321–336 (2001).
[CrossRef]

Stokes, L. F.

W. R. Trutna and L. F. Stokes, “Continuously tuned external cavity semiconductor laser,” J. Lightwave Technol. 11, 1279–1286 (1993).
[CrossRef]

Stothard, D. J. M.

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72, 3811–3815 (2001).
[CrossRef]

Tao, Y.

Tian-Chu, L.

Trutna, W. R.

G. Owen and W. R. Trutna, “Synchronous acousto-optic tuning of free-space external-cavity lasers,” Appl. Opt. 44, 4972–4975(2005).
[CrossRef] [PubMed]

W. R. Trutna and L. F. Stokes, “Continuously tuned external cavity semiconductor laser,” J. Lightwave Technol. 11, 1279–1286 (1993).
[CrossRef]

Welch, G. R.

P. S. Bhatia, G. R. Welch, and M. O. Scully, “A single-mode semiconductor diode laser operating in the strong optical feedback regime and tunable within the D1 line of the Cs atom,” Opt. Commun. 189, 321–336 (2001).
[CrossRef]

Yang, Z.

Ye, L.

Yu, P.

Zhan-Jun, F.

Appl. Opt.

Appl. Phys. Lett.

I. D. Lindsay, C. Petridis, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave pump-enhanced singly resonant optical parametric oscillator pumped by an extended-cavity diode laser,” Appl. Phys. Lett. 78, 871–873 (2001).
[CrossRef]

Electron. Lett.

P. Mills and R. Plastow, “Single-mode operation of 1.55 μm semiconductor lasers using a volume holographic grating,” Electron. Lett. 21, 648–649 (1985).
[CrossRef]

F. Favre and D. Le Guen, “82 nm of continuous tunability for an external cavity semiconductor laser,” Electron. Lett. 27, 183–184 (1991).
[CrossRef]

J. Lightwave Technol.

W. R. Trutna and L. F. Stokes, “Continuously tuned external cavity semiconductor laser,” J. Lightwave Technol. 11, 1279–1286 (1993).
[CrossRef]

Opt. Commun.

P. S. Bhatia, G. R. Welch, and M. O. Scully, “A single-mode semiconductor diode laser operating in the strong optical feedback regime and tunable within the D1 line of the Cs atom,” Opt. Commun. 189, 321–336 (2001).
[CrossRef]

Opt. Lett.

Opt. Rev.

T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity 630 nm laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267–270 (1998).
[CrossRef]

Rev. Sci. Instrum.

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72, 3811–3815 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Littman configuration with grating tuning.

Fig. 2
Fig. 2

Littman configuration with mirror tuning.

Fig. 3
Fig. 3

Grazing-diffraction configuration with grating tuning.

Fig. 4
Fig. 4

Grazing-diffraction configuration with mirror tuning.

Fig. 5
Fig. 5

Littrow configuration.

Fig. 6
Fig. 6

Division of X Y plane into 12 subregions. The boundaries between two neighbor subregions are described by the two lines X = ± a , and two parabolas Δ 1 = Δ 2 = 0 , and the segment between points of ± ( a + b 2 / 4 c ) on the X axis.

Fig. 7
Fig. 7

Distribution of frequency tuning range in the X Y plane. The parameters used in the calculation were λ ( 0 ) = 689.449 nm , l 0 = 72.6 mm , grating spacing d = 1 / 1800 mm , and the incident angle θ i = 72.255 ° .

Fig. 8
Fig. 8

Contour plot of frequency tuning range ranging from 1000 GHz to 5000 GHz with a spacing of 1000 GHz .

Fig. 9
Fig. 9

Dip in the cross-section profile of frequency tuning range distribution. Three curves are calculated with an offset of 0 mm , 50 mm , 100 mm respectively, in the X direction.

Fig. 10
Fig. 10

Dip in the cross-section profile of frequency tuning range distribution. Three curves are calculated with an offset of 0 μm , 100 μm , and 200 μm respectively, in the Y direction.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

l ( α ) = S ( α ) S ( 0 ) l 0 H [ Y sin α + X ( 1 cos α ) ] ,
Ψ ( α ) = Ψ 0 A ( α ) H [ Y sin α + X ( 1 cos α ) ] ,
Ψ ( α ) Ψ 0 A ( α ) H Y sin α .
| S ( 0 ) S ( α ) l ( α ) l 0 | λ ( 0 ) 4 .
{ ( X + a ) t 2 + ( Y + b ) t c 0 ( X a ) t 2 + ( Y b ) t + c 0 .
Δ ν = l 0 ν ( 0 ) { 1 Min [ l ( α ) ] 1 Max [ l ( α ) ] } .

Metrics