Abstract

The refractive index of optical waveguides formed by electric field assisted Cu+-Na+ ion exchange in two types of glass is measured. Assuming, as in a previously published work, that the observed refractive index increase is solely due to polarizability changes, the difference in electronic polarizability between Cu+ and Na+ ions is determined by applying the Lorentz–Lorenz equation to the data. In our work, the concentration of exchanged ions, which is a necessary input to the Lorentz–Lorenz equation, is determined by combining optical data and electrical data obtained during the exchange. Values for the electronic polarizability difference are in agreement with that in the literature. However, when a correction is made, taking into consideration the measured volume expansion and stress in the glass, the calculated electronic polarizability difference is shown to increase by 19%.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Gonella, “Metal nanocluster composite silicate glasses,” Rev. Adv. Mater. Sci. 14, 134–143 (2007).
  2. Y. Ti, F. Qiu, Y. Cao, L. Jia, W. Qin, J. Zheng, and G. Farrell, “Photoluminesence of copper ion exchange BK7 glass planar waveguides,” J. Mater. Sci. 43, 7073–7078 (2008).
    [CrossRef]
  3. J. M. Lehky, D. Erni, F. Robin, F. Dellmann, L. G. Bona, P. Straub, and W. Bachtold, “Optical waveguides for backplane communication using metal film ion-exchange in glass,” presented at the 12th European Conference on Integrated Optics, Grenoble, France, April 6–8 2005.
  4. A. N. Miliou, R. Srivastava, and R. V. Ramaswamy, “Modeling of the index change in K+-Na+ ion-exchanged glass,” Appl. Opt. 30, 674–681 (1991).
    [CrossRef] [PubMed]
  5. S. Fantone, “Refractive index and spectral models for gradient-index materials,” Appl. Opt. 22, 432–440 (1983).
    [CrossRef] [PubMed]
  6. F. Gonella, “Characterisation of Cu-Na ion-exchanged glass waveguides,” Appl. Phys. Lett. 69, 314–315 (1996).
    [CrossRef]
  7. N. Valles-Villarreal, A. Villalobos, and H. Marquez, “Stress in copper doped ion-exchanged waveguides,” J. Lightwave Technol. 17, 606–612 (1999).
    [CrossRef]
  8. H. Marquez, D. Salazar, A. Villalobos, G. Paez, and J. M. Rincon, “Experimental study of Cu+-Na+ exchanged glass waveguides,” Appl. Opt. 34, 5817–5822 (1995).
    [CrossRef] [PubMed]
  9. R. Oven, M. Yin, and P. A. Davies, “Characterisation of planar optical waveguides formed by copper-sodium, electric field assisted, ion exchange in glass,” J. Phys. D Appl. Phys. 37, 2207–2215 (2004).
    [CrossRef]
  10. J. Spirkova, P. Nebolova, I. Jirka, K. Mach, V. Perina, A. Mackova, and G. Kuncova, “Copper doped waveguides in glass substrates,” Fiber Integr. Opt. 21, 63–74 (2002).
    [CrossRef]
  11. F. Gonella, F. Caccavale, A. Quaranta, and A. Sambo, “Copper doped ion-exchanged waveguide characterisation,” J. Mod. Opt. 45, 837–845 (1998).
    [CrossRef]
  12. F. Gonella, F. Caccavale, L. D. Bogomolova, F. D’Acapito, and A. Quaranta, “Experimental study of copper-alkali ion exchange in glass,” J. Appl. Phys. 83, 1200–1206 (1998).
    [CrossRef]
  13. T. Findakly and E. Garmire, “Reduction and control of optical-waveguide losses in glass,” Appl. Phys. Lett. 37, 855–856(1980).
    [CrossRef]
  14. S. Honkanen, H. Tervonen, H. von Bagh, and M. Leppihalme, “Ion exchange process for fabrication of waveguides couplers for fiber optic sensor applications,” J. Appl. Phys. 61, 52–5(1987).
    [CrossRef]
  15. R. Oven, “Surface expansion of channel waveguides formed by ion exchange in glass,” J. Appl. Phys. 100, 053513 (2006).
    [CrossRef]
  16. K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. 3, 385–391 (1985).
    [CrossRef]
  17. B. A. Boley and J. H. Weiner, Theory of Thermal Stresses(Dover, 1997), pp. 277–279.
  18. A. J. H. P. van der Pol and R. E. O. van de Leest, “On the surface chemistry of barium borosilicate glass in aqueous solutions,” Phys. Chem. Glasses 39, 101–107 (1998).
  19. H. Rawson, Properties and Applications of Glass (Elsevier, 1980).
  20. T. Kaneko, “Dilation of glass by field assisted ion exchange,” J. Mat. Sci. Lett. 5, 1011–1012 (1986).
    [CrossRef]
  21. J. R. Tessman, A. H. Kahn, and W. Shockley, “Electronic polarizabilities of ions in crystals,” Phys. Rev. 92, 890–895(1953).
    [CrossRef]
  22. F. Gonella, A. Quaranta, S. Padovani, C. Sada, F. D’Acapito, C. Maurizio, G. Battaglin, and E. Cattaruzza, “Copper diffusion in ion-exchanged soda-lime glass,” Appl. Phys. A 81, 1065–1071 (2005).
    [CrossRef]

2008 (1)

Y. Ti, F. Qiu, Y. Cao, L. Jia, W. Qin, J. Zheng, and G. Farrell, “Photoluminesence of copper ion exchange BK7 glass planar waveguides,” J. Mater. Sci. 43, 7073–7078 (2008).
[CrossRef]

2007 (1)

F. Gonella, “Metal nanocluster composite silicate glasses,” Rev. Adv. Mater. Sci. 14, 134–143 (2007).

2006 (1)

R. Oven, “Surface expansion of channel waveguides formed by ion exchange in glass,” J. Appl. Phys. 100, 053513 (2006).
[CrossRef]

2005 (1)

F. Gonella, A. Quaranta, S. Padovani, C. Sada, F. D’Acapito, C. Maurizio, G. Battaglin, and E. Cattaruzza, “Copper diffusion in ion-exchanged soda-lime glass,” Appl. Phys. A 81, 1065–1071 (2005).
[CrossRef]

2004 (1)

R. Oven, M. Yin, and P. A. Davies, “Characterisation of planar optical waveguides formed by copper-sodium, electric field assisted, ion exchange in glass,” J. Phys. D Appl. Phys. 37, 2207–2215 (2004).
[CrossRef]

2002 (1)

J. Spirkova, P. Nebolova, I. Jirka, K. Mach, V. Perina, A. Mackova, and G. Kuncova, “Copper doped waveguides in glass substrates,” Fiber Integr. Opt. 21, 63–74 (2002).
[CrossRef]

1999 (1)

1998 (3)

F. Gonella, F. Caccavale, A. Quaranta, and A. Sambo, “Copper doped ion-exchanged waveguide characterisation,” J. Mod. Opt. 45, 837–845 (1998).
[CrossRef]

F. Gonella, F. Caccavale, L. D. Bogomolova, F. D’Acapito, and A. Quaranta, “Experimental study of copper-alkali ion exchange in glass,” J. Appl. Phys. 83, 1200–1206 (1998).
[CrossRef]

A. J. H. P. van der Pol and R. E. O. van de Leest, “On the surface chemistry of barium borosilicate glass in aqueous solutions,” Phys. Chem. Glasses 39, 101–107 (1998).

1996 (1)

F. Gonella, “Characterisation of Cu-Na ion-exchanged glass waveguides,” Appl. Phys. Lett. 69, 314–315 (1996).
[CrossRef]

1995 (1)

1991 (1)

1987 (1)

S. Honkanen, H. Tervonen, H. von Bagh, and M. Leppihalme, “Ion exchange process for fabrication of waveguides couplers for fiber optic sensor applications,” J. Appl. Phys. 61, 52–5(1987).
[CrossRef]

1986 (1)

T. Kaneko, “Dilation of glass by field assisted ion exchange,” J. Mat. Sci. Lett. 5, 1011–1012 (1986).
[CrossRef]

1985 (1)

K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. 3, 385–391 (1985).
[CrossRef]

1983 (1)

1980 (1)

T. Findakly and E. Garmire, “Reduction and control of optical-waveguide losses in glass,” Appl. Phys. Lett. 37, 855–856(1980).
[CrossRef]

1953 (1)

J. R. Tessman, A. H. Kahn, and W. Shockley, “Electronic polarizabilities of ions in crystals,” Phys. Rev. 92, 890–895(1953).
[CrossRef]

Bachtold, W.

J. M. Lehky, D. Erni, F. Robin, F. Dellmann, L. G. Bona, P. Straub, and W. Bachtold, “Optical waveguides for backplane communication using metal film ion-exchange in glass,” presented at the 12th European Conference on Integrated Optics, Grenoble, France, April 6–8 2005.

Battaglin, G.

F. Gonella, A. Quaranta, S. Padovani, C. Sada, F. D’Acapito, C. Maurizio, G. Battaglin, and E. Cattaruzza, “Copper diffusion in ion-exchanged soda-lime glass,” Appl. Phys. A 81, 1065–1071 (2005).
[CrossRef]

Bogomolova, L. D.

F. Gonella, F. Caccavale, L. D. Bogomolova, F. D’Acapito, and A. Quaranta, “Experimental study of copper-alkali ion exchange in glass,” J. Appl. Phys. 83, 1200–1206 (1998).
[CrossRef]

Boley, B. A.

B. A. Boley and J. H. Weiner, Theory of Thermal Stresses(Dover, 1997), pp. 277–279.

Bona, L. G.

J. M. Lehky, D. Erni, F. Robin, F. Dellmann, L. G. Bona, P. Straub, and W. Bachtold, “Optical waveguides for backplane communication using metal film ion-exchange in glass,” presented at the 12th European Conference on Integrated Optics, Grenoble, France, April 6–8 2005.

Caccavale, F.

F. Gonella, F. Caccavale, A. Quaranta, and A. Sambo, “Copper doped ion-exchanged waveguide characterisation,” J. Mod. Opt. 45, 837–845 (1998).
[CrossRef]

F. Gonella, F. Caccavale, L. D. Bogomolova, F. D’Acapito, and A. Quaranta, “Experimental study of copper-alkali ion exchange in glass,” J. Appl. Phys. 83, 1200–1206 (1998).
[CrossRef]

Cao, Y.

Y. Ti, F. Qiu, Y. Cao, L. Jia, W. Qin, J. Zheng, and G. Farrell, “Photoluminesence of copper ion exchange BK7 glass planar waveguides,” J. Mater. Sci. 43, 7073–7078 (2008).
[CrossRef]

Cattaruzza, E.

F. Gonella, A. Quaranta, S. Padovani, C. Sada, F. D’Acapito, C. Maurizio, G. Battaglin, and E. Cattaruzza, “Copper diffusion in ion-exchanged soda-lime glass,” Appl. Phys. A 81, 1065–1071 (2005).
[CrossRef]

Chiang, K. S.

K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. 3, 385–391 (1985).
[CrossRef]

D’Acapito, F.

F. Gonella, A. Quaranta, S. Padovani, C. Sada, F. D’Acapito, C. Maurizio, G. Battaglin, and E. Cattaruzza, “Copper diffusion in ion-exchanged soda-lime glass,” Appl. Phys. A 81, 1065–1071 (2005).
[CrossRef]

F. Gonella, F. Caccavale, L. D. Bogomolova, F. D’Acapito, and A. Quaranta, “Experimental study of copper-alkali ion exchange in glass,” J. Appl. Phys. 83, 1200–1206 (1998).
[CrossRef]

Davies, P. A.

R. Oven, M. Yin, and P. A. Davies, “Characterisation of planar optical waveguides formed by copper-sodium, electric field assisted, ion exchange in glass,” J. Phys. D Appl. Phys. 37, 2207–2215 (2004).
[CrossRef]

Dellmann, F.

J. M. Lehky, D. Erni, F. Robin, F. Dellmann, L. G. Bona, P. Straub, and W. Bachtold, “Optical waveguides for backplane communication using metal film ion-exchange in glass,” presented at the 12th European Conference on Integrated Optics, Grenoble, France, April 6–8 2005.

Erni, D.

J. M. Lehky, D. Erni, F. Robin, F. Dellmann, L. G. Bona, P. Straub, and W. Bachtold, “Optical waveguides for backplane communication using metal film ion-exchange in glass,” presented at the 12th European Conference on Integrated Optics, Grenoble, France, April 6–8 2005.

Fantone, S.

Farrell, G.

Y. Ti, F. Qiu, Y. Cao, L. Jia, W. Qin, J. Zheng, and G. Farrell, “Photoluminesence of copper ion exchange BK7 glass planar waveguides,” J. Mater. Sci. 43, 7073–7078 (2008).
[CrossRef]

Findakly, T.

T. Findakly and E. Garmire, “Reduction and control of optical-waveguide losses in glass,” Appl. Phys. Lett. 37, 855–856(1980).
[CrossRef]

Garmire, E.

T. Findakly and E. Garmire, “Reduction and control of optical-waveguide losses in glass,” Appl. Phys. Lett. 37, 855–856(1980).
[CrossRef]

Gonella, F.

F. Gonella, “Metal nanocluster composite silicate glasses,” Rev. Adv. Mater. Sci. 14, 134–143 (2007).

F. Gonella, A. Quaranta, S. Padovani, C. Sada, F. D’Acapito, C. Maurizio, G. Battaglin, and E. Cattaruzza, “Copper diffusion in ion-exchanged soda-lime glass,” Appl. Phys. A 81, 1065–1071 (2005).
[CrossRef]

F. Gonella, F. Caccavale, A. Quaranta, and A. Sambo, “Copper doped ion-exchanged waveguide characterisation,” J. Mod. Opt. 45, 837–845 (1998).
[CrossRef]

F. Gonella, F. Caccavale, L. D. Bogomolova, F. D’Acapito, and A. Quaranta, “Experimental study of copper-alkali ion exchange in glass,” J. Appl. Phys. 83, 1200–1206 (1998).
[CrossRef]

F. Gonella, “Characterisation of Cu-Na ion-exchanged glass waveguides,” Appl. Phys. Lett. 69, 314–315 (1996).
[CrossRef]

Honkanen, S.

S. Honkanen, H. Tervonen, H. von Bagh, and M. Leppihalme, “Ion exchange process for fabrication of waveguides couplers for fiber optic sensor applications,” J. Appl. Phys. 61, 52–5(1987).
[CrossRef]

Jia, L.

Y. Ti, F. Qiu, Y. Cao, L. Jia, W. Qin, J. Zheng, and G. Farrell, “Photoluminesence of copper ion exchange BK7 glass planar waveguides,” J. Mater. Sci. 43, 7073–7078 (2008).
[CrossRef]

Jirka, I.

J. Spirkova, P. Nebolova, I. Jirka, K. Mach, V. Perina, A. Mackova, and G. Kuncova, “Copper doped waveguides in glass substrates,” Fiber Integr. Opt. 21, 63–74 (2002).
[CrossRef]

Kahn, A. H.

J. R. Tessman, A. H. Kahn, and W. Shockley, “Electronic polarizabilities of ions in crystals,” Phys. Rev. 92, 890–895(1953).
[CrossRef]

Kaneko, T.

T. Kaneko, “Dilation of glass by field assisted ion exchange,” J. Mat. Sci. Lett. 5, 1011–1012 (1986).
[CrossRef]

Kuncova, G.

J. Spirkova, P. Nebolova, I. Jirka, K. Mach, V. Perina, A. Mackova, and G. Kuncova, “Copper doped waveguides in glass substrates,” Fiber Integr. Opt. 21, 63–74 (2002).
[CrossRef]

Lehky, J. M.

J. M. Lehky, D. Erni, F. Robin, F. Dellmann, L. G. Bona, P. Straub, and W. Bachtold, “Optical waveguides for backplane communication using metal film ion-exchange in glass,” presented at the 12th European Conference on Integrated Optics, Grenoble, France, April 6–8 2005.

Leppihalme, M.

S. Honkanen, H. Tervonen, H. von Bagh, and M. Leppihalme, “Ion exchange process for fabrication of waveguides couplers for fiber optic sensor applications,” J. Appl. Phys. 61, 52–5(1987).
[CrossRef]

Mach, K.

J. Spirkova, P. Nebolova, I. Jirka, K. Mach, V. Perina, A. Mackova, and G. Kuncova, “Copper doped waveguides in glass substrates,” Fiber Integr. Opt. 21, 63–74 (2002).
[CrossRef]

Mackova, A.

J. Spirkova, P. Nebolova, I. Jirka, K. Mach, V. Perina, A. Mackova, and G. Kuncova, “Copper doped waveguides in glass substrates,” Fiber Integr. Opt. 21, 63–74 (2002).
[CrossRef]

Marquez, H.

Maurizio, C.

F. Gonella, A. Quaranta, S. Padovani, C. Sada, F. D’Acapito, C. Maurizio, G. Battaglin, and E. Cattaruzza, “Copper diffusion in ion-exchanged soda-lime glass,” Appl. Phys. A 81, 1065–1071 (2005).
[CrossRef]

Miliou, A. N.

Nebolova, P.

J. Spirkova, P. Nebolova, I. Jirka, K. Mach, V. Perina, A. Mackova, and G. Kuncova, “Copper doped waveguides in glass substrates,” Fiber Integr. Opt. 21, 63–74 (2002).
[CrossRef]

Oven, R.

R. Oven, “Surface expansion of channel waveguides formed by ion exchange in glass,” J. Appl. Phys. 100, 053513 (2006).
[CrossRef]

R. Oven, M. Yin, and P. A. Davies, “Characterisation of planar optical waveguides formed by copper-sodium, electric field assisted, ion exchange in glass,” J. Phys. D Appl. Phys. 37, 2207–2215 (2004).
[CrossRef]

Padovani, S.

F. Gonella, A. Quaranta, S. Padovani, C. Sada, F. D’Acapito, C. Maurizio, G. Battaglin, and E. Cattaruzza, “Copper diffusion in ion-exchanged soda-lime glass,” Appl. Phys. A 81, 1065–1071 (2005).
[CrossRef]

Paez, G.

Perina, V.

J. Spirkova, P. Nebolova, I. Jirka, K. Mach, V. Perina, A. Mackova, and G. Kuncova, “Copper doped waveguides in glass substrates,” Fiber Integr. Opt. 21, 63–74 (2002).
[CrossRef]

Qin, W.

Y. Ti, F. Qiu, Y. Cao, L. Jia, W. Qin, J. Zheng, and G. Farrell, “Photoluminesence of copper ion exchange BK7 glass planar waveguides,” J. Mater. Sci. 43, 7073–7078 (2008).
[CrossRef]

Qiu, F.

Y. Ti, F. Qiu, Y. Cao, L. Jia, W. Qin, J. Zheng, and G. Farrell, “Photoluminesence of copper ion exchange BK7 glass planar waveguides,” J. Mater. Sci. 43, 7073–7078 (2008).
[CrossRef]

Quaranta, A.

F. Gonella, A. Quaranta, S. Padovani, C. Sada, F. D’Acapito, C. Maurizio, G. Battaglin, and E. Cattaruzza, “Copper diffusion in ion-exchanged soda-lime glass,” Appl. Phys. A 81, 1065–1071 (2005).
[CrossRef]

F. Gonella, F. Caccavale, A. Quaranta, and A. Sambo, “Copper doped ion-exchanged waveguide characterisation,” J. Mod. Opt. 45, 837–845 (1998).
[CrossRef]

F. Gonella, F. Caccavale, L. D. Bogomolova, F. D’Acapito, and A. Quaranta, “Experimental study of copper-alkali ion exchange in glass,” J. Appl. Phys. 83, 1200–1206 (1998).
[CrossRef]

Ramaswamy, R. V.

Rawson, H.

H. Rawson, Properties and Applications of Glass (Elsevier, 1980).

Rincon, J. M.

Robin, F.

J. M. Lehky, D. Erni, F. Robin, F. Dellmann, L. G. Bona, P. Straub, and W. Bachtold, “Optical waveguides for backplane communication using metal film ion-exchange in glass,” presented at the 12th European Conference on Integrated Optics, Grenoble, France, April 6–8 2005.

Sada, C.

F. Gonella, A. Quaranta, S. Padovani, C. Sada, F. D’Acapito, C. Maurizio, G. Battaglin, and E. Cattaruzza, “Copper diffusion in ion-exchanged soda-lime glass,” Appl. Phys. A 81, 1065–1071 (2005).
[CrossRef]

Salazar, D.

Sambo, A.

F. Gonella, F. Caccavale, A. Quaranta, and A. Sambo, “Copper doped ion-exchanged waveguide characterisation,” J. Mod. Opt. 45, 837–845 (1998).
[CrossRef]

Shockley, W.

J. R. Tessman, A. H. Kahn, and W. Shockley, “Electronic polarizabilities of ions in crystals,” Phys. Rev. 92, 890–895(1953).
[CrossRef]

Spirkova, J.

J. Spirkova, P. Nebolova, I. Jirka, K. Mach, V. Perina, A. Mackova, and G. Kuncova, “Copper doped waveguides in glass substrates,” Fiber Integr. Opt. 21, 63–74 (2002).
[CrossRef]

Srivastava, R.

Straub, P.

J. M. Lehky, D. Erni, F. Robin, F. Dellmann, L. G. Bona, P. Straub, and W. Bachtold, “Optical waveguides for backplane communication using metal film ion-exchange in glass,” presented at the 12th European Conference on Integrated Optics, Grenoble, France, April 6–8 2005.

Tervonen, H.

S. Honkanen, H. Tervonen, H. von Bagh, and M. Leppihalme, “Ion exchange process for fabrication of waveguides couplers for fiber optic sensor applications,” J. Appl. Phys. 61, 52–5(1987).
[CrossRef]

Tessman, J. R.

J. R. Tessman, A. H. Kahn, and W. Shockley, “Electronic polarizabilities of ions in crystals,” Phys. Rev. 92, 890–895(1953).
[CrossRef]

Ti, Y.

Y. Ti, F. Qiu, Y. Cao, L. Jia, W. Qin, J. Zheng, and G. Farrell, “Photoluminesence of copper ion exchange BK7 glass planar waveguides,” J. Mater. Sci. 43, 7073–7078 (2008).
[CrossRef]

Valles-Villarreal, N.

van de Leest, R. E. O.

A. J. H. P. van der Pol and R. E. O. van de Leest, “On the surface chemistry of barium borosilicate glass in aqueous solutions,” Phys. Chem. Glasses 39, 101–107 (1998).

van der Pol, A. J. H. P.

A. J. H. P. van der Pol and R. E. O. van de Leest, “On the surface chemistry of barium borosilicate glass in aqueous solutions,” Phys. Chem. Glasses 39, 101–107 (1998).

Villalobos, A.

von Bagh, H.

S. Honkanen, H. Tervonen, H. von Bagh, and M. Leppihalme, “Ion exchange process for fabrication of waveguides couplers for fiber optic sensor applications,” J. Appl. Phys. 61, 52–5(1987).
[CrossRef]

Weiner, J. H.

B. A. Boley and J. H. Weiner, Theory of Thermal Stresses(Dover, 1997), pp. 277–279.

Yin, M.

R. Oven, M. Yin, and P. A. Davies, “Characterisation of planar optical waveguides formed by copper-sodium, electric field assisted, ion exchange in glass,” J. Phys. D Appl. Phys. 37, 2207–2215 (2004).
[CrossRef]

Zheng, J.

Y. Ti, F. Qiu, Y. Cao, L. Jia, W. Qin, J. Zheng, and G. Farrell, “Photoluminesence of copper ion exchange BK7 glass planar waveguides,” J. Mater. Sci. 43, 7073–7078 (2008).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. A (1)

F. Gonella, A. Quaranta, S. Padovani, C. Sada, F. D’Acapito, C. Maurizio, G. Battaglin, and E. Cattaruzza, “Copper diffusion in ion-exchanged soda-lime glass,” Appl. Phys. A 81, 1065–1071 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

F. Gonella, “Characterisation of Cu-Na ion-exchanged glass waveguides,” Appl. Phys. Lett. 69, 314–315 (1996).
[CrossRef]

T. Findakly and E. Garmire, “Reduction and control of optical-waveguide losses in glass,” Appl. Phys. Lett. 37, 855–856(1980).
[CrossRef]

Fiber Integr. Opt. (1)

J. Spirkova, P. Nebolova, I. Jirka, K. Mach, V. Perina, A. Mackova, and G. Kuncova, “Copper doped waveguides in glass substrates,” Fiber Integr. Opt. 21, 63–74 (2002).
[CrossRef]

J. Appl. Phys. (3)

F. Gonella, F. Caccavale, L. D. Bogomolova, F. D’Acapito, and A. Quaranta, “Experimental study of copper-alkali ion exchange in glass,” J. Appl. Phys. 83, 1200–1206 (1998).
[CrossRef]

S. Honkanen, H. Tervonen, H. von Bagh, and M. Leppihalme, “Ion exchange process for fabrication of waveguides couplers for fiber optic sensor applications,” J. Appl. Phys. 61, 52–5(1987).
[CrossRef]

R. Oven, “Surface expansion of channel waveguides formed by ion exchange in glass,” J. Appl. Phys. 100, 053513 (2006).
[CrossRef]

J. Lightwave Technol. (2)

K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. 3, 385–391 (1985).
[CrossRef]

N. Valles-Villarreal, A. Villalobos, and H. Marquez, “Stress in copper doped ion-exchanged waveguides,” J. Lightwave Technol. 17, 606–612 (1999).
[CrossRef]

J. Mat. Sci. Lett. (1)

T. Kaneko, “Dilation of glass by field assisted ion exchange,” J. Mat. Sci. Lett. 5, 1011–1012 (1986).
[CrossRef]

J. Mater. Sci. (1)

Y. Ti, F. Qiu, Y. Cao, L. Jia, W. Qin, J. Zheng, and G. Farrell, “Photoluminesence of copper ion exchange BK7 glass planar waveguides,” J. Mater. Sci. 43, 7073–7078 (2008).
[CrossRef]

J. Mod. Opt. (1)

F. Gonella, F. Caccavale, A. Quaranta, and A. Sambo, “Copper doped ion-exchanged waveguide characterisation,” J. Mod. Opt. 45, 837–845 (1998).
[CrossRef]

J. Phys. D Appl. Phys. (1)

R. Oven, M. Yin, and P. A. Davies, “Characterisation of planar optical waveguides formed by copper-sodium, electric field assisted, ion exchange in glass,” J. Phys. D Appl. Phys. 37, 2207–2215 (2004).
[CrossRef]

Phys. Chem. Glasses (1)

A. J. H. P. van der Pol and R. E. O. van de Leest, “On the surface chemistry of barium borosilicate glass in aqueous solutions,” Phys. Chem. Glasses 39, 101–107 (1998).

Phys. Rev. (1)

J. R. Tessman, A. H. Kahn, and W. Shockley, “Electronic polarizabilities of ions in crystals,” Phys. Rev. 92, 890–895(1953).
[CrossRef]

Rev. Adv. Mater. Sci. (1)

F. Gonella, “Metal nanocluster composite silicate glasses,” Rev. Adv. Mater. Sci. 14, 134–143 (2007).

Other (3)

J. M. Lehky, D. Erni, F. Robin, F. Dellmann, L. G. Bona, P. Straub, and W. Bachtold, “Optical waveguides for backplane communication using metal film ion-exchange in glass,” presented at the 12th European Conference on Integrated Optics, Grenoble, France, April 6–8 2005.

H. Rawson, Properties and Applications of Glass (Elsevier, 1980).

B. A. Boley and J. H. Weiner, Theory of Thermal Stresses(Dover, 1997), pp. 277–279.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of sample and line scans A-A and B-B.

Fig. 2
Fig. 2

Surface profile along line scan A-A. 7740 glass, injected charge density = 0.083 C cm 2 .

Fig. 3
Fig. 3

Solid curves are the surface profiles along line scans B-B. 7740 glass, injected charge density = 0.063 C cm 2 and 0.149 C cm 2 . Dashed curves are the quadratic fits.

Fig. 4
Fig. 4

TE (solid) and TM (dashed) refractive index profiles for Cu + guides in 7740 glass.

Fig. 5
Fig. 5

TE (solid) and TM (dashed) refractive index profiles for Cu + guides in B270 glass.

Fig. 6
Fig. 6

Optical depth versus charge density (circles, 7740 glass; squares, B270 glass).

Fig. 7
Fig. 7

Step height versus charge density (circles, 7740 glass; squares, B270 glass).

Fig. 8
Fig. 8

Reciprocal of radius of curvature ( 1 / R ) versus charge density (circles, 7740 glass; squares, B270 glass). Dashed line, linear fit to 7740 data; solid line, linear fit to B270 data.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δ n TE , TM = Δ n R + Δ n v + Δ n σ TE , TM ,
d = 0 Δ n ( x ) d x Δ n ( 0 ) ,
d = Q e C 0 ,
n 0 2 1 n 0 2 + 2 = 4 π 3 V i N i α i ,
Δ α = 3 4 π C 0 ( n 2 1 n 2 + 2 n 0 2 1 n 0 2 + 2 ) ,
Δ n p , V = Δ n p + Δ n V = ( n 0 2 + 2 ) 2 6 n 0 · 4 π C 0 Δ α 3 ( n 0 2 1 ) ( n 0 2 + 2 ) 6 n 0 Δ V V ,
Δ V V = Δ h d .
Δ n σ TE = ( C 1 + C 2 ) σ ,
Δ n σ TM = 2 C 2 σ ,
σ = Δ n TM Δ n TE C 2 C 1 ,
σ = E W 2 6 ( 1 v ) R d ,

Metrics